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Abstract

Epigenetics is a key mechanism regulating the expression of genes. There are three main and interrelated

mechanisms: DNA methylation, post-translational modification of histone proteins and non-coding RNA.

Gene activation is generally associated with lower levels of DNA methylation in promoters and with distinct

histone marks such as acetylation of amino acids in histones. Unlike the genetic code, the epigenome is

altered by endogenous (e.g. hormonal) and environmental (e.g. diet, exercise) factors and changes with

age. Recent evidence implicates epigenetic mechanisms in the pathogenesis of common rheumatic dis-

ease, including RA, OA, SLE and scleroderma. Epigenetic drift has been implicated in age-related changes

in the immune system that result in the development of a pro-inflammatory status termed inflammageing,

potentially increasing the risk of age-related conditions such as polymyalgia rheumatica. Therapeutic

targeting of the epigenome has shown promise in animal models of rheumatic diseases. Rapid advances

in computational biology and DNA sequencing technology will lead to a more comprehensive understand-

ing of the roles of epigenetics in the pathogenesis of common rheumatic diseases.
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ment, ageing, therapeutic targeting.

Introduction

Although most cells have the same DNA sequence, the

activity of individual genes differs significantly between

different cell types and tissues, e.g. the insulin gene is

highly compacted in structure and inactive in all tissues

except pancreatic b cells, in which it is in an open con-

formation that facilitates transcription. Epigenetics has

been defined as heritable changes in gene expression

that are not encoded by the DNA sequence itself [1].

Unlike the latter, it is dynamic and changes under the

influence of endogenous and environmental factors. The

role of epigenetics in health and disease is emerging; it

has been established that carcinogenesis is frequently

associated with epigenetic alterations that are potential

therapeutic targeting [2, 3]. Our objectives are to give

overviews of the epigenetic mechanisms regulating gene

expression, their involvement in the pathogenesis of

common musculoskeletal conditions and their potential

as therapeutic targets.

Epigenetic mechanisms

Three major interrelated mechanisms regulate gene

expression: DNA methylation, post-translational modifica-

tion of histone proteins and non-coding RNA (ncRNA).

DNA methylation

In plants, yeasts and animals, methylation of DNA mainly

occurs at the cytosine (C) residues of DNA in CpG di-

nucleotide motifs and is regulated by DNA methyltrans-

ferase (DNMT) enzymes. Overall, CpG motifs are

predominantly methylated, except in CpG-rich regions of

200�300 bp in the 50 region of many genes, termed CpG

islands, which are mainly unmethylated. In general the

regions around the transcriptional start site of active

genes have low levels of methylation [4]; conversely,

gene bodies are methylated [5]. In macrophages, for

example, methylation of CpG motifs in the TNF promoter

within 200 bp of the transcriptional start site is low, at

�20%, while upstream CpG motifs have levels >80%

[6]; similar findings have been described in IL-6 [7].

Greater variability exists in DNA methylation levels be-

tween different tissues from an individual than in identical
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tissues from different individuals [8]. The existence of DNA

demethylating enzymes is generally accepted, but the

molecular mechanisms are poorly understood and are

believed to involve the enzyme ten-eleven translocation

1 (TET1) [9]. Demethylation is an important mechanism

governing gene activation; the IL-2 promoter demethy-

lates within 20 min of activation of T cells [10], facilitating

binding of the transcription factor Oct-1 [11].

Epigenetics also regulates alternative splicing [12] and

promoter usage [5], processes that add significantly to the

complexity of the expressed genome. Furthermore, in dip-

loid cells �5% of genes are monoallelically expressed

[13]; in lymphoblastoid cells this affects a disproportion-

ately high number of cell surface proteins and cytokines

(IL-2, �4, �5 and �13) [14, 15]. It seems likely that this

phenomenon is mediated by allele-specific methylation

[16, 17]. Genetic variants influence the variability of DNA

methylation levels between individuals, however, the her-

itability of this trait has not been determined [18].

