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ABSTRACT

We show that the combination of a weak magnetic propeller and accretion disc resonances can

effectively halt accretion in short-period cataclysmic variables (CVs) for large fractions of their

lifetimes. This may help to explain the discrepancy between the observed and predicted orbital

period distributions of CVs at short periods. Orbital resonances cause the disc to become

eccentric, allowing material to fall back on to the donor star or out of the system. A weak

magnetic field on a rapidly spinning primary star propels disc material outwards, allowing it to

access these resonances. Numerical and analytic calculations show that this state can be long

lived (∼1011 yr). This is because the magnetic propeller is required only to maintain access to

the resonances, and not to push matter out of the Roche lobe, so that the spin-down time-scale

is much longer than that for a classical propeller model.
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1 I N T RO D U C T I O N

It is known that accretion disc resonances in cataclysmic variables

(CVs) can remove angular momentum from the outer accretion disc

(Whitehurst 1988). This occurs when an element of the disc orbits

with a frequency which is resonant with that of the binary orbit,

typically at a ratio of 3:1. This 3:1 resonance drives the accretion

disc to become eccentric and causes the superhump modulations

which are the defining feature of the superoutbursts of CVs. Disc

resonances provide a second source of angular momentum transport

which is responsible for increasing the mass-transfer rate, driving

ordinary outbursts to become superoutbursts (Osaki 1989; Truss,

Murray & Wynn 2001).

In known systems, superhumps normally fade soon after outburst.

This is because the tidal torques clear material from the outer disc

until there is no material remaining at the resonant radius. Resonant

effects cannot switch on again until a new outburst drives the outer

disc beyond the resonant radius once more.

In this paper, we consider the possibility that access to orbital

resonances can be maintained almost indefinitely by the action of

a weak magnetic propeller. It is known that rapidly spinning and

highly magnetic primary stars can act as magnetic propellers in

some CVs. Indeed, in the case of AE Aqr it is believed that the en-

tire mass-transfer stream is ejected by a particularly strong magnetic

propeller (Wynn, King & Horne 1997) and the evolution of AE Aqr

�E-mail: owen.matthews@psi.ch

(Schenker, Wynn & Speith 2004) and WZ Sge (Lasota, Kuulkers &

Charles 1999) may well have been influenced by magnetic effects.

Here, we consider the possibility that a much weaker magnetic pro-

peller might drive the disc outwards as far as the resonant radius, and

so maintain a reservoir of material at this radius. The resulting con-

tinuous deposition of angular momentum by the resonance would

drive the growth of eccentric modes. Disc material would therefore

be likely to extend beyond the primary Roche lobe. Such material

would then either escape the binary or fall back to the donor star,

preventing accretion on to the primary star in either case.

We are motivated to study this mechanism because it may modify

the evolution of CVs, especially if this state can be long lived. This

may well be the case, since a much weaker torque is required than

that required in the AE Aqr case. The mechanism may slow down

or even halt accretion on to the white dwarf by driving mass out of

the primary Roche lobe. At smaller mass ratios, the resonant radii

move further into the Roche lobe of the primary star, and are more

likely to reach the disc, so that any effect is likely to influence short-

period CVs disproportionately. This is interesting because existing

models are unsuccessful in reproducing the observed evolutionary

behaviour of short-period CVs.

Binary evolution models predict a minimum orbital period for

CVs which is reached when the donor star is no longer able to shrink

in response to mass loss. Models consistently place this minimum

at around 65 min (e.g. Kolb & Ritter 1992; Howell, Rappaport &

Politano 1997; Kolb & Baraffe 1999), whereas the observed period

distribution shows a sharp cut-off at 78 min (e.g. Ritter & Kolb

2003; Tappert, Augusteijn & Maza 2002). The same models also
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Figure 1. CV orbital period histogram with the cumulative frequency over-

plotted as a solid line. This plot is based on fig. 1 from King et al. (2002),

but uses more recent data from the online version of Ritter & Kolb (2003).

The plot contains data for all 215 CVs with periods known to be between 60

and 120 min, from a total of 569 with known periods in the catalogue.

predict that the evolution of the orbital period should slow down

at short periods, leading to an accumulation of systems in a sharp

period spike at the minimum period. This feature is absent from the

observed distribution, as shown in Fig. 1.

