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Abstract

Disulfide bond formation is part of the folding pathway for many periplasmic and outer membrane proteins that contain structural
disulfide bonds. In Escherichia coli, a broad variety of periplasmic protein thiol:disulfide oxidoreductases have been identified in recent
years, which substantially contribute to this pathway. Like the well-known cytoplasmic thioredoxins and glutaredoxins, these periplasmic
protein thiol:disulfide oxidoreductases contain the conserved C-X-X-C motif in their active site. Most of them have a domain that displays
the thioredoxin-like fold. In contrast to the cytoplasmic system, which consists exclusively of reducing proteins, the periplasmic
oxidoreductases have either an oxidising, a reducing or an isomerisation activity. Apart from understanding their physiological role, it is of
interest to learn how these proteins interact with their target molecules and how they are recycled as electron donors or acceptors. This
review reflects the recently made efforts to elucidate the sources of oxidising and reducing power in the periplasm as well as the different
properties of certain periplasmic protein thiol:disulfide oxidoreductases of E. coli. © 2000 Federation of European Microbiological
Societies. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Genetic and biochemical studies have led to the discov-
ery of an array of protein thiol:disulfide oxidoreductases
in Escherichia coli (see also [1-4] for reviews). The function
of these proteins is either the oxidative formation of disul-
fide bonds, which is often necessary for folding and stabil-
ity of secretory proteins, the reduction of non-native di-
sulfides, or the isomerisation of disulfide bonds in
proteins, especially when wrong disulfide bonds were
formed.

Generally, thiol:disulfide oxidoreductases are character-
ised by two features. (i) They share an active site contain-
ing two cysteines, arranged in a C-X-X-C motif (Fig. 1),
which are either in the reduced state forming two thiols or
in the oxidised state forming an intramolecular disulfide
bond. This motif represents the active site of proteins that
interact directly with cysteines or cystines in the target
molecules. This interaction leads to the formation of a
kinetically unstable intermediate, the so-called mixed di-
sulfide. (i) Despite very low primary sequence similarity,
most of these proteins show the same overall tertiary
structure known as the thioredoxin-like fold [5].

In the bacterial cytoplasm, the protein thiol:disulfide
oxidoreductases comprise the thioredoxin and glutaredox-
in systems [6]. They catalyse reductive processes such as
the transfer of electrons to ribonucleotide reductase and
reduction of disulfide bonds. This reflects the fact that the
cytoplasm is a reducing environment.

In the periplasm, disulfide bond (Dsb) formation is a
necessary part of the protein folding pathway of many
cell envelope proteins [2]. Here, oxidation of dithiols is
catalysed rapidly and in a rather unspecific way by
DsbA and DsbB. Further periplasmic thiol:disulfide oxi-
doreductases are known, which are responsible for the
transfer of reducing power towards the cell envelope and
for reduction and isomerisation of randomly formed disul-
fide bonds.

Studies with the apparently strongest dithiol oxidising
protein of the periplasm, DsbA, and with the strongest
disulfide reducing protein of the cytoplasm, thioredoxin
(Trx1), revealed that the redox properties of protein thiol:
disulfide oxidoreductases are strongly influenced by the
intervening X-X dipeptide between the active-site cysteines
[7-11]. DsbA and thioredoxin variants, in which the X-X
dipeptide was mutated so as to mimic the active site of
another thiol:disulfide oxidoreductase, have a redox po-
tential that is shifted in the direction of the redox potential
of that latter protein. In the case of the thioredoxin mu-
tant variants, their in vivo redox properties correlated well
with their intrinsic redox potentials. Their ability to com-
plement a x4 mutant (deficient in Trx1) increased with
decreasing redox potential. Thus, the low redox potential
of Trx1 is clearly an important factor for its in vivo func-
tion [12]. Interestingly, active-site variants of DsbA, which
were more than 1000-fold weaker oxidants than the wild-

type protein, could still functionally replace DsbA under
normal growth conditions [7]. In the case of DsbA the
redox potential may, therefore, be less critical than ini-
tially assumed [9]. A further important factor influencing
the redox function of protein thiol:disulfide oxidoreduc-
tases is the redox environment in the compartment where
these proteins are located [9,13,14]. The cytoplasm is a
more reducing environment, whereas the periplasm is
more oxidising. For example, it was possible to comple-
ment a deficiency of periplasmic DsbA with artificially
secreted thioredoxin variants even though these variants
had a much lower redox potential than DsbA [9]. The
low efficiency of wild-type Trxl complementing a dsbA
mutant for disulfide bond formation was suggested to be
due to a slow rate of polypeptide oxidation [9,13]. Addi-
tionally, it was proposed that Trx1, despite having a nor-
mal in vivo function as a reductant, is able to act as an
oxidant in the cytoplasm depending on its own redox
state. In the absence of thioredoxin reductase that cataly-
ses the reduction of thioredoxin by NADPH, Trx1 seemed
to assist the formation of disulfide bonds in cytoplasmi-
cally expressed alkaline phosphatase (PhoA) [14].
Comparison of the amino acid sequence surrounding
the conserved C-X-X-C motif does not lead to the identi-
fication of an extended common sequence motif for the
periplasmic protein thiol:disulfide oxidoreductases and
thioredoxin (Fig. 1). Only limited similarities between
some members can be observed. Several protein thiol:di-
sulfide oxidoreductases contain an aromatic residue N-ter-
minal to the C-X-X-C motif (DsbA, DsbD, DsbG, CcmG,
thioredoxin). Like in thioredoxin, this aromatic residue is
a conserved tryptophan in the reducing proteins DsbD
and CecmG. Moreover, in protein thiol:disulfide oxidore-
ductases, which either reduce a disulfide bond to a dithiol
or reduce a disulfide bond in a protein for isomerisation
and reoxidation, a positively charged residue follows the
C-X-X-C motif (DsbC, DsbD, DsbG, CcmG, thioredox-
in). By contrast, the C-X-X-C motif of DsbB and CcmH is