Histone code

More than 100 post-translational modifications of the

N-terminal tails of histone proteins have been described,

including acetylation, methylation, phosphorylation and

sumoylation [19]. These result in changes in the structure

of nucleosomes, altering access of the transcriptional ma-

chinery and transcriptional activity (Fig. 1). The histone

code is linked with DNA methylation by distinct, but

coupled, pathways [20]. Histone acetylation is considered

a permissive transcriptional mark, while trimethylation is

associated with repression [21, 22]. Histone acetylation

and phosphorylation are rapidly modifiable, while methy-

lation is more stable; the terminal transferase gene (Dntt)

undergoes silencing during thymocyte maturation

characterized by initial deacetylation of H3-Lys9 and sub-

sequent methylation at H3-Lys9, the latter being irrevers-

ible [23]. The deacetylation at H3-Lys9 begins in the

promoter region (500 kb on either side of the transcrip-

tional start site) and then spreads across the Dntt locus

(22 kb) at a rate of 2 kb/h. Deacetylation is reversible, but

the subsequent methylation at H3-Lys4 is not and results

in permanent silencing of Dntt.

Non-coding RNAs

The coding exons of genes comprise �1.5% of the human

genome. It has recently become clear from the

Encyclopedia of DNA Elements (ENCODE) project that a

large proportion of the genome codes for non-protein

coding RNA species that have important roles in regulat-

ing the transcriptome [24]. ncRNAs are primarily classified

according to size: short (20�60 bp), mid-size (60�200 bp)

and long (>200 bp). There is a large body of evidence

implicating disrupted expression of ncRNAs in neoplastic

and inflammatory diseases [25]. MicroRNAs (miRNAs) are

short ncRNA molecules that regulate gene expression

mainly by targeting the cognate RNA molecule for deg-

radation or translational inhibition. In addition, several

miRNAs alter gene expression by binding to complemen-

tary sequences in gene promoters with resultant

alterations in the histone signature [26]. There is significant

cross-regulation of the three epigenetic mechanisms: ex-

pression of many miRNAs are modulated by DNA methy-

lation and histone modifications (reviewed in [27]), and

miRNAs have been shown to target key proteins regulat-

ing the epigenome; expression of DNMT3A and DNMT3B

are modulated by miR-29 [28], and HDAC1 and HDAC4

are targeted by miR-449a [29] and miR-1 [30],

respectively.

Epigenetic influences in RA

Synovial fibroblasts

The RA fibroblast-like synoviocytes (RASFs) are central

mediators of tissue destruction via the production of a

range of disease-related molecules, including chemo-

kines, adhesion molecules and proteases [31]. In addition,

RASFs have a semi-transformed phenotype in vitro, with

loss of contact inhibition, high proliferative activity and

resistance to apoptosis. Engraftment of normal human

cartilage and RASFs into the severe combined immuno-

deficiency mouse revealed this aggressive phenotype to

be maintained for up to 60 days and be independent of

adaptive immune cells [32, 33]. The mechanism(s) respon-

sible for this stable, aggressive phenotype is unknown,

however, there is increasing evidence implicating the epi-

genome. A methylation array study reported lower levels

in RASFs compared with OA synovial fibroblasts (OASFs),

particularly in genes regulating cell adhesion, transen-

dothelial migration and extracellular matrix interactions

[34]. Furthermore, treating OASFs with the DNA demethy-

lating agent 5-azadeoxycytidine (AZA) resulted in conver-

sion to an RASF-like phenotype [35]. Decreased

expression of miR-34a*, as a result of increased promoter

methylation, results in up-regulation of the X-linked inhibi-

tor of apoptosis protein, potentially contributing to the

resistance of RASFs to apoptosis [36].

The acetylation of histone proteins is regulated by the

relative activities of two enzyme families: histone acet-

yltransferases and histone deacetylases (HDACs). The

HDAC superfamily is important in the regulation of a wide

range of developmental and physiological processes [37].

As HDACs lack DNA-binding activity, they are recruited to

target genes via interactions with transcription factors. A

shift towards histone hyperacetylation has been reported

in RASFs compared with OASFs [38, 39], with overexpres-

sion of HDAC1 in the former [39]. Targeted knockdown of

HDAC1 in RASFs, using small interfering RNA, resulted in

decreased proliferation and increased apoptosis [40].