A number of explanations have been proposed for these discrep-

ancies, but none is entirely satisfactory. An obvious solution is to

hide short-period systems from view, but standard selection effects

do not act sufficiently strongly to explain the differences (Patterson

1998; King, Schenker & Hameury 2002). Another possibility is that

an additional angular momentum loss mechanism could act to in-

crease the minimum period (Patterson 1998) or a range of angular

momentum loss rates could blunt the period spike (King et al. 2002).

However, Barker & Kolb (2002) showed that even the loss of all the

angular momentum carried by the accretion stream cannot increase

the minimum period sufficiently. They also argued that blunting the

period spike by ‘smearing’ the angular momentum loss rates would

require a great deal of fine-tuning to be successful.

In this paper, we consider how the effects of propeller-induced

access to orbital resonances might prevent some short-period CVs

from exhibiting outburst behaviour, and cause them to become

fainter. In Section 2, we discuss the model in more detail. In Sec-

tions 3 and 4, we explore the parameter space for which the idea

may be of interest using smoothed particle hydrodynamics (SPH)

calculations. Finally, in Section 5, we discuss how this mechanism

might influence the evolution of short-period CVs.

2 P RO P E L L E R - D R I V E N R E S O NA N T

M A S S L O S S

2.1 Orbital resonances

In this section, we test the idea described in Section 1 by establishing

under which conditions the accretion disc has access to the orbital

resonances. These conditions are conveniently described with refer-

ence to a series of important radii, measured from the primary star,

all of which are plotted in Fig. 2. Disc elements describe orbits that

Figure 2. Plot of resonant, Roche lobe, circularization, and viscous disc

radii about the primary star in a close binary as a function of mass ratio q.

are approximately Keplerian, so that the positions of the orbital res-

onances are readily calculated from Kepler’s law. Therefore, where

a is the binary separation, the 2:1 and 3:1 resonances are found,

respectively, at

R2:1

a
=

(
1

2

)2/3

(1 + q)−1/3 (1)

and

R3:1

a
=

(
1

3

)2/3

(1 + q)−1/3 . (2)

If an accretion disc is to have access to a resonance, then the resonant

radius must lie within the disc. If the disc radius can be related

to the mass ratio, then this consideration can be used to calculate

qmax, the maximum mass ratio for which resonant access is possible.

There are several ways of estimating the extent of the disc. First,

we use the Roche lobe radius. The Roche lobe of the accreting

star provides a hard maximum for the disc radius. The disc is, in

fact, unlikely to extend this far in quiescence, but this provides a

good estimate for the radius in outburst, when the disc is subject to

increased viscous spreading. The Roche lobe radius is approximated

by Eggleton (1983) to be

RL

a
= 0.49q−2/3

0.6q−2/3 + ln
(

1 + q−1/3
) , (3)

where q represents the mass ratio of the binary, q = M2/M1.

Equation (3) shows that the primary Roche lobe contracts with

increasing q, as must the maximum extent of the accretion disc.

Equating the 3:1 resonant radius and the Roch lobe radius, using

equations (1) and (3), and solving for q gives a maximum mass ratio

for access to the 2:1 resonance of the form

qmax,2:1 = 0.06. (4)

The same technique when applied to the 3:1 resonance gives a max-

imum access ratio of qmax,3:1 = 0.90. Paczyński (1977) computed

qmax,3:1 by solving the restricted three-body problem, finding that

qmax,3:1 = 0.25. (5)

This much smaller value for qmax,3:1, reflects the fact that the accre-

tion disc is tidally truncated within the primary Roche lobe. These
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Figure 3. This figure illustrates the positions of the 2:1 and 3:1 resonances in binaries with mass ratios of q = 0.05 in panel (a), and q = 0.5 in panel (b). The

primary Roche lobe is marked with a solid line, whereas the secondary star, which is assumed to be Roche lobe filling, is coloured grey. The two dashed circles

represent the resonant radii, the inner circle representing the 3:1 resonance and the outer line representing the 2:1 resonance. The length unit is the binary

separation a and the diagram is centred on the centre of mass. The primary star is represented by a cross. In panel (a), both the resonant radii are within the

Roche lobe and accessible to the disc, whereas neither is available in panel (b).

results are also seen graphically in Fig. 2 as the intersections of the

resonant radii and the Roche lobe radius. This approach therefore

provides a good estimate of the maximum mass ratio qmax for which

resonance access is permitted in outburst. For reference, the posi-

tions of the 3:1 and 2:1 resonances are also marked in Fig. 3 for two

typical CV mass ratios.