DsbA: GAPQVLEFFSFHE@PHEYQFEEVLHISDN
DsbB: ALWFQHVMLLKH@VI[@IYERCALFGVLG
DsbC: EKHVITVFTDITEGY@HKLHEQMADYNA
DsbD: GKPVMLDLYADWEVARKEFEKYTFSDPQ
DsbG: APVIVYVFADPHEPY@KOFWQOARPWVD
CcmG: GKPVLLNVWATWEPT{RAEHQYLNQLSA
CcmH: EQQFROLTEELREPK@ONNSIADSNSMI
Trxl: DGAILVDFWAEWEGPEKMIAPILDEIAD

Fig. 1. Alignment of the sequences surrounding the active site of the
periplasmic protein thiol:disulfide oxidoreductases and of cytoplasmic
thioredoxin (Trx1) of E. coli. The strictly conserved cysteine residues are
written in black boxes, while residues which show only partial similarity
are shaded grey. Twelve amino acids are shown on each side of the con-
served C-X-X-C motif: DsbA: aa 18-45; DsbB: aa 29-56; DsbC: aa
86-113; DsbD: aa 391-418; DsbG: aa 114-141; CcmG: aa 68-95;
CcemH: aa 31-58; Trxl: aa 20-47.
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neither preceded by an aromatic, nor followed by a pos-
itively charged residue. Comparison of a specific oxidore-
ductase with its respective homologues in other organisms
reveals that the sequence in the vicinity of the C-X-X-C
motif is conserved within a group of oxidoreductases. So
far, the functional relevance of this sequence conservation
is not known. Exchanges of charged residues in the vicin-
ity of the active site of DsbA did not significantly influence
the redox potential of the protein [15,16]. Further partic-
ular segments of the amino acid sequence that are con-
served within particular subfamilies may represent surfaces
for the interaction with target proteins. For example,
CemG homologues contain a short sequence of high sim-
ilarity in their C-terminal, hydrophilic domain [17,18]. In
the DsbD protein, several cysteines, prolines and glycines
are conserved in putative transmembrane helices. The cys-
teine residues are located in an extended segment of se-
quence conservation and have been suggested to function
in the transfer of reducing equivalents from the cytoplasm
into the periplasm [19,20]. They are also conserved in the
cytochrome ¢ maturation protein CcdA of Bacillus subtilis,
which shows overall homology to the central core of the
DsbD protein [21].

Recent studies have also revealed that the function of
some of the protein thiol:disulfide oxidoreductases is not
limited to the oxidation and reduction of dithiols and di-
sulfide bonds, but might be extended to a chaperone-like
activity preventing aggregation of some substrate proteins
independently of the presence of cysteine residues [22-25].
In this review we address the function of every so far
known periplasmic protein thiol:disulfide oxidoreductase
of E. coli and summarise the recent findings of their com-
plex interactions to maintain the redox balance in the
periplasm.

2. The oxidising pathway in the E. coli periplasm
2.1. DsbA

The periplasmic thiol:disulfide oxidoreductase DsbA
was independently discovered by two groups [26,27],
although an earlier report [28] had already pointed out
the existence of a periplasmic protein disulfide oxidoreduc-
tase activity. Since then, the protein, which is responsible
for the formation of disulfide bonds in newly translocated
proteins, has been studied in much detail.

E. coli DsbA is a soluble, monomeric 21.1-kDa protein
that contains a single catalytic dithiol/disulfide pair within
the active-site sequence C-X-X-C (Figs. 1 and 2) [26,27].
The active site of the protein is trapped experimentally in
the oxidation state [29,30]. DsbA catalyses the random
oxidation of reduced, unfolded proteins in an extremely
rapid disulfide exchange reaction [29-33]. The standard
redox potential of purified DsbA (E;')=—0.125 V is in
agreement with the oxidising properties of this protein
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Fig. 2. Model of disulfide bond formation catalysed by various protein
thiol:disulfide oxidoreductases in the periplasm and subsequent protein
folding (see also [129,130]. A: Disulfide bond formation in a periplasmic
protein with an uneven number of cysteine residues, which in this exam-
ple are non-consecutively connected in the mature product. B: Redox
pathway of cytochrome ¢ maturation. Proteins with oxidative activity
are shown on the left (depicted in red), while proteins with reductive/
isomerisation activity are shown on the right (in blue). Red and blue ar-
rows indicate the flow of electrons. Black arrows indicate the folding
pathway of the polypeptide.

[34,35]. For comparison, thioredoxin, which functions as
a disulfide reductant in the cytoplasm, has a standard re-
dox potential of —0.270 V [10]. The oxidising power of
DsbA derives from the low pK, value of the first cysteine
residue (Csp), which is about 3.5, suggesting that DsbA
transfers its disulfide bond very easily onto substrates in
thiol disulfide exchange reactions [36]. The low pK, of Cj
is thought to be mainly determined by the two residues
(histidine and proline) between the active-site cysteines
[7,8].

Insertion mutations in the dsbA gene (dsbA::kanl,
dsbA::Tn5) lead to a pleiotropic phenotype, underlining
the central role of DsbA in the periplasm. In particular,
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dsbA mutants are sensitive to reduced dithiothreitol (DTT)
and benzylpenicillin, and lack active alkaline phosphatase,
B-lactamase and the outer membrane protein OmpA
[26,27,37]. Other processes that involve proteins requiring
disulfide bonds for activity are also severely affected: for
example, motility due to disrupted flagellar assembly, and
infection with phage M13 because of a defect in F pilus
assembly [26,38]. Moreover, functional P-type, type I and
type IV fimbriae are missing in dsbA mutants [23,39,40].
For the assembly of P fimbriae, it has been shown that not
only the oxidising activity is required, but also a chaper-
one-like activity that is exerted apparently by DsbA [23].
This finding was supported recently by Sauvonnet and
Pugsley [22], who found that secretion of pullulanase re-
quires DsbA, but is independent of disulfide bond forma-
tion, suggesting a chaperone-like activity for DsbA. This
activity of DsbA was further ascertained by in vitro re-
folding assays with D-glyceraldehyde-3-phosphate dehy-
drogenase [24]. Further phenotypes include the lack of
holocytochrome ¢, defects in enterotoxin I secretion and
in folding of periplasmic Cu,Zn superoxide dismutase as
well as sensitivity to Cd**, Zn?>* and Hg?* [41-45].