Peripheral blood

Global DNA methylation has been reported to be lower in

T cells [41] and leucocytes [42] of RA patients compared

with controls, although both involved small numbers. A

single CpG motif in the IL-6 promoter, �1 kb upstream

of the transcriptional start site, was significantly less

methylated in peripheral blood mononuclear cells from

RA cases compared with controls, and correlated with

higher lipopolysaccharide-induced IL-6 mRNA levels by
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monocyte-derived macrophages [7]. Higher expression of

CD40L and lower promoter methylation is found in RA

CD4 T cells [43].

Epigenetic influences in OA

The underlying pathogenic mechanisms of OA are poorly

understood but involve genetic and environmental factors.

Studies of the role of the epigenome have concentrated

on chondrocytes. Genomic DNA methylation levels were

found to be similar in chondrocytes from 10 OA and 10

normal joints [44], however, the levels of methylation of

the leptin promoter were lower in chondrocytes isolated

from severely involved cartilage compared with minimally

involved or normal cartilage and were associated with

greater expression of this catabolic cytokine and its

downstream target MMP (MMP-3) [45]; similar findings

have been reported in MMP-9, MMP-13 and ADAMTS (a

disintegrin and metalloproteinase with a thrombospondin

type 1 motif) [46]. Of particular note is the finding of lower

ADAMTS-4 promoter methylation and higher expression

in lesional compared with non-lesional chondrocytes [47].

Nitric oxide (NO), a key signalling molecule, is produced at

high levels by activated chondrocytes [48] and mediates

IL-1b-induced suppression of cartilage proteoglycan syn-

thesis [49]. Lesional chondrocytes express high levels of

inducible NO synthesis (iNOS) and have reduced methy-

lation of a nuclear factor kB (NF-kB) enhancer element

5.8 kb upstream of the iNOS transcriptional start site

[50]. These studies reveal the importance of comparing

the epigenetic profiles of chondrocytes from lesional and

non-lesional cartilage within the same OA joint.

Epigenetic influences in SLE

Alterations in the epigenome have been implicated in both

idiopathic and drug-induced lupus. Lower levels of gen-

omic DNA methylation have been reported in peripheral T

cells from lupus patients compared with healthy controls

[41], and adoptive transfer of T cells that have been treated

with AZA induces a lupus-like condition in syngeneic mice

[51]. Incubation of human T cells with this agent results in

alterations in gene expression similar to those found in idio-

pathic lupus, including the up-regulation of CD11a [52]. An

additional epigenetic abnormality in lupus T cells is the

reduced expression of DNMT1 secondary to decreased

FIG. 1 Epigenetic modifications control the transcriptional status of genes.

In the upper panel DNA methylation (red) and chemical changes in histone tails, such as lysine acetylation, resulted in a

closed chromatin structure and resultant repression of transcription. Conversely, DNA demethylation (light yellow) and

histone modifications, such as lysine deacetylation, resulted in an open chromatin structure and transcriptional

activation.
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activity of Ras-mitogen-activated protein kinase [53]. It is

notable that the drugs associated with the development of

iatrogenic lupus, procainamide and hydralazine, have been

shown to be functional inhibitors of DNMT, potentially

resulting in DNA hypomethylation [54, 55].

SSc

A central feature of SSc is tissue fibrosis mediated by inter-

stitial fibroblasts. These cells have an altered phenotype,

both in vivo and in vitro, characterized by excessive depos-

ition of extracellular matrix proteins including collagens [56,

57]. The maintenance of this phenotype in vitro has been

correlated with higher levels of DNMT1 [57, 58] and treat-

ment with DNA demethylating agents in vitro results in

reduced expression of collagen by dermal fibroblasts

from SSc patients, but has no effect on fibroblasts from

healthy controls [57]. A major suppressor of collagen tran-

scription is FLi1, which is down-regulated in SSc dermal

fibroblasts [59]. This alteration is associated with higher

methylation of a CpG island in the FLi1 promoter [57].

These data suggest that higher DNA methylation is present

in SSc dermal fibroblasts and may be an important mech-

anism governing the overproduction of collagen.

Expression of miR-29, which targets collagen gene

transcripts, is lower in SSc dermal fibroblasts compared

with fibroblasts from controls, and overexpression in the for-

mer resulted in decreased collagen gene expression [60].

