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A

A theorem of Macbeath asserts that µ(A­B)&min(1,µ(A)­µ(B)) for any subsets A and B of a finite-
dimensional torus. We conjecture that, when the obvious exceptions are excluded, a stronger inequality

µ(A­B)&min(1,µ(A)­µ(B)­min(µ(A),µ(B)))

holds, and we prove this conjecture under some technical restrictions.

1. Introduction

Let A and B be subsets of the torus 4r ¯2r}:r and let

A­B¯²a­b :a `A, b `B´.

Throughout the paper we use the notation

α¯µ(A), β¯µ(B), γ¯µ(A­B), (1)

where µ is the normalized Haar measure on 4r and µ the corresponding inner

measure. (Recall that by definition µ(A)¯ supµ(F ) over all closed FZA.) Macbeath

[15] proved that

γ&min(1,α­β) (2)

(for the one-dimensional torus, (2) was established earlier by Raikov [21]). The result

of Macbeath is sometimes called the (α­β)-inequality, by analogy with the classical

(α­β)-theorems of Mann and Kneser on the addition of integer sequences

[16, 12, 17, 9, 19].

The (α­β)-inequality was extended to second countable connected compact

abelian groups by Shields [26], to connected locally compact abelian groups by

Kneser [13], and to unimodular connected locally compact groups by Kemperman

[11]. Recently an new and elegant proof of Kemperman’s result was found by Ruzsa

[24].

In the present paper we restrict ourselves to the case of a torus, asking a different

question: can (2) be strengthened? Simple examples show that, in general, the answer

is ‘no’.

E 1.1. Let χ :4r !4 be a non-zero character and I, J intervals on 4 of

length α and β, respectively. Putting A¯ χ−"(I ) and B¯ χ−"(J ), we obtain equality in

(2). (An inter�al of length λ% 1 on the one-dimensional torus 4¯2}: is the

projection of an interval in 2 of length λ.)

Thus, one may hope to improve on (2) only after having excluded certain

‘extremal ’ cases. We suggest the following conjecture (the (α­2β)-inequality).
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C 1.2. Let A and B be subsets of 4r and α, β, γ defined as in (1).

Suppose that

α& β and γ! 1. (3)

Then either

γ&α­2β (4)

or there exists a non-zero character χ :4r !4 and closed intervals I, JX4 such that

χ(A)X I, χ(B)X J,

length(I )% γ®β, length(J )% γ®α. (5)

As a particular case, we quote a conjecture of Macbeath [15] : if α, β" 0 and

γ¯α­β! 1, then A¯ χ−"(I )cM and B¯ χ−"(J )cM, where χ, I, J are as in Example

1.1 and M is a set of measure 0.

It is easy to see that the inequalities in (5) cannot be improved, and closed intervals

cannot be replaced by open.

N. Here and below the subscript 4 indicates the projection from 2 to 4.

E 1.3. Put

A
"
¯ ([0,α]e²α­β®ε´)4, B

"
¯ ([0, β]e²2β®ε´)4

with 0! ε! β%α% 1}3. Further, let χ be an arbitrary non-zero character,

A¯ χ−"(A
"
) and B¯ χ−"(B

"
). Then γ¯α­2β®ε!α­2β, but for any non-zero

character χ« the sets χ«(A) and χ«(B) are not contained in open intervals of length γ®β

and γ®α, respectively ; this is obvious for χ«¯ χ, and an easy exercise for χ«1 χ.

In this paper we confirm Conjecture 1.2, and, in particular, the conjecture of

Macbeath in the case when α is small enough and the ratio α}β is not too large. The

precise formulation of our result is as follows.

T 1.4. For any τ& 1 there exists a constant c(τ)" 0 such that the

conjecture is �alid with (3) replaced by

τ−"α% β%α% c(τ). (6)

In the important particular case when A¯B we obtain the following.

C 1.5. There exists an absolute constant c" 0 with the following

property. Let AZ4r and suppose that α¯µ(A)% c and γ¯µ(A­A)! 3α. Then

there exists a non-zero character χ :4r !4 such that χ(A) is a subset of a closed inter�al

of length γ®α.