DsbA homologues of E. coli have been found in several
proteobacteria of the y-subdivision, with sequence identi-
ties between 28% and 97%: Shigella flexneri [46], Salmo-
nella typhimurium [47], Erwinia chrysanthemi and Erwinia
carotovora [48,49], Haemophilus influenzae [50], Vibrio
cholerae [51,52], Azotobacter vinelandii [53], Yersinia pestis
[54], Klebsiella sp. [55], Salmonella typhi and Salmonella
enteritidis [56]. Further homologous proteins have been
identified by blast search in Pseudomonas syringae (acces-
sion number: AAB92367), Pseudomonas aeruginosa (acces-
sion number: P95460), Legionella pneumophila (accession
number: P50024) and Enterobacter amnigenes (accession
number: AF012826.1). As far as the phenotypes of dsbA
mutants in pathogenic bacteria have been analysed, defi-
ciencies in the biogenesis of fimbriae, enterotoxin secretion
and invasiveness have been described, making DsbA a
protein of putative medical interest [22,39,40,46,52,54,57].
The A. vinelandii dsbA mutant strains were impossible to
characterise because of their extremely poor growth [53]. It
is interesting that most dsbA-null mutants are viable. This
raises the question of whether there is another source for a
remaining disulfide bond-forming activity.

2.2. DsbB

The protein that is responsible for re-oxidation of DsbA
is called DsbB (Fig. 2). Its gene was identified by searching
for E. coli mutants defective in disulfide bond formation
[37,38,58]. Like dsbA insertion mutants, the dsbB insertion
mutants (dsbB::Tnl0, dsbB::kan5) exhibit a pleiotropic
phenotype being deficient in disulfide bond formation in
periplasmic proteins and sensitive to DTT and benzylpe-
nicillin. The sensitivity to benzylpenicillin is likely due to
the lack of the two disulfide bonds in the penicillin-binding

protein 4, which are required for its enzymatic activity
[37,59]. Cytochrome ¢ maturation was also found to be
inhibited in dsbB mutants [60,61]. Topological analysis
of the 20-kDa protein revealed four transmembrane heli-
ces with both termini localised in the cytoplasm [62]. Four
of the six cysteine residues, which are located in the two
periplasmic domains of the protein, are required for DsbB
activity, whereas the remaining two are not [62]. The two
cysteine residues in the first periplasmic loop are arranged
in the conserved motif C4;-X-X-Cyy (Fig. 1), while the two
cysteine residues located in the second periplasmic loop
are separated by 25 amino acids (Cjp4 and Ciszp). The
hydrophilic loops of DsbB probably do not form a thio-
redoxin-like fold, as these domains neither are large
enough nor contain conserved residues apart from the
cysteines (Fig. 1). Nevertheless, evidence has arisen that
DsbB functions as a thiol:disulfide oxidoreductase re-oxi-
dising DsbA. In addition to the fact that the dsbA4 and the
dsbB single mutants as well as the dsbA-dsbB double mu-
tants exhibit the same phenotype, the DsbA protein accu-
mulated in the reduced state in dsbB mutants [37,58].
What is more, a disulfide-bonded complex between
DsbA and DsbB could be identified [63-65]. Analysis of
the conditions allowing formation of such a DsbA-DsbB
complex led to the proposal of the following reaction cycle
for the regeneration of oxidised DsbA: the disulfide bond
of Cj4-Ci39 of DsbB is transferred onto reduced DsbA by
the nucleophilic attack of Cjp of DsbA; subsequently, Cjp4
and Cj3p of DsbB are re-oxidised by intramolecular trans-
fer of the disulfide bond of C4;-Cyyg [63-65]. The recycling
of fully oxidised DsbB is discussed in Section 5.1.

Homologous proteins have been identified in several
proteobacteria of the y-subdivision: S. flexneri (accession
number: Q54155), Vibrio alginolyticus (accession number:
Q56578), H. influenzae [66], P. aeruginosa [67] as well as in
proteobacteria of other subdivisions: Burkholderia cepacia
[68], Rickettsia prowazekii [69] and Campylobacter jejuni
[70]. Furthermore, a putative DsbB homologue has been
identified in the Gram-positive bacterium Bacillus subtilis
(accession number: AF021803.1) [71]. DsbB of B. cepacia
was found to be able to restore motility and protease
secretion of an E. coli dsbB mutant, and it was suggested
that it is needed for disulfide bond formation in extracel-
lular protease of B. cepacia [68].

3. Reducing power in the periplasm
3.1. DsbD

The dsbD gene, also called dipZ, was initially discovered
because of its effect on cytochrome ¢ biogenesis [72,73]. At
the same time, another group localised the gene in the
cutA locus, whose three gene products (CutAl, CutA2
and CutA3) seemed to confer copper tolerance to the
cell [74]. The predicted polypeptide encoded by cutA2 cor-
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responds to DsbD and contains the C-X-X-C motif. This
motif has also been identified as a metal-binding motif in
several bacterial and eukaryotic proteins such as CopZ,
CCS, Atxl, CCH, and HAHI1 [75-80]. Since other se-
quence features of copper-binding proteins are not
present, it was proposed that CutA2/DsbD might have
an important chaperone-like function for an unknown
protein, which in turn is directly involved in either copper
uptake or efflux [74]. Independently, the dsbD gene has
also been identified in a genetic screen as an extragenic
suppressor of dsbA mutants: mutations in the dsbD gene
resulted in partial phenotypic compensation of dshbA and
dsbB mutations [81]. The suppression depended on the
presence of DsbC [82]. DsbD is a 565-amino acid poly-
peptide that is integrated into the membrane with nine
putative transmembrane helices [83]. At the C-terminus,
DsbD contains a 16-kDa periplasmically oriented domain
(Fig. 2), which shares 40-45% sequence identity with eu-
karyotic protein disulfide isomerase [60,81]. This domain
contains a C-X-X-C motif (amino acids 480-483) that is
surrounded by some conserved residues of thioredoxins
(Fig. 1). Moreover, sequence alignments for several
DsbD homologues revealed that four further cysteines
are strictly conserved, of which two (Cjy and Cjyg) are
located in the first periplasmic loop and two on the cyto-
plasmic and periplasmic side of the second and fifth trans-
membrane helix, respectively [19,83]. These cysteines were
shown to be essential for DsbD function [83]. Lack of the
DsbD protein led to some of the phenotypic defects ob-
served with other dsb mutants such as hypersensitivity to
DTT and benzylpenicillin [81]. Whereas dsbA-dsbD and
dsbB-dsbD double mutants resulted in at least a partial
restoration of the wild-type phenotype, a dsbC-dsbD dou-
ble mutant (for DsbC see Section 4.1) showed a more
complex phenotype with restoration of some characteris-
tics, but also additive effects [81]. For example, motility
was not affected in either a dsbC or dsbD single mutant,
but the double mutant was not as motile as the single
mutants. In dsbD mutants, DsbA and DsbC accumulated
in their oxidised forms [81]. Taken together, DsbD ap-
pears to play a reducing role in the otherwise oxidising
environment of the periplasm [72,81].