The epigenome as a therapeutic target

The pathways regulating the epigenome are attractive

therapeutic targets in rheumatic diseases. A key issue is

developing agents that target a limited number of disease-

related genes and to do this effectively will require a much

greater understanding of regulatory pathways. Progress is

being made, however, as shown by the development of a

small molecule targeting the catalytic domain of an

enzyme responsible for the demethylation of a single

amino acid in the histone 4 protein. This results in pro-

found anti-inflammatory activities in macrophages [61].

Therapeutic targeting of HDACs

RA

In animal models of RA, HDAC inhibitors (HDACis) have

been shown to be effective therapeutic agents.

Autoantibody-mediated arthritis is attenuated by a single

intravenous infusion of FK228, an inhibitor of HDAC1 and

2, inhibiting of synovial swelling and bone and cartilage

loss, reduced TNF and IL-1b production and cell cycle

arrest via the up-regulation of p21 [62]. This agent also

inhibits in vitro proliferation of RASFs [62]. Knockdown

of HDAC1 in RASFs by small interfering RNA resulted in

decreased proliferation and increased apoptosis [40]. The

superior efficacy of MS-275 over other HDACis in colla-

gen-induced arthritis has been proposed to be due to its

specificity for class I HDACs, particularly HDAC1 [63].

These data implicate HDAC1 as a key regulator of the

autoaggressive phenotype of RASFs. A small study has

recently reported that Givinostat, a class I and II HDACi,

was both efficacious and safe in a 12-week trial involving

17 patients with systemic-onset JIA [64].

OA

The majority of studies to date have examined the effects

of HDACis on chondrocytes and cartilage explants.

Inhibition of class I and II HDACs using sodium butyrate

or trichostatin A (TSA) resulted in the blocking of pro-

inflammatory cytokine�induced cartilage breakdown and

suppression of matrix degrading protease production,

including MMP-1 and MMP-13 and ADAMTS-4, -5 and

-9 [65]. These agents also prevented the IL-1b-induced

release of IL-17, TNF, prostaglandin E2 and NO by chon-

drocytes [66]. The only published in vivo study involved

systemic treatment of a rabbit model of OA with TSA,

which resulted in reduced cartilage loss and metallopro-

teinase expression [67].

SLE

Administration of TSA to MRL/lpr mice resulted in reduced

expression of IL-6, -10 and -12 and lessening of renal

damage and splenic weight [68], and broadly similar results

were obtained after administration of this agent to NZB/W

F1 mice [69]. Aberrant gene expression is a feature of

helper T cells in lupus, including up-regulation of CD40L

(CD154) and IL-10, and down-regulation of IFN-g, these

alterations can be reversed by incubation with TSA [70].

Scleroderma

Transforming growth factor b (TGF-b) controls the produc-

tion of type 1 collagen synthesis by dermal fibroblasts. This

activity can be suppressed by TSA via the down-regulation

of Sp1 activity [71] and the inhibition of DNA binding of the

profibrotic Smad transcription factors [72]. In addition, TSA

inhibits HDAC-7 expression by SSc fibroblasts. Silencing of

HDAC-7 expression results in decreased constitutive and

cytokine-induced production of collagen [73].

Epigenetics and inflammageing

Ageing is associated with an increased risk of developing

a large number of inflammatory rheumatic diseases [74].

Many features of both the adaptive and innate immune

systems change with increasing age, leading to a state

of increased activity termed inflammageing [75]. In the

adaptive system, changes include reduced generation of

high-affinity antibodies after immunization [76] and reduc-

tion in the naive T cell population [77]. Innate immune

system changes include both higher systemic levels of

proinflammatory cytokines and increased lipopolysac-

charide (LPS)-induced production of TNF and IL-6 by

macrophages [78, 79]. Age-related functional changes

occur in granulocytes, including decreased chemotaxis,

phagocytosis and superoxide generation in response to

danger signals [80]. Neutrophils of elderly individuals

exhibit decreased expression of CD16 (FcgRIIIa) [81] and

have alteration of mitogen-activated protein kinase (MAPK)

activation, contributing to the inability of GM-CSF to
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decrease caspase-3 activation, leading to reduced clear-

ance of apoptotic neutrophils [82]. These studies suggest a

complex pattern of age-related changes in gene expres-

sion in different immune cells that may result in an

increased risk of inflammatory disorders (Fig. 2).