The one-dimensional case of Corollary 1.5 was obtained by Moskvin, Freiman

and Yudin [18, Lemma 2]. Our argument can be regarded as a development of their

method. In particular, like them we make an essential use of Freiman’s fundamental

theorem on the addition of finite sets, quoted here as Lemma 2.2.4 (see the proof

of Proposition 3.3). Some new ideas were needed for extending the argument to

arbitrary dimension and distinct summands; for the latter purpose we used a result

of Ruzsa [25], based on the ideas of Plu$ nnecke [20].



 (α­2β)-    515

In Section 2 we collect miscellaneous auxiliary facts to be used in the argument.

In Section 3 we prove Lemma 3.1, which can be considered as a crude version of

Theorem 1.4. The proof of Theorem 1.4 occupies Section 4.

2. Auxiliary material

2.1. Con�ex bodies

In this subsection SZ2s is a symmetric con�ex body, that is, a convex bounded

set, symmetric with respect to the origin, and containing a neighbourhood of the

origin.

The S-norm on 2s is defined by sxs
S
¯ inf²λ :λ−"x `S ´. The S-norm of a linear

functional φ :2s !2 is sφs
S
¯ sup²rφ(x)r :sxs

S
% 1´. The kth successive minimum λ

k

is the smallest λ with the following property: there exist linearly independent

e
"
,… , e

k
`:s such that se

i
s
S
% λ. Recall the second inequality of Minkowski :

2s}s !% λ
"
Iλ

s
VolS% 2s.

Let Γ be a lattice in 2s. We say that S is Γ-thick if the set SfΓ generates a finite index

subgroup of Γ. We shall say simply thick instead of :s-thick.

L 2.1.1 (Mahler). Let λ
"
,…, λ

s
be the successi�e minima of S. Then there

exists a basis e
"
,… , e

s
of :s such that

λ
i
% se

i
s
S
%max(1, i}2) λ

i
for 1% i% s. (7)

Proof. See [3, Chapter 8, Corollary of Theorem 7]. Actually, it is proved there

that there exists a basis with se
i
s
S
%max(1, i}2) λ

i
. However, we may assume that

se
"
s
S
%…% se

s
s
S
, rearranging e

"
,… , e

s
if necessary. Then se

i
s
S
& λ

i
by the definition

of successive minima.

Any basis with this property will be referred to as a Mahler’s basis for S. Similarly

one defines Mahler’s bases for S of an arbitrary lattice Γ.

R 2.1.2. It is natural to make the following remark, though it is irrelevant

to the topic of this paper. We do not know whether max(1, i}2) in Mahler’s lemma

can be improved, but it certainly cannot be replaced by 1, because, starting from

dimension 3, there exist thick symmetric convex bodies containing no basis of the

integral lattice. Here is a simple example in dimension 3: put

a
"
¯ (0, 1, 1), a

#
¯ (1, 0, 1), a

$
¯ (1, 1, 0),

and let S be the convex hull of ²³a
"
,³a

#
,³a

$
´. Then S contains no integral points

except the origin and ³a
"
,³a

#
,³a

$
, and the lattice generated by a

"
, a

#
, a

$
has index

2 in :$. Similar examples can be constructed in the higher dimensions.

A. All implicit constants in this subsection depend only on the

dimension s.
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P 2.1.3. Let e
"
,… , e

s
be a Mahler basis for S and let

x¯x
"
e
"
­I­x

s
e
s
.

Then
x
i
' λ−"

i
sxs

S
for 1% i% s. (8)

Proof. Assuming that the basis e
"
,… , e

s
is orthonormal, we write (x, e

i
) instead

of x
i
. We have to prove that β

i
λ
i
' 1, where β

i
¯max²(x, e

i
)}sxs

S
:x `2´.