We note that qmax,2:1 is precisely the mass ratio attributed to WZ

Sge (Skidmore et al. 2002). Indeed, an outburst orbital hump (OOH),

probably driven by this resonance, was observed by Patterson et al.

(2002) before the onset of 3:1 superhumps during the 2001 outburst,

suggesting that the disc can access this resonance during outburst,

as would be expected. SU UMa stars exhibit superhumps due to

the 3:1 resonance so one would expect them to obey condition (5).

Indeed, of all the confirmed SU UMa stars in Ritter & Kolb (2003),

only two have q > 0.25.

A rough estimate of the quiescent disc radius is given by the circu-

larization radius Rcirc. This is the radius of a circular orbit associated

with a specific angular momentum identical to that with which mass

crosses the first Lagrangian point. It is the radius at which a disc

will begin to form, and so all discs must extend at least this far. The

circularization radius may be used as an estimate for the extent of a

very cold disc and is given by (e.g. Frank, King & Raine 2002):

Rcirc

a
= (1 + q)

(
RL1

a

)4

. (6)

Here, the position of RL1, the first Lagrangian point, may be found

numerically, or it may be fitted by various expressions. The position

of RL1 should not be confused with the RL, the mean Roche lobe

radius as defined in equation (3). Kopal (1959) gave the following

fit for RL1:

RL1

a
= 1 − ω + 1

3
ω2 + 1

9
ω3, (7)

where

ω3 = q

3 (1 + q)
. (8)

Equating the 3:1 resonant radius and the circularization radius us-

ing equations (2) and (6), and solving for q, gives qmax,3:1 = 0.01

as the maximum mass ratio for which the 3:1 resonance is accessi-

ble, if the disc is limited by the circularization radius. Such a limit,

however, implies that there is no outward viscous spreading what-

ever. Even quiescent accretion discs are, however, subject to some

viscous spreading.

An improved estimate for the extent of the quiescent accretion

disc is that proposed by Osaki & Meyer (2002). In this approach,

conservation of angular momentum in a steady-state viscous disc,

neglecting external torques, is used to estimate the outer radius of

an accretion disc which is then given by

Rout =
(

7

5

)2

Rcirc, (9)

for a quiescent Shakura–Sunyaev disc. Combining this result with

equation (2), this approach gives an estimate of the maximum mass

ratio for 3:1 resonance access in the quiescent disc of

qmax,3:1 = 0.29. (10)

We note, however, that access to the 2:1 resonance is still limited by

the Roche lobe estimate given by equation (4), since the Roche lobe

is smaller than the viscous limit in this regime, as shown in Fig. 2.

2.2 The magnetic propeller

So far we have discussed access to orbital resonances for an un-

perturbed, quiescent disc. During outburst the disc will expand out-

wards due to increased viscous angular momentum transport, hence

the detection of superhumps in superoutbursts. Another way to aid

access to the binary resonances is by the addition of an additional

source of angular momentum, such as a magnetic torque. A mag-

netic field on the primary star can act to drive disc matter either

inwards or outwards; it may behave either as a source or as a sink

of angular momentum. It is useful here to examine a simplified case
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Figure 4. This figure illustrates magnetically enhanced accretion in panel (a), and the magnetic propeller in panel (b). The primary Roche lobe is marked with

a solid line, whereas the secondary star, which is assumed to be Roche lobe filling, is coloured dark grey. The accretion disc is shaded light grey and is bounded

at its inner edge by a dashed circle representing the magnetic radius. The dotted line denotes the co-rotation radius. The length unit is the binary separation a
and the diagram is centred on the centre of mass. The primary star is represented by a cross. The difference between the two cases is explained fully in the text.

where the primary magnetic field rotates as a rigid body, rooted to the

primary star and rotating with angular frequency ��. The magnetic

or magnetospheric radius, Rmag, is the radius at which the magnetic

time-scale is equal to the viscous time-scale; in other words, it is

the largest radius at which magnetic torques are significant in the

disc. The co-rotation radius Rco is the radius at which an element of

disc, in describing a Keplerian orbit about the primary star, shares

the angular frequency of the star and the magnetic field. At this co-

rotation radius, analogous to that of a geostationary orbit, there is no

drag force between the field and the disc, since they have the same

velocity. However, Rco marks the boundary between the magnetic

accretion and magnetic propeller regimes, as illustrated in Fig. 4.