There is evidence suggesting a role of epigenetic drift in

inflammageing. Age-related divergence of the epigenetic

signature in peripheral blood has been reported in mono-

zygotic twins; the patterns of global and gene-specific

DNA methylation are similar in early life, however, older

twins (age >50 years) have marked differences, particu-

larly if they were separated early in life [83]. A longitudinal

study of the methylation status of 1505 CpG motifs in 807

genes reported changes in immune genes, including IL-10

and IL-16 [84]. Levels of methylation of CpG motifs in the

TNF promoter gradually decease with age, by �1.4% per

decade in macrophages, and may be a mechanism of the

age-related increased systemic levels of this key proin-

flammatory cytokine [6]. Inflammation per se can lead to

alteration in the epigenetic signature via the effects of re-

active radicals oxidizing 5-methylcytosines to 5-hydroxy-

methlycytosine, with subsequent loss of methylation.

Conversely the production of reactive halogen molecules,

such as HOCl and HOBr, by activated leucocytes can

result in the incorporation of halogen cytosine into DNA

with subsequent increased methylation [85].

Epigenome and environmental exposures

The complex relationship between the epigenome and

lifestyle factors is emerging. Dietary intake of nutrients,

such as folate, is known to affect DNA methylation [86].

Regular exercise has been shown to increase methylation

of the ASC locus, encoding a component of the NALP3

inflammasome, potentially resulting in reduced levels of

proinflammatory cytokines [87]. Cigarette smoking has

been linked with alterations in both global DNA methyla-

tion and in genes controlling cellular proliferation [88]. An

array scan of 14 000 gene promoters reported lower

methylation of F2RL3 [89], intriguingly F2RL2 has been

linked with platelet activation and intimal hyperplasia,

two of the mechanisms central in the pathogenesis of

smoking-related vasculopathy.

Conclusions

There is increasing evidence implicating the epigenome

with the development of inflammatory and age-related

rheumatic diseases (Table 1). The complexity of the epigen-

etic signature and its dynamic nature, the differences be-

tween cell types and tissues and the potential effects of

inflammation on the epigenome complicate studies in

rheumatic diseases. Initial attempts have concentrated on

candidate genes in specific cell types that are known to be

implicated in diseases such as synovial or dermal fibro-

blasts in RA and SSc, respectively, lymphocytes in SLE

and chondrocytes in OA. It is important to note, however,

that many of studies have been of low power and have not

included a validation study. An additional issue is that many

have examined mixed cell populations and it is important to

be aware that even a purified cell population such as CD4 T

cells includes a heterogeneous mixture of T cell types.

FIG. 2 Ageing is associated with epigenetic drift with resultant increased risk of inflammatory conditions.

Environmental exposures during life affect the epigenetic signature of genes resulting in a gradual loss of control of gene

expression in different tissues. These changes in immune and inflammatory cells result in the development of inflam-

mageing with increased risk of age-related inflammatory diseases.
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Additional issues to be considered are that epigenetic

differences may arise secondary to disease or therapies.

A recent RA study highlighted novel computational

approaches to deal with these confounders [90]. The epi-

genome is an attractive therapeutic target and in vitro and

in vivo studies with HDACis have shown promising results

in rheumatic diseases. However, greater therapeutic speci-

ficity is required to minimize side effects, and this will re-

quire a greater understanding of the molecular mechanisms

controlling the epigenome. Recent studies targeting spe-

cific epigenetic marks with small molecules may prove

effective [62]. Recent rapid advances in high-throughput

technologies and computational biology should ensure

that epigenome-wide association studies in cell types impli-

cated in rheumatic diseases will be performed in the near

future. This will lead to significant improvements in our

understanding of their pathogenesis of these conditions

and lead to improved therapeutic strategies [91].

Rheumatology key messages

. Epigenetics factors have been implicated in the
pathogenesis of common rheumatic diseases
including RA, OA, SLE, and SSc.

. Environmental exposures and ageing are asso-
ciated with changes in the epigenetic signature
and expressed genome.

. Therapeutic targeting of the epigenome has shown
efficacy in animal models of RA and preliminary
studies in patients.
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