Fix i and find a
i
`2s satisfying sa

i
s
S
¯ 1 and (a

i
, e

i
)¯ β

i
. Denote by S

i
the convex

hull of 2s points, two of them being ³a
i
and the remaining 2(s®1) are ³e

j
}se

j
s
S
,

where j1 i. Clearly, S
i
XS. Consequently,

VolS&VolS
i
¯

2sβ
i
se

i
s
S

s !se
"
s
S
Ise

s
s
S

(
β
i
λ
i

λ
"
Iλ

s

( β
i
λ
i
VolS,

whence β
i
λ
i
' 1, as desired.

P 2.1.4. Let S be thick. Then

VolS' rSf:sr'VolS. (9)

Proof. If x
"
e
"
­I­x

s
e
s
`S then rx

i
r% β

i
, where the β

i
were defined in the

previous proof. Therefore

rSf:sr% (2β
"
­1)I (2β

s
­1).

Since S is thick, λ
i
% 1. Therefore β

i
( λ−"

i
& 1, whence 2β

i
­1' β

i
. We obtain

rSf:sr' β
"
Iβ

s
' (λ

"
Iλ

s
)−"'VolS.

Further, if max
i
rxrse

i
s
S
% (2s)−" then x¯x

"
e
"
­I­x

s
e
s
`S, because sxs

S
% 1}2.

Therefore

rSf:sr&0
s

i="

[2(2sse
i
s
S
)−"­1]( (se

"
s
S
Ise

s
s
S
)−"( (λ

"
Iλ

s
)−"(VolS.

The proposition is proved.

R 2.1.5. Note that the assumption ‘S is thick’ is needed only for the

second inequality in (9).

Actually, much more precise estimates for the number of lattice points are

available. See [8, Section 3.1] and references there.

2.2. Addition of finite sets

We quote here some results on the addition of finite sets of integers, to be used in

our argument.

A. In this subsection A and B are finite sets of integers.

We denote by minA and maxA the minimal and the maximal element and put

l(A)¯maxA®minA, m(A)¯max²rar :a `A´ ;

gcd(A) denotes the greatest common divisor of the elements of A.
(10)

L 2.2.1 (Ruzsa). If rA­Br%σrBr then rA­Ar%σ$rBr.
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Proof. Ruzsa [23, Lemma 3.3] proves that, if rA­Br%σrBr, then for any positive

integers k and l we have

)(A­I­A)®(A­I­A))%σk+lrBr.
knlnm

k

knlnm
l

In particular, rA­A®Ar%σ$rBr, which yields rA­Ar%σ$rBr.

Ruzsa utilizes the graph-theoretic method of Plu$ nnecke [20] (see also [22, 19]).

L 2.2.2 (Freiman). Suppose that 0 `AfB and gcd(AeB)¯ 1. Then

(a) if l(B)% l(A)% rAr­rBr®3, then rA­Br& l(A)­rBr ;
(b) if max(l(A), l(B))& rAr­rBr®2, then rA­Br& rAr­rBr­min(rAr, rBr)®3.

Proof. See Freiman [4]. Simpler proofs were recently suggested by Steinig [28],

Lev and Smeliansky [14, Theorem 2] and Hamidoune [10]. See also Stanchescu [27].

P 2.2.3. Suppose that 0 `AfB. Then

(a) if gcd(A)¯ gcd(B)¯ 1 and max(l(A), l(B))% rAr­rBr®3, then rA­Br&
l(A)­rBr (and rA­Br& l(B)­rAr by symmetry) ;

(b) if gcd(AeB)¯ 1, but gcd(B)" 1, then rA­Br& rAr­2rBr®2.

Proof. (a) Without restricting generality we may assume that minB¯ 0. Put

a¯maxA, B«¯Bf[0, l(A)], B§¯BcB«.

Then the sets A and B« meet the condition of Lemma 2.2.2(a), whence rA­B«r&
l(A)­rB«r.

Further, the sets A­B« and a­B§ are disjoint : any element of the former is

smaller than any element of the latter. Therefore

rA­Br& rA­B«r­ra­B§r& l(A)­rB«r­rB§r¯ l(A)­rBr.