At those radii where R < Rco the magnetic field rotates less rapidly

than the orbiting disc, and so acts to brake it, aiding accretion. If

Rmag < Rco therefore, then the disc will be disrupted at Rmag by the

effect of rapid magnetic accretion, causing the star to spin up, as is

the case in an intermediate polar. However, if Rmag > Rco, then disc

material, spreading inwards, first encounters a significant magnetic

torque where the field is travelling faster than the disc, causing the

transfer of angular momentum from the star to the disc, pushing

the disc outwards and spinning the star down. Although magnetic

accretion and the magnetic propeller both result in a ‘hole’ in the

accretion disc, they are distinct mechanisms with different outcomes

for the primary spin and for the disc structure. Disc truncation by the

magnetic propeller is implicated in the long recurrence time of WZ

Sge, and in FU Ori young stars (Matthews, Speith & Wynn 2004).

AE Aqr is an extreme case of propeller truncation.

In outbursting CVs, such as dwarf novae, an outburst cycle exists

and a steady state is never reached. A propeller may reduce the disc

mass sufficiently so that such an outburst is never triggered and a

steady state is reached. In this steady state, the disc must lose mass

at the same rate at which it is fed by the accretion stream. This can

lead to only two possible steady-state solutions. The disc will spread

viscously as mass is added and either the inner disc will reach Rco

and the system will become a magnetic accretor, or the outer disc

will extend beyond RL and mass will be lost from the Roche lobe.

In the latter case, that of the true propeller, a strong magnetic field is

required, since mass must be pushed to radii beyond RL, and a rapid

spin-down is therefore suffered by the primary star. Such a state

cannot therefore be long lived and such systems are therefore likely

to be rare, and will not be significant in the CV period distribution.

2.3 Combined effect of resonances and propeller

The model proposed in this paper uses both magnetic and resonant

torques to enable a weak magnetic propeller to eject mass from the

primary Roche lobe. The model requires the magnetic propeller to

push mass only as far as the 3:1 resonance. This implies a much

weaker propeller, and hence a longer spin-down time. Such a pro-

peller state may therefore exist for much longer than one which

relies on the magnetic torque alone. In this picture, disc elements

that are propelled to the resonant radius will be excited into eccen-

tric orbits, losing angular momentum. The newly eccentric orbits

may carry disc material outside the Roche lobe at apastron, where it

will be ejected from the binary or re-accreted by the secondary star.

Both the propeller and the resonant torque are critical to this model.

Propeller-driven resonant mass loss will occur if two conditions

are satisfied. First, the circularization radius must lie close to the

3:1 resonance so that a weak magnetic torque can lift mass to the

resonant radius. Secondly, the 3:1 resonance should lie within, but

ideally close to, the Roche lobe radius so that a small eccentricity

is able to drive mass from the Roche lobe and cause mass loss.

The magnetic torque and hence the white dwarf spin-down time-

scale required to drive resonant access can be estimated by calculat-

ing the torque required to lift mass from the circularization radius

to the 3:1 resonant radius, assuming that such mass will then be lost

to the Roche lobe as a result of resonant torques. In the steady state,

the rate at which mass is transferred from Rcirc to RL1 is identical

to the binary mass-transfer rate Ṁ . This gives a magnetic torque,

which in the absence of accretion or any other sources of angular

momentum, is identical to the primary spin-down torque, of

J̇mag =
√

G M1 Ṁ
(

R1/2
3:1 − R1/2

circ

)
, (11)
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where G represents the constant of universal gravitation and M1 is the

mass of the primary star. Equations (6) and (11) may be combined

to give

J̇mag =
√

G M1 Ṁa

[
γ 1/2 − (1 + q)1/2

(
RL1

a

)2
]

, (12)

where RL1 is obtained, for example, from equation (7) and where

γ = 0.48 for the 3:1 resonance. The spin-down time-scale is given

by

τspin = Jwd

J̇mag

= 2πIwd

Pspin J̇mag

(13)

where Jwd is the spin angular momentum of the white dwarf, Iwd ∼
M1R2

wd is the moment of inertia, Rwd is the radius of the white dwarf

and Pspin is the white dwarf spin period. The spin-down time-scale

then takes the form

τspin = 2πR2
wd M1/2

1

Pspin ṀG1/2
(

R1/2
3:1 − R1/2

circ

) . (14)