DsbD homologues have also been identified in other
bacteria. The most closely related ones are DsbD of H.
influenzae [66] and DipZ of P. aeruginosa [19]. The latter
was found to be involved in cytochrome c¢ biogenesis.
However, in contrast to a dshD mutant of E. coli, holo-
protein formation in a P. aeruginosa dipZ mutant was only
attenuated [19]. Another DsbD homologue has been ana-
lysed in S. typhimurium, which, although it is less con-
served, functions as a suppressor for copper sensitivity
(ScsB), a feature that has also been observed for DsbD
of E. coli [74,84]. In Pantoea citrea a gene was identified,
which might be involved in the induction of pink disease
in pineapple; this gene was called dsbC, although its gene
product shares 28% amino acid sequence identity with

DsbD of E. coli (accession number: AAD38449). Two
further proteins that show weak homology to the men-
tioned DsbD homologues are DsbD of Chlamydia pneu-
moniae (accession number: AADI18924) and of Chlamydia
trachomatis [85]. They possess an extension at the N-ter-
minus, but share the thioredoxin-like motif at the C-ter-
minus. Moreover, members of a whole family of much
smaller proteins possess low similarity to the core region
of DsbD, but lack the C-terminal segment with the thio-
redoxin-like motif. The best-studied member is CcdA of B.
subtilis, which has been shown to be also required for
cytochrome ¢ maturation [21].

3.2. CemG and CemH : specialised oxidoreductases

Two further proteins with a conserved C-X-X-C motif
have been identified in the periplasm of E. coli. These are
Ccm@G, also called DsbE ([2], accession number: P33926),
and CcmH. Studies devoted to cytochrome ¢ biogenesis in
E. coli led to the identification of the genes required for
the formation of c-type cytochromes [86,87]. Homologous
proteins in other bacteria are encoded by similar gene
clusters like CcemG and CemH and are also required for
cytochrome ¢ maturation. Both proteins have been shown
to function in the redox pathway of cytochrome ¢ matu-
ration [§7-90].

CemG is a 20-kDa protein with an N-terminal mem-
brane anchor and faces the periplasm with its hydrophilic
C-terminal domain containing the active site (Fig. 2B) [89].
Around the C-X-X-C motif several additional residues are
conserved between CecmG and the reductases Trxl and
DsbD, suggesting that CemG also assumes the thioredoxin
fold (Fig. 1).

Homologues of CcemG have been identified in many
bacteria; the best-studied ones are HelX of Rhodobacter
capsulatus [91,92], CycY of Bradyrhizobium japonicum
[17,93], CemG of Paracoccus denitrificans [94], and CycY
in Rhizobium leguminosarum [95]. They are all essential for
cytochrome ¢ maturation. CemG mutants of P. denitrifi-
cans are additionally affected in maturation of cytochrome
aa; [94]. Further homologues have been identified in P.
citrea (accession number: AAD19543), H. influenzae [66],
Pseudomonas fluorescens [96,97], Allochromatium vinosum
(accession number: AAB04631), and Rhodobacter sphaero-
ides (accession number: AAB61910). In particular, mem-
bers of the CcmG family share a conserved sequence G-V-
X-G-X-P-E in the C-terminal part of the protein that may
specify protein—protein interactions [17,18]. Detailed bio-
chemical characterisation of CycY of B. japonicum re-
vealed a rather reducing redox potential for the soluble
C-terminal domain (Ey’ =—0.217 V), supporting the view
that this species of thiol:disulfide oxidoreductases plays a
reducing role during cytochrome ¢ maturation [17].

Active-site mutants of CcmG and HelX have been
tested for function in E. coli and R. capsulatus, respec-
tively. Each cysteine residue of the active site was changed
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to a serine, either individually or both together. In E. coli,
it has been shown that ccmG mutants having one or both
cysteine residues of the active site replaced by serine pro-
duce strongly decreased levels of holocytochrome c¢. Fur-
thermore, cytochrome ¢ maturation could be restored
when CemG active-site mutants were grown in the pres-
ence of reducing compounds such as cysteine or 2-mercap-
toethanesulfonic acid. Remarkably, a cemG in-frame dele-
tion mutant was irreversibly defective [89,94,98]. In R.
capsulatus, the active-site mutants were tested under con-
ditions of photosynthetic growth, for which c-type cyto-
chromes are absolutely essential, and shown to be lethal
under these conditions [92]. It was concluded that CcmG
is especially required for the reducing pathway of cyto-
chrome ¢ maturation [89].

In contrast to various other bacterial oxidoreductases,
CemG did not show thiol:disulfide reductase activity in
the classical insulin reduction assay, suggesting a high spe-
cificity of CemG for its reaction partner [17,92]. Likewise,
a cemG deletion mutant did not influence the activity of
alkaline phosphatase (PhoA), a protein that needs to form
two intramolecular disulfide bonds to assume an active
conformation. By contrast, formation of a correctly disul-
fide-bonded PhoA structure has been shown to depend on
the general thiol:disulfide oxidoreductases DsbA, DsbB,
DsbC and DsbD [26,37,72,81,82,99]. The fact that
CemG does not affect the activity of alkaline phosphatase
is a further hint at the high specificity of CcmG for its
substrate [17,94].