(b) See [14, Lemma 2].

L 2.2.4 (Freiman). Suppose that 0 `A and rA­Ar%σrAr, where σ is a

positi�e real number. Then there exist an integer s% c
"
(σ), a thick symmetric con�ex

body SZ2s and a homomorphism φ ::s !: such that VolS% c
#
(σ)rAr and

φ(Sf:s)YA.

Proof. This is a fundamental result of Freiman [5, 6]. A different (and simpler)

proof was recently suggested by Ruzsa [25]. See also [19] for an exposition of Ruzsa’s

proof, and [1] for a proof close to Freiman’s original.

The following proposition is a useful complement to Lemma 2.2.4.

P 2.2.5. In Lemma 2.2.4 the con�ex body S can be chosen so that

sφs
S
¯m(A).

Proof. Put S «¯Sf²x `2s :φ(x)%m(A)´. Obviously, φ(S «f:s)YA but we

cannot directly replace S by S « since the latter may be not thick.
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Thus, let , be the subspace of 2s spanned by S «f:s. Put S§¯S «f, and

Γ¯:sf,. Then by Proposition 2.1.4

Vol,(S§)
detΓ

' rS§fΓr% rSf:sr'VolS' rAr,

where all implicit constants depend only on σ. Obviously, S§ is Γ-thick and

sφ§s
S§ ¯m(A), where φ§¯φr,. Identifying , with 2dim, and Γ with :dim,, we

obtain the result.

3. The main lemma

It is well known that the following three properties of a set AX4r are equivalent :

(J1) µ(¦A)¯ 0, where ¦A is the boundary of A ;

(J2) the indicator function of A (which is 1 on A and 0 outside A) is Riemann

integrable ;

(J3) for any infinite sequence ²a
k
´
k`: uniformly distributed on 4r we have

lim
N!¢

r²k `: :a
k
`A and rkr%N ´r

2N
¯µ(A).

Sets with any of these properties are usually called Jordan-measurable. For brevity, we

refer to them as Jordan sets.

The goal of this section is the following lemma.

L 3.1. Let AZ4r be a non-empty open Jordan set with µ(A)¯α. Assume

that A­A is also a Jordan set, and that µ(A­A)%σµ(A), where σ is a positi�e real

number. Then there exists a non-zero character χ such that χ(A) lies in an inter�al of

length O(αc
"), where c

"
¯ c

"
(σ)" 0 and the constant implied by the O(…) depends only

on σ.

For any θ `4r and AZ4r put

"(θ,A)¯²n `: :θn `A´.

For any N" 0 we also put

"(θ,A,N )¯"(θ,A)f(®N,N ).

For η `4 and ε" 0 we write

"(η, ε)¯"(η, [®ε, ε]4), "(η, ε,N )¯"(η, [®ε, ε]4,N ).

R 3.2. Sets "(θ,A) with an open A are called Bohr sets ; they generate

Bohr’s topology on :. An efficient application of Bohr sets to additive problems was

recently given by Ruzsa [25]. See also [7, 2].

Call an element θ of 4r generic if it does not belong to a proper closed subgroup

of 4r. In these terms the theorems of Kronecker and Weyl can be expressed as

follows:

(Kronecker) if θ is generic in 4r and A is an open subset of 4r, then θ"(θ,A) is

dense in A,

(Weyl) if θ is generic in 4r and A is a Jordan subset of 4r, then d"(θ,A)¯µ(A).



 (α­2β)-    519

(Recall that the asymptotic density dX of a set XZ: is lim
N!¢(2N )−" rXf(®N,N )r,

provided that the limit exists.)

For the proof of Lemma 3.1 we may assume, preserving generality, that 04r `A.

A. Until the end of this section, A is an open Jordan subset of

4r, such that A­A is also a Jordan set, and

µ(A)¯α, µ(A­A)%σα, 04r `A.

In this section constants implied by ',( and O(…) depend only on σ.