The spin-down time-scale is then a weak function of a and M1, but a

strong function of q, rising asymptotically at R3:1 = Rcirc. For a CV

with orbital period Porb = 80 min, primary spin period Pspin = 30 s,

Rwd = 1 × 109 cm, mass-transfer rate Ṁ = 3 × 10−11 M� yr−1

and primary mass M1 = 1.2 M� (selected to match numerical sim-

ulations), the spin-down time-scale is roughly constant at τ spin ∼
1010 yr for most q, but is much longer for q � 0.05. This is illus-

trated in Fig. 5 with an asymptote at q ∼ 0.02. For q � 0.02, the

circularization radius lies outside the 3:1 resonant radius so that

only the inner disc would have access to the torque from this orbital

resonance. This may explain the results of Simpson & Wood (1998)

who found, in SPH simulations of non-magnetic systems, that an

eccentric precessing disc does not form where q � 0.025. Simpson

& Wood (1998) themselves invoked the damping effect of the 2:1

resonance to explain this effect.

For comparison, in the case of a pure magnetic propeller, where

resonant torques are not considered, mass must be lifted by the

Figure 5. Spin-down time-scale τ as a function of mass ratio q for a typical

CV. In the resonant case, plotted with a solid line, the time-scale increases

asymptotically as the circularization radius approaches the 3:1 resonance,

while τ spin ∼ 1010 yr for most q. In the non-resonant, or strong propeller

case, plotted with a dashed line, the spin-down time-scale becomes long only

for q < 0.005.

magnetic torque all the way from the circularization radius to the

Roche lobe surface. Applying the same method as above gives

J̇mag =
√

G M1 Ṁ
(

R1/2
L − R1/2

circ

)
. (15)

The spin-down time can be computed in the same way, and exhibits

the same asymptotic behaviour. However, as shown in Fig. 5, the

spin-down time exceeds 1 × 1010 yr for the non-resonant case only

for unphysical mass ratios where q < 0.005.

In the standard picture of CV evolution, a large number of sys-

tems are expected to accumulate around the period minimum, with

small mass ratios. The mechanism outlined above effectively halts

accretion on to the primary star for a significant fraction of the

CV lifetime. During this phase outbursts are prevented and the disc

mass is greatly reduced, also reducing the disc luminosity and mak-

ing the system effectively undetectable. This phase will be much

longer lived for low-q CVs so that more short-period CVs would be

hidden from view, providing a possible explanation for the absence

of the period spike.

3 S M O OT H E D PA RT I C L E H Y D RO DY NA M I C S

C A L C U L AT I O N S

The SPH method is a Lagrangian particle technique for the mod-

elling of fluid dynamics. The fundamental principle of SPH is that

fluid properties, such as pressure and density, are carried by parti-

cles which represent elements of the fluid in question. The values

of these properties may then, at any point in space, be interpolated

using a weighted mean of the values carried by nearby particles.

Conservation of angular momentum is inherent in the SPH tech-

nique, which makes it an ideal method for the modelling of accretion

discs. A review of the SPH method in general can be found in Mon-

aghan (1992), whereas the particular code used here is discussed

by Murray (1996) and by Truss et al. (2000). The viscosity used in

this work is the linear element of the SPH viscosity described by

Monaghan (1992). In the divergence-free case, this viscosity can be

shown to be equivalent to the Navier–Stokes shear viscosity and to

the Shakura & Sunyaev (1973) alpha disc viscosity (e.g. Pongracic

1988; Matthews 2004). In three dimensions, this viscosity is given

by

ν = 1

10
ζcs H ∼ αcs H , (16)

where ζ is the SPH linear viscosity parameter, α is the Shakura–

Sunyaev viscosity parameter, cs is the sound speed in the disc and H
is the disc scaleheight. In this version of the code, the sound speed

is fixed throughout the calculation.

Full magnetohydrodynamics have not yet been successfully in-

corporated into SPH though efforts have been made in this direction

(e.g. Price & Monaghan 2005). A simple approach to model the

effect of the primary magnetic field is to apply a magnetic torque

prescription to the SPH particles. The magnetic element of the mo-

mentum equation can be expressed as

J × B = 1

μr

(B · ∇) B − ∇
(

B2

2μr

)
, (17)

where J is current density, B is magnetic field and μr is the perme-

ability of the plasma. The first term on the right-hand side is in the

form of a tension, which vanishes if the field lines are not curved,

and the second represents a pressure which can usually be neglected

for slowly varying fields.