CcmH is a membrane-bound protein exposing the con-
served motif L-R-C-X-X-C into the periplasm (Figs. 1 and
2B) [90]. The E. coli CcmH protein is special in that it
appears to be a hybrid of the two cytochrome ¢ matura-
tion proteins CcmH (also called Ccl2 and CycL) and Ceml
(also called CycH), which are usually found in Gram-neg-
ative bacteria instead. Its N-terminal domain contains the
C-X-X-C motif, whereas its C-terminal domain corre-
sponds to Ccml. Interestingly, the C-terminal hydrophilic
domain of E. coli CcmH was shown not to be essential for
cytochrome ¢ maturation [87,90]. Homologues with re-
spect to the N-terminal domain of E. coli CemH have
been found in B. japonicum [100], Rhizobium etli [101],
R. leguminosarum [102], Sinorhizobium meliloti [103], R.
capsulatus [104], P. denitrificans [105], P. fluorescens [96,
97], H. influenzae [66], and P. citrea (accession number:
AAD19544). The N-terminal hydrophobic sequence of the
R. capsulatus CcmH homologue Ccl2 appears to be a
cleavable signal sequence [92]. It has been suggested that
the N-terminal signal sequence of CcmH of E. coli is also
cleaved after translocation to the periplasm, thus resulting
in a protein with two periplasmic domains that are linked
by two transmembrane helices [90].

Under anaerobic growth conditions, when E. coli nor-
mally synthesises c-type cytochromes, only the second cys-
teine residue of the C-X-X-C active site is essential for
cytochrome ¢ maturation. However, under aerobic growth

conditions, both cysteine residues are required [90]. Dur-
ing anaerobic nitrite respiration, E. coli synthesises the
NrfF protein that is homologous to the N-terminal do-
main of CcmH and contains the C-X-X-C motif. NrfF is
believed to be involved specifically in the biogenesis of
NrfA, the cytochrome css5; subunit of the formate-depen-
dent nitrite reductase [106,107]. The role of the CcmH
homologue Ccl2 in R. capsulatus during cytochrome c¢
maturation has also been studied [92]. Site-directed muta-
genesis of the active-site cysteines did not allow growth
under anaerobic photosynthetic conditions, when c-type
cytochromes are essential.

Several lines of evidence indicate that CcmH has a re-
ducing function during cytochrome ¢ maturation. First of
all, the R capsulatus Ccl2 protein is able to reduce the
haem-binding domain of an apocytochrome ¢ peptide in
vitro [92]. Secondly, active-site mutants of E. coli CcmH
could be restored for cytochrome ¢ formation with the
reducing compound 2-mercaptoethanesulfonic acid [90].
Finally, Gabbert and colleagues found that expression of
ccl? is six-fold enhanced under aerobic (i.e., more oxidis-
ing) versus anaerobic conditions [108]. It is concluded that,
although the region encompassing the C-X-X-C motif
does not resemble other thioredoxin-like proteins, CcmH
is involved in the redox pathway of cytochrome ¢ biogen-
esis [5,90,92]. Therefore, both proteins, CcmG and CcmH,
are assigned to the family of periplasmic redox proteins in
E. coli.

4. Isomerisation of disulfide bonds
4.1. DsbC

The dsbC gene was identified in a genetic selection for
its ability to rescue sensitivity to reduced DTT of Tnl0-
mutagenised E. coli [99]. In E. chrysanthemi, a gene encod-
ing the homologue of E. coli DsbC was independently
identified by using E. chrysanthemi DNA libraries to com-
plement an E. coli mutant with the intention of cloning the
dsbA homologue [109]. E. coli dsbC mutants have a defect
in disulfide bond formation in periplasmic proteins, but
this defect is not as strong as in dshbA and dsbB mutants
[29,99]. On the other hand, overexpression of dsbC almost
restores the wild-type phenotype of cells lacking DsbA
and/or DsbB and, reciprocally, overexpression of dsbA
can complement the lack of DsbC. The redox state of
DsbA is not affected by DsbC, implying that DsbA and
DsbC constitute an independent and parallel system of
thiol oxidation [99]. DsbC is a soluble, periplasmic protein
that forms a homodimer consisting of two 23.5-kDa sub-
units (Fig. 2A). Each subunit assumes a thioredoxin-like
fold containing the C-X-X-C motif, which forms an un-
stable, reactive disulfide [110,111]. In wild-type cells, the
cysteines of the active site are found predominantly in the
thiol form [20,29]. In addition, DsbC has a second set of
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cysteines, which forms a putative structural disulfide bond
(Ci41 and Cyg3) [111]. Biochemical characterisation of
DsbC revealed that, like DsbA, DsbC has dual activities
in vitro depending on its redox state. In the oxidised state,
it transfers the disulfide bond of the active site onto a
reduced target protein, whereas in the reduced state it
can act as disulfide isomerase and shuffle mispaired disul-
fides [29]. However, in vivo characterisation showed that,
while DsbA merely oxidises cysteines on the substrate,
DsbC efficiently isomerises preformed disulfide bonds
[29,81,82,111]. Sone and colleagues developed an elegant
experimental system supporting the view of disulfide iso-
merase activity for DsbC: using alkaline phosphatase with
an uneven number of cysteine residues due to mutagenesis,
they identified the formation of correct as well as incorrect
combinations of disulfide bonds, depending on the pres-
ence or absence of DsbC [112]. The isomerase activity of
DsbC has been attributed to a stronger substrate binding
than that of DsbA [113]. The reason why dsbC mutants
show a much milder phenotype than dsbA mutants may be
that very little disulfide isomerisation is required for
growth, because only very few periplasmic and outer mem-
brane proteins have more than two disulfide bonds per
monomer [29]. Moreover, it was suggested that disulfide
bond formation by DsbA might occur simultaneously with
polypeptide translocation, and, if the cysteine pairings are
consecutive in the primary sequence, probably only the
correct ones are formed [29]. It was also reported that
dsbC mutants lose the ability to correctly fold periplasmic
proteins with multiple disulfide bonds, but are not affected
in the folding and oxidation of proteins with only one
disulfide bond such as the OmpA protein [82]. Recently,
it was shown that DsbC can promote the in vitro reacti-
vation of denatured p-glyceraldehyde-3-phosphate dehy-
drogenase during refolding. Since this enzyme does not
possess any disulfide bond, the activity of DsbC in reac-
tivation was ascribed to a chaperone activity independent
from the isomerase activity [25].