P 3.3. Let θ `4r be generic. For any N&N
!
(where N

!
" 0 depends on

A and θ) there exist η¯ η(N ) `4 and ε¯ ε(N )" 0 such that

"(θ,A,N )X"(η, ε), (11)

α' ε'αc
", (12)

where c
"
¯ c

"
(σ)" 0. Moreo�er, for any X,N&N

!
we ha�e

r"(η(N ), 2ε(N ),X )r'αc
"X. (13)

Proof. For any N" 0 put N*¯max"(θ,A,N ). Since A is open,

gcd("(θ,A,N ))¯ 1 and N% 2N*, (14)

when N is large enough. By the theorem of Weyl, for all sufficiently large N we have

r"(θ,A,N )r& "

#
αN, r"(θ,A­A, 2N )r% 3µ(A­A)N. (15)

Now define N
!
so that (14) and (15) hold for all N&N

!
, and assume that N&N

!
in

the sequel. By (15)

r"(θ,A,N )­"(θ,A,N )r% r"(θ,A­A, 2N )r% 6σr"(θ,A,N )r.

Since 04r `A, we have 0 `"(θ,A,N ). By Lemma 2.2.4 together with Proposition 2.2.5,

there exist an integer s' 1, a thick symmetric convex body SZ2s and a

homomorphism φ ::s !: such that

VolS' r"(θ,A,N )r'αN, φ(Sf:s)Y"(θ,A,N ), sφs
S
%N. (16)

Since gcd("(θ,A,N ))¯ 1, the homomorphism φ is surjective.

If s¯ 1 then φ ::!: is either the identity map or the negation. In both the cases

SY [®N*,N*], whence

N% 2N*%VolS'αN.

Thus, α( 1, and the assertion is trivial with ε¯ 1}2 and any η `4.

Now suppose that s& 2. Since φ ::s !: is surjective, φ(e
!
)¯ 1 for some e

!
`:s.

Prolong φ by linearity to a linear functional on 2s and put

,¯kerφ, Γ¯,f:s, S
!
¯Sf,.

Let e
"
,… , e

s−"
be a Mahler basis for S

!
with respect to the lattice Γ. Obviously,

e
!
, e

"
,… , e

s−"
is a basis of :s.

We have φ(x
!
e
!
­…x

s−"
e
s−"

)¯x
!
. Define ψ :2s !2 by

ψ(x
!
e
!
­x

"
e
"
­…x

s−"
e
s−"

)¯x
"

(recall that s& 2). Since e
!
, e

"
,… , e

s−"
is a basis of :s, we have ψ(x) `: for any x `:s.
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Let ψ
!
be the restriction of ψ to , and let � `Sf:s be such that φ(�)¯N*. Put

ε¯ 3sψ
!
s
S
!

and η«¯ψ(�)}N*. Then

sη«φ®ψs
S
% ε. (17)

Indeed, fix x `2s and put y¯ (φ(x)}N*) �. Then y®x `, and sys
S
% 2sxs

S
because

rφ(x)r% sφs
S
sxs

S
%Nsxs

S
% 2N*sxs

S
.

(recall that sφs
S
%N by (16)). We obtain

r(η«φ®ψ) (x)r¯ rψ(y®x)r¯ rψ
!
(y®x)r% sψ

!
s
S
!

sy®xs
S
!

% "

$
εsy®xs

S
% εrxr

S
,

which proves (17).

Put η¯ η!4. We have to establish (11)–(13).

Proof of (11). Fix n `"(θ,A,N ). There exists x `Sf:s such that φ(x)¯ n.

By (17)

rη«n®ψ(x)r¯ r(η«φ®ψ) (x)r% εsxs
S
% ε.

Since ψ(x) `:, we obtain n `"(η, ε).

Proof of (12). Redefine the inner product on 2s to make the basis e
!
, e

"
,… , e

s−"

orthonormal. The restriction of this inner product to , induces a Lebesgue measure

on ,, which will be denoted by Vol,. Since e
"
,… , e

s−"
is an orthonormal basis of ,,

we have detΓ¯ 1.