If equation (17) is transformed into cylindrical polar coordinates,

and if it is assumed that the radial component of the magnetic field
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is small and that B2 ∼ BzBϕ , then the magnetic acceleration takes

the form (e.g. Matthews 2004)

amag ∼ 1

ρrc

(
Bz Bϕ

4π

)
, (18)

where ρ is density and rc represents the radius of curvature of the

magnetic field lines, while Bz and Bϕ represent the vertical and

azimuthal components of the magnetic field, respectively. We make

the further approximation that the radius of curvature of the field

lines is of the order of the disc scaleheight so that rc ∼ H (e.g.

Pearson, Wynn & King 1997). The ratio of vertical to azimuthal field

strengths is related to the shear between the disc and the magnetic

field. If it is assumed that the field rotates rigidly with the star, then

this ratio can be expressed in the form (e.g. Livio & Pringle 1992):

Bϕ

Bz
∼ − (�k − ��)

�k

, (19)

where �k denotes the Keplerian angular velocity at radius R from the

star. If Keplerian orbits are assumed, the surface density related to

the disc scaleheight by � ∼ρH, and the magnetic moment is defined

by the expression μ = BzR3, then we may make the approximation

amag ∼ −μ2 R−6

4π�

(�k − ��)

�k

∼ −μ2 R−6

4π�

|vd − vB |
vd

, (20)

where v d and v B are the velocities of the disc and the magnetic

field respectively. It is an acceleration of this form which is added to

the particles in the SPH model to represent the effect of the primary

magnetic field. The acceleration is fixed in the code by the parameter

km = μ2

4π�
. (21)

The effects of the binary resonance require no such effort to repro-

duce, but emerge naturally as a result of gravitational forces exerted

on the particles by the binary. Every particle is subject to a gravita-

tional acceleration from each star in addition to the magnetic accel-

eration defined in equation (20) and fluid dynamic forces. In order to

compute the predicted spin evolution of the primary star, the torques

due to magnetic and gravitational accelerations are calculated and

recorded separately. However, at this stage the code permits neither

the spin of the primary nor the orbital period to evolve as a result of

the computed angular momentum transfer.

Mass is injected at the first Lagrangian point and is removed from

the simulation in three ways. Particles which reach the surface of the

white dwarf at R� = 6 × 108 cm are removed and counted towards

accreted mass. If elements of the disc extend beyond 1 × 1010 cm,

then they are removed and counted as mass lost to the system. If

mass re-enters the secondary Roche lobe, then it is considered to

have been re-accreted by the secondary star.

4 N U M E R I C A L R E S U LT S

A series of numerical experiments were performed to confirm the

viability of the mechanism explained in Section 2 and to briefly

explore the parameter space for which that mechanism is operable.

Certain basic parameters of the system were fixed: the total mass of

the system was set to Mtot = 1.2 M�, because the simulations were

initially part of a programme to model WZ Sge. The orbital period

was Porb = 80 min and the spin period of the primary star was a de-

liberately short Pspin = 30 s. Particles were injected into the primary

Roche Lobe at a rate of Ṁ = 3.0 × 10−11 M� yr−1, although in

some cases little of this mass found its way to the primary star. The

Shakura–Sunyaev alpha viscosity was fixed at α = 0.01 throughout

the calculations. In all cases, the computation began with an empty

disc and was permitted to run until a steady state was reached. In

reality, such systems would evolve, with full discs, from longer pe-

riods but the choice of an empty disc as an initial condition provides

a clear illustration of the onset of resonant mass ejection and, since

such simulations can be performed rapidly, allows a greater num-

ber of computations to be performed. The particle mass was varied

between models to enable steady state to be achieved in those com-

putations which led to high-mass discs, without causing lower-mass

discs to be under-resolved.

The experiment was performed with mass ratios of 0.05, 0.1, 0.2,

0.4 and 0.8 and the magnetic parameter km was set to values which,

for a primary star of radius R� ∼ 1 × 109 cm and a disc surface

density of � ∼ 1 g cm−2, correspond to very modest magnetic field

strengths of Bz = 5, 4, 2 kG and zero at the surface of the white

dwarf. It should be noted, however, that the relationship between

the magnetic field strength and the code parameter km is model-

dependent, so that results should be treated as no more than a guide

to the real fields required to support this mechanism.