Proteins displaying significant sequence identity to
DsbC of E. coli and E. chrysanthemi are known from
S. typhimurium (accession number: P55890), H. influenzae
[66], and P. aeruginosa (accession number: AAC16483).

4.2. What is the function of DsbG?

Only recently, a further periplasmic thiol:disulfide oxi-
doreductase called DsbG has been identified in E. coli.
This protein is synthesised as a precursor of 27.5 kDa
and processed in the periplasm to a 25.7-kDa mature spe-
cies (Fig. 2A) [114]. Besides sharing sequence similarity
with the thiol:disulfide oxidoreductase DsbC (29%),
DsbG is also homodimeric and forms a reactive disulfide
bond in the C-X-X-C motif [115]. The characterisation of
DsbG in vivo and in vitro led to the assumption that the
protein exhibits a thiol:disulfide oxidoreductase activity in
the periplasm; however, its precise function has not yet

been determined [114-116]. The results obtained from its
characterisation are partly inconsistent. The dsbG gene
was identified on the basis of its ability to confer resistance
to high concentrations of reduced DTT in a dsbB mutant,
when present in multiple copies [114]. In a dsbG mutant
background, reduced periplasmic proteins accumulated.
Furthermore, the mutant cells were not viable unless
dshbA and dsbB were overexpressed or oxidising com-
pounds were added to the growth medium [114]. Andersen
and colleagues proposed an oxidising function for DsbG
because of the residual oxidation still observed in a dsbA
mutant [114]. In a recent publication, Bessette and co-
workers suggested that DsbG might act as a thiol:disulfide
isomerase [115]. They were able to partly rescue the defect
in formation of active multi-disulfide proteins in a dsbC
mutant background through overexpression of dsbG [115].
In contrast to the earlier work, they were unable to con-
firm either the lethal phenotype of a dsbG mutant or its
defect in folding of periplasmic proteins [114,115]. Thus,
they concluded that DsbG is redundant under the tested
conditions or has a limited set of substrates for which it is
needed [115]. Stewart et al. reported that DsbG can be
reduced by DsbD [83]. All in all, the precise function of
DsbG is still not known.

5. Electron flow pathways of protein thiol:disulfide
oxidoreductases

5.1. How are DsbA and DsbB re-oxidised?

Recent work of Kobayashi and co-workers suggested
that the oxidative power of the DsbA/DsbB system is re-
cycled via the electron transfer system of the respiratory
chain (Fig. 2) [117,118]. E. coli hemA and ubiA-menA mu-
tants, defective in haem and quinone biosynthesis, respec-
tively, markedly accumulated the reduced form of DsbA
in haem- or quinone-depleted cells; moreover, DsbB accu-
mulated first in a reduced form, and then in a disulfide-
linked complex with DsbA [117]. Restoration of the respi-
ratory chain in these mutants quickly converted DsbA to
the free oxidised form [117]. This study was extended by
the characterisation of the redox states of the essential
cysteine residues of DsbB. The two pairs of cysteines
have contrasting properties. The C-terminally located di-
sulfide bond between C;o4 and Ci3y is unstable and re-
quires the presence of the N-terminally located disulfide
bond formed between C4; and Cy4 [118]. By contrast, the
cysteine residues of the C4;-X-X-Cyq motif form a disulfide
bond that seems to be refractory even to reduction by
reducing agents. Remarkably, this resistance requires
that DsbB is integrated into a membrane that contains
the normal set of respiratory components and that oxygen
is present [118]. It was assumed that the Cy4;-X-X-Cyg mo-
tif of DsbB is maintained in the oxidised form due to the
coupling to O, via the respiratory chain. Hence, whenever
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Cy4; and Cyy are reduced, they are re-oxidised immediately
[118]. A similar model has been suggested by Bader and
co-workers [119]. They showed that membranes containing
catalytic amounts of DsbB can rapidly re-oxidise DsbA.
As the reaction strongly depended on the presence of oxy-
gen, they also concluded that oxygen serves as the final
electron acceptor for the disulfide bond formation system
of DsbA/DsbB [119]. Corroborative for the requirement of
the respiratory chain for DsbA/DsbB recycling is also the
recent finding that a low ubiquinone content leads to thiol
sensitivity [120]. This phenotype corresponds to the thiol
sensitivity observed for various dsb mutants. Intrigued by
these facts, Bader and colleagues studied the recycling of
DsbB in more detail. They proved in vitro that disulfide
bond formation and respiratory electron transport are
coupled directly [121]. They succeeded in demonstrating
that DsbB uses quinones as electron acceptors, thus allow-
ing various choices for electron transport to support di-
sulfide bond formation under aerobic and anaerobic
growth conditions (Fig. 2) [121]. They not only identified
quinones as the direct electron acceptor of DsbB, but also
solved the mystery of how DsbB is recycled under anae-
robic growth conditions. In this case, other terminal elec-
tron acceptors, such as nitrate, nitrite and fumarate, ac-
cept electrons from the corresponding terminal reductases
[121].

5.2. How do electrons reach the periplasm?

Some reactions in the periplasm involve the reduction of
disulfide bonds, for example isomerisation reactions cata-
lysed by DsbC and DsbG or the preparation of cysteine
residues for the covalent ligation of haem during cyto-
chrome ¢ biogenesis (Fig. 2). Therefore, there must be a
source of reducing equivalents for the otherwise oxidising
environment of the periplasm. More and more evidence
for an electron flow from the cytoplasm to the periplasm
has accumulated recently. Mutants lacking either the cy-
toplasmic thioredoxin Trx1 or one of the periplasmic thi-
ol:disulfide oxidoreductases DsbC or DsbD display simi-
lar phenotypes, implying that they function in the same
pathway [82]. Alkaline phosphatase accumulated in a mis-
folded state in trxA, dsbC and dsbD mutants, but this
defect was restored by the addition of low amounts of
reduced DTT. Further support for the reducing pathway
consisting of thioredoxin, DsbC and DsbD was obtained
in an analysis of the redox state of DsbC in trxA4 and dsbD
mutants: the DsbC protein was oxidised completely in
cells lacking either Trx1 or DsbD, whereas in the wild-
type, the active site of DsbC was in the reduced state [20].

The postulated flow of electrons from the cytoplasm to
the periplasm is presented in Fig. 2A [20,83]. The thiore-
doxin reductase/thioredoxin system transfers electrons
onto DsbD, which is supposed to act as a bridge between
cytoplasm and periplasm. Next, DsbD reduces DsbC and
other periplasmic target proteins, whose functions depend

on their reduced state in the periplasm. It is still not
known whether direct interactions occur between the
Trxl and DsbD and the DsbD and DsbC pairs, or
whether further components are required. However,
DsbD apparently plays a central role in the transport of
reduction power over the inner membrane [83]: site-di-
rected mutagenesis of the six conserved cysteines revealed
that each of them contributes to the function of this pro-
tein. A mechanism of electron transduction through the
membrane was proposed, which involves the passage of
electrons along cysteines within DsbD. From the topolog-
ical analysis it was proposed that Cg, is the only con-
served cysteine close to the cytoplasmic side of the mem-
brane and thus likely the first electron acceptor in DsbD.
A cascade of electron transfer reactions involving forma-
tion and resolving disulfide bonds between pairs of cys-
teines within DsbD would result in a reduced C-X-X-C
motif on the periplasmic side of the membrane that can
reduce oxidised C-X-X-C motifs of periplasmic disulfide
oxidoreductases such as DsbC or CcmG. Although the
idea of a membrane-internal, catalytically active disulfide
bond that is formed transiently between cysteines close to
the inner and outer face of individual transmembrane heli-
ces is attractive, it carries with it the problem of how the
spatial distances are overcome. Most likely, large confor-
mational changes of the protein would be required.

6. Cytochrome c biogenesis: an example of the complexity
of a redox pathway in protein maturation

Cytochrome ¢ maturation has been shown to require
various thiol:disulfide oxidoreductases [41,61,72,88,89,
122]. E. coli is a facultative anaerobe that does not natu-
rally synthesise c-type cytochromes during aerobic growth.
During anaerobic growth, however, it can produce five c-
type cytochromes depending on the available electron ac-
ceptor [123]. In the presence of trimethylamine-/N-oxide
(TMAO), the membrane-bound c-type cytochrome TorC
is induced as part of the major TMAO reductase pathway
[124]. Four c-type cytochromes are synthesised during an-
aerobic growth with nitrite: the c-type cytochromes of the
formate-dependent nitrite reductase, NrfA and NrfB, and
the c-type cytochromes of the periplasmic nitrate reduc-
tase, NapB and NapC [86,125]. They are either localised
as soluble proteins in the periplasm (NrfA, NapB) or at-
tached to the cytoplasmic membrane on the periplasmic
side (NrfB, NapC). A special feature of c-type cyto-
chromes is the covalent attachment of the vinyl side chains
of haem to the cysteines of the conserved C-X-X-C-H
motif in apocytochrome ¢, which must be reduced for
haem binding. When the apoprotein is translocated to
the periplasm, it is most likely to be in the reduced state,
and haem addition should in principle be possible. The
fact that extra reductants such as CcmG and CcmH are
required for cytochrome ¢ maturation [89,90] raises the
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question of whether this requirement is due to a rapid,
non-specific oxidation of the cysteines by DsbA. Does
the CcmG/CemH system re-reduce oxidised apocyto-
chrome ¢, or does it prevent oxidation of newly translo-
cated apocytochrome by DsbA? To distinguish between
these possibilities one can ask whether oxidised apocyto-
chrome c¢ is an obligatory intermediate of the cytochrome
¢ maturation pathway. It has been found that neither dsbA
nor dsbB mutants contain detectable amounts of holocy-
tochrome ¢ [41,60,61]. Since cytochrome ¢ maturation in
these mutants could be rescued by the addition of disulfide
compounds to the growth medium, it was inferred that the
DsbA/DsbB system exerts an oxidising function during
cytochrome ¢ biogenesis [61]. However, under our exper-
imental conditions we have not been able so far to repro-
duce the DsbA effect (R. Fabianek, unpublished results).
If DsbA is indeed required for cytochrome ¢ maturation,
its role may be not only be to pairwise oxidise the cys-
teines of C-X-X-C-H motifs, but also to prefold the apo-
cytochrome polypeptide in order to make it more accessi-
ble to haem ligation.

Along the same line, cytochrome ¢ maturation has also
been found to be affected in dsbD and #rxA mutants
[60,72,98,122]. In this case, restoration of cytochrome c¢
biogenesis was achieved by the addition of thiol reductants
to the medium [98,122]. It is conceivable that — as sug-
gested for the reduction of DsbC — reduction equivalents
necessary for the re-reduction of the haem-binding motif
in apocytochrome c¢ are passed across the cytoplasmic
membrane by the thioredoxin system via DsbD. By con-
trast, a dsbC mutant was not affected in cytochrome ¢
maturation. Although overexpression of DsbC comple-
ments various other dsbA mutant phenotypes, it does
not restore formation of c-type cytochromes [60].