The results showed that both the steady-state disc mass and the

primary accretion rate were an order of magnitude lower in the

magnetic cases than those in the non-magnetic cases; the disc mass

fell from 10−13 to 10−14 of the binary mass, while the accretion

rate on to the primary fell from 0.9 to 0.1 of the mass transfer

across the L1 point. Neither the magnetic field strength amongst the

magnetic cases, nor the mass ratio had a clear effect on the steady-

state disc mass or on the white dwarf accretion rate. However, these

simulations were performed at mass ratios higher than those for

which a strong dependence would be expected.

An example of resonant mass ejection, drawn from the range of

calculations described above, is illustrated in Fig. 6. Disc matter

is prevented from accreting by the magnetic propeller and the disc

spreads outwards. When the disc grows sufficiently to be able to

access the 3:1 resonance, eccentric modes are excited in the disc. The

eccentricity grows until a proportion of the disc protrudes beyond

the primary Roche lobe and can be swept up by the secondary star,

or is lost to the system. The fact that this eccentricity is not the

result of initial particle velocities is clear from the fact that the disc

passes through a circular phase and that the effect is absent in the

non-magnetic case.

The longer-term evolution of the disc in the same computation is

illustrated in Figs 7 and 8 where the disc mass and the torque exerted

upon the disc are plotted against time for around a hundred orbits.

It is clear that once the disc ‘catches’ the 3:1 resonance after about

40 orbits, disc mass is lost rapidly from the system until a quasi-

steady state is reached. This result is in good agreement with sim-

ulations performed by Hirose & Osaki (1990). Both the disc mass

and the gravitational torque upon the disc exhibit a modulation on

roughly the orbital period, which emerges at the same time as the

aforementioned dramatic mass-loss episode. This is easily under-

stood by considering the secondary star sweeping up disc mass once

per orbit from the protruding part of the disc, and exerting a similarly

modulated resonant torque. In fact, taking the precession of the disc

into account, the modulation of the disc mass would be expected to

occur on the beat frequency between the binary orbit and the disc

precession period: the superhump period. This indeed proves to be

the case. No such modulation is observed in the magnetic torque

which remains roughly constant with time after the quasi-steady

state has been reached. This is as expected, because the magnetic

field acts predominantly on the inner edge of the accretion disc.

By definition, the total angular momentum of the disc does not

exhibit long-term variation after the quasi-steady state has been
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Figure 6. These plots, taken from an SPH computation, of log surface density in g cm−1 show how propeller-driven resonant mass ejection might begin,

starting from an empty disc. The simulation contained ∼ 30 000 particles with a sound speed of cs ∼ 1 × 106 cm s−1. The primary Roche lobe is marked with

a solid line, whereas the secondary star, which is assumed to be Roche lobe filling, is coloured grey. The dashed circle represents the 3:1 resonant radius. The

length unit is the binary separation a and the diagram is centred on the centre of mass. The binary is orbiting in the anticlockwise (direct) sense. The primary

star is represented by a cross. This simulation was performed with a mass ratio of q = 0.05, a primary mass of M1 = 1.2 M�, a binary period of Porb = 80 min,

a primary spin period of Pspin = 30 s, a mass-transfer rate in the accretion stream of Ṁ = 3.0 × 10−11 M� yr−1 and a surface magnetic field of 5 kG. In

frame (a), after a single orbit, the disc is just beginning to fill and the initial rosette structure is still visible. In frame (b), after 15 orbits, the disc has become

circularized as a result of viscous processes. However, in frame (c), after 25 orbits, the resonance is beginning to drive an eccentricity, and by frame (d), after

only 50 orbits, that eccentricity is sufficient to cause extensive mass loss, with a large amount of mass being swept up by the secondary star.

reached. The gravitational torque acts to counteract that applied by

the primary magnetic field. The disc is spun up by the magnetic

field and spun down again by the binary, so that a weak spin couple

exists between the binary orbit and the primary spin. This drives a

long-term tendency towards a synchronous lock, but on a time-scale

so long as to be largely irrelevant. Fig. 8 shows a small net torque

acting to spin down the disc. However, the plot shows only applied

torques and does not include the flux of angular momentum carried

by particles entering and leaving the computation, which counteracts

this trend, and allows a quasi-steady state to be maintained.

An approximate spin-down time-scale for the primary star can be

calculated from equation (13) where J̇mag is calculated here from

numerical results, disregarding accretion torques. A value may be

taken from Fig. 8, for example. In all cases where accretion was pre-

vented in the above computations, spin-down times are found to be

of the order of tspin ∼ 1010 yr in good agreement with analytic treat-

ment in the previous section for q � 0.05. Numerical simulations

have not yet been performed for very small q values, but analytic

results show that the spin-down time-scale would be much longer.

5 E VO L U T I O NA RY C O N S E QU E N C E S

It has been shown that accretion, and hence luminosity, may be

greatly reduced in CVs by a weak propeller acting together with
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Figure 7. This figure shows the variation of disc mass with time during

the onset of propeller-driven resonant mass ejection, beginning from an

empty disc. Results are taken from the same SPH computation as for Fig. 6.

Extensive mass loss commences after 40 binary orbits and a quasi-steady

state is then reached. From this time onwards, a modulation appears, at a

frequency close to that of the binary orbit. Note the agreement between this

result and that shown in fig. 5 of Hirose & Osaki (1990).

Figure 8. This figure shows the change of angular momentum due to mag-

netic and gravitational torques during the onset of propeller-driven resonant

mass ejection, beginning from an empty disc. Results are taken from the

same computation as for Figs 6 and 7. The effect on disc angular momentum

due to mass flux is not illustrated.

orbital resonances. In this mechanism, the magnetic field of the

rapidly spinning primary drives matter to the 3:1 orbital resonance.

The action of this resonance then excites eccentric modes in the disc

material. Disc mass is then lost from the primary Roche lobe and

some may be re-accreted by the donor star. A CV may exist in this

state for a significant fraction of its lifetime. Importantly, this non-

accreting state can last much longer in systems close to the period

minimum, so that a larger proportion of short-period CVs would be

expected to exist in this invisible state. This mechanism of propeller-

driven resonant mass ejection may therefore go some way towards

explaining the absence of the predicted excess of short-period CVs;

the period spike.

In this picture, CVs evolving towards shorter periods will enter

the non-accreting weak propeller state at various mass ratios, de-

pending on the spin and magnetic field of the accreting white dwarf.

This state is reached as soon as the 3:1 orbital radius becomes acces-

sible to magnetically torqued disc matter. This phase will continue

until the white dwarf has spun down sufficiently that accretion can

resume, which occurs on a time-scale of τ spin ∼ 1010 yr for most

mass ratios but which increases greatly at very small q. Because the

non-accreting state is longer lived in short-period systems, we would

expect this mechanism for hiding the period spike to be more effi-

cient for those CVs entering this weak-propeller state later in their

binary evolution, that is, those with weaker primary magnetic fields.

If propeller-driven resonant mass ejection does occur in CVs, then

it will greatly reduce the luminosity due to the accretion disc and

to accretion on to the white dwarf. A population of low-luminosity

CV-like objects is therefore predicted by this model, for which there

are currently no known candidates. However, since in addition to

a greatly reduced luminosity, outbursts would also be prevented

in such systems, the non-detection of these objects may be due to

selection effects. If such stars were detected, however, then they

would be expected to exhibit permanent superhumps, since the disc

would always be eccentric and precessing. It may also be possible

to observe the re-accretion of matter by the secondary star in these

objects.

In normal CV evolution, mass transfer from the secondary to the

primary star, driven by an angular momentum loss mechanism such

as gravitational radiation, reduces the mass ratio with time. In the

weak propeller mechanism proposed here, most mass is not accreted

by the primary star, but instead is re-accreted by the secondary so

that the mass ratio does not evolve. For the secondary Roche lobe to

accept this mass, either the contraction of the Roche lobe must be

slowed down or the secondary star itself must be made to contract

more rapidly. The weak propeller mechanism lends itself to both

these possibilities. Matter is returned to the secondary with increased

angular momentum, drawn from the primary star, which will slow

down the contraction of the secondary Roche lobe. Also, the matter

comes from a cool disc, so it is likely to come with a reduced specific

entropy, encouraging the secondary star to contract. Because of this

latter effect, and because some mass may be lost to the system rather

than re-accreted by the secondary, the period of the CV may shorten,

following the Roche lobe relation

Porb ∝
(

R3
2

M2

)1/2

, (22)

where R2 is the radius of the secondary star. However, the evolution

in Porb should be slowed down as compared to the standard picture.

Binaries are therefore expected to spend longer at short periods than

would otherwise be expected in the weak propeller case.

It would be useful to perform more extensive parameter space

explorations and to compare the importance of magnetic and accre-

tion torques in different configurations. A full population synthesis

including binary evolution could then be used to assess the precise

effect of this weak propeller model on the CV period distribution.
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To achieve the most realistic results, an improved model for the

magnetic field would also be desirable.
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