The characterisation of the effects of the general oxido-
reductases on cytochrome ¢ maturation in connection with
the features of the two cytochrome ¢ maturation-specific
oxidoreductases CemG and CemH leads to a preliminary
model for the redox pathway of cytochrome ¢ maturation
in E. coli (Fig. 2B): the newly translocated apocytochrome
c is the target for oxidation by DsbA/DsbB, which initiate
the folding pathway of the protein [41]. Subsequently, the
haem-binding site must be re-reduced for haem attach-
ment. This requires the participation of thioredoxin,
DsbD, CemG and CemH [41,89,90,98,122]. It has been
suggested that CcmH directly interacts with apocyto-
chrome ¢ by reducing the disulfide bond of the haem-bind-
ing site. Then, this interaction is resolved by CcmG, re-
sulting in reduced apocytochrome c¢ that is released for the
covalent haem attachment, and in recycled CcmH. The
oxidised CemG protein is recycled via DsbD/Trx1 [90].
Although the R. capsulatus CcmG and CcmH homologues
have been shown to interact in vitro [92], direct protein—
protein interaction between components of the cyto-
chrome ¢ maturation pathway in vivo has not yet been
shown. Clearly, the identification of true mixed disulfide

intermediates will be required to describe a precise mech-
anism of the redox reactions participating in this pro-
cess.

Cytochrome ¢ maturation is one of several pathways for
posttranslational protein modification, which requires a
proper arrangement of cysteines, and therefore involves
protein disulfide oxidoreductases. In contrast to processes
like pilus assembly or activation of extracellular enzymes,
which require the formation of disulfides, cytochrome ¢
maturation demands that the polypeptide is protected
from the formation of undesired disulfides, while protein
folding must still occur. A balance of oxidative as well as
reductive steps, exerted by general and specialised oxido-
reductases, may be the solution to this complex problem.
Certainly, other periplasmic proteins that use cysteines for
cofactor binding and/or enzymatic activity face a similar
problem, and thus may require other specific protein di-
sulfide oxidoreductases yet to be discovered.

7. Conclusion

Recent work has resulted in substantial progress in elu-
cidating the electron flow pathways for maintenance of
catalysis of disulfide bond formation and isomerisation
in the E. coli periplasm. It is now clear that the DsbA/
DsbB system is re-oxidised via the respiratory chain. The
direct acceptors of electrons from DsbB are ubiquinone or
menaquinone. The advantage of the quinone molecules is
their ability to move freely in the cytoplasmic membrane
and to interact with a broad variety of target molecules
such as dehydrogenases and quinol oxidases. Furthermore,
they may also act as acceptors for the protons which
emerge during oxidation of thiol groups. It remains a
question of how electrons find their way from the appar-
ently periplasmically localised C-X-X-C motif of DsbB to
the quinone pool in the cytoplasmic membrane. Moreover,
it is not clear how E. coli reoxidises DsbB under fermen-
tative growth conditions without an added electron accep-
tor. Perhaps the endogenous formation of fumarate and
succinate during its mixed acid fermentation might be suf-
ficient for reoxidation of DsbB.

Reducing power for the reduction and isomerisation
reactions in the periplasm is derived by an inverse electron
flow from the cytoplasm via the cytoplasmic membrane
into the periplasm. Participants are Trx1 in the cytoplasm,
DsbD in the cytoplasmic membrane and the respective
target molecules in the periplasm like DsbC, DsbG, and
proteins involved in the cytochrome ¢ maturation path-
way. The ultimate source of the electrons seems to be
NADPH, whose electrons are transferred via thioredoxin
reductase to Trxl. Does direct interaction occur between
Trx1 and DsbD and between DsbD and its targets? It is
conceivable that DsbD functions as a mediator of elec-
trons through the cytoplasmic membrane. Several residues
are conserved in the transmembrane helices, among them
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two cysteine residues, which may be able to form a rever-
sible disulfide bond.

While the oxidative branch of the periplasmic redox
network involving DsbA and DsbB is known relatively
well at both the genetic and the biochemical levels, the
reducing pathway(s) appear(s) to be more complex, and
mostly genetic information has been gained. Direct pro-
tein—protein interactions have been described neither for
the common protein thiol:disulfide oxidoreductases such
as DsbD and DsbC, nor for the cytochrome ¢ maturation-
specific redox proteins such as CemG and CecmH.

How special is E. coli in using such an elaborated net-
work of periplasmic protein thiol:disulfide oxidoreduc-
tases to control redox-dependent protein folding? Whole
genome sequences tell us that only close relatives of E. coli
such as H. influenzae contain a similar set of these pro-
teins. For example, from BLAST search analysis, DsbA
appears to be restricted to the y-proteobacteria, which
raises the question of whether extracytoplasmic, enzyme-
catalysed protein disulfide formation does not occur in
other bacteria or is facilitated by a different system. The
closest relative of DsbA in the Gram-positive B. subtilis is
YvgV (accession number: CAB15353): with only about
20% amino acid identity over the entire length of the poly-
peptide it contains a putative signal sequence and the con-
served C-X-X-C motif. However, it is not known whether
this protein is a functional homologue of DsbA. Likewise,
a putative DsbB homologue (about 26% amino acid se-
quence identity) containing all four conserved cysteines is
present in B. subtilis (YolK; accession number:
CAB14062), which could be the oxidant of YvgV. For
the special case of cytochrome ¢ biogenesis, neither of
these two components has been identified in a genetic
screen; rather, the CcdA protein with some similarity to
DsbD, but lacking the redox-active C-X-X-C motif, was
discovered [21]. Because B. subtilis is also missing the re-
ducing branch of the cytochrome ¢ maturation-specific
oxidoreductases CcmG and CcmH homologues, it is en-
tirely unclear how redox control for cytochrome ¢ matu-
ration is exerted in this organism.

It is not too surprising that oxidative folding of secreted
proteins in the endoplasmic reticulum of eukaryotes is not
controlled exclusively by glutathione and protein disulfide
isomerase [126]. Recently, a protein called Erolp has been
identified, which is essential for disulfide bond formation
[127,128]. Erolp is associated with the membrane sur-
rounding the endoplasmic reticulum and has been sug-
gested to be functionally equivalent to DsbB [127,128].
The identification of different protein thiol:disulfide oxi-
doreductases in the endoplasmic reticulum indicates that
this class of proteins provides a wide-spread mechanism
for redox-dependent control of protein folding and matu-
ration.
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