The volume of the convex hull of S
!
and ³� is 2s−"N*Vol ,S

!
. Since this convex

hull is contained in S, we have αN(VolS(NVol, S
!
. Hence Vol,S

!
'α. Now by

Proposition 2.1.3, for any x `, we have

rψ
!
(x)r}sxs

S
!

' λ−"

"
' (Vol,S

!
)"/(s−") 'α"/(s−") 'αc

",

where λ
"

is the first successive minimum of S
!

with respect to Γ. This shows that

ε' rψ
!
r
S
!

'αc
".

We now prove that ε(α. For any T" 0 let Σ
T

be the domain in 2# defined by

the inequalities rxr%T and rη«x®yr% ε. By (16) and (17), for any x `Sf:s the point

(φ(x),ψ(x)) belongs to Σ
N
f:#. Since S is thick, so is Σ

N
. By Proposition 2.1.4,

αN' r"(θ,A,N )r% r"(η, ε,N )r% rΣ
N
f:#r'VolΣ

N
¯ 2εN,

which proves that ε(α.

Proof of (13). Now let Σ
T

be the domain in 2# defined by the inequalities

rxr%T and rη«x®yr% 2ε. If Σ
X

is thick, then by Proposition 2.1.4

r"(η, 2ε,X )r% rΣ
X
f:#r'VolΣ

X
¯ 8εX'αc

"X,

as wanted.

Now suppose that Σ
X

is not thick. Put Y¯min²T :Σ
T

is thick´. Then there is a line

Λ in 2# such that Σ
T
f:#ZΛ for any positive T!Y ; in particular, Σ

X
f:#ZΛ.

Since Σ
N

is thick, Y%N.

For any n `"(η, ε,Y ), the vertical line x¯ n intersects Λ inside the strip

rη«x®yr% ε (the intersection point is (n,m), where m is the nearest integer to η«n). In

particular, this is the case for n¯Y*, because

Y*¯max"(θ,A,Y ) ` "(θ,A,N )f(®Y,Y )Z"(η, ε,Y ).
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Since Y"X&N
!
, we have Y% 2Y*, whence the vertical line x¯Y intersects Λ

inside the strip rη«x®yr% 2ε. It follows that for any positive T%Y we have

"(η, 2ε,T )¯Hf(®T,T ), where H is the projection of Λf:# on the first coordinate.

Let a be the positive generator of H. If X! a then "(η, 2ε,X )¯²0´ and there is

nothing to prove. If X& a then

r"(η, 2ε,X )r
X

¯
rHf(®X,X )r

X
'

rHf(®Y,Y )r
Y

%
rΣ

Y
f:#r
Y

'
VolΣ

Y

Y
¯ 8ε'αc

".

This completes the proof of (13) and of Proposition 3.3.

P 3.4. As in Proposition 3.3, let θ be generic. Then there exist η `4 and

a positi�e ε'αc
" such that "(θ,A)X"(η, ε) and d"(η, ε)'αc

".

Proof. For all N&N
!
, let η(N ) and ε(N ) be the quantities defined in Proposition

3.3. There is a sequence N
j
!¢ such that the sequences ²η

j
´ and ²ε

j
´ converge (where

we write η
j
¯ η(N

j
) and ε

j
¯ ε(N

j
)). Denote by η and ε the corresponding limits. Then

α' ε'αc
", in particular ε" 0.

Further, fix n `"(θ,A). Then nη
j
` [®ε

j
, ε

j
]4 for all sufficiently large j. Therefore

nη ` [®ε, ε]4, which proves that "(θ,A)X"(η, ε).

To estimate the asymptotic density of "(η, ε), fix X&N
!
. For sufficiently large j

we have N
j
&X and ε

j
& ε}o2. Also, for any n `"(η, ε,X ) we have nη

j
! nη `

[®ε, ε]4, whence

nη
j
` [®εo2, εo2]4 X [®2ε

j
, 2ε

j
]4

when j is large enough. Thus, "(η, ε,X )Z"(η
j
, 2ε

j
,X ) for all sufficiently large j. By

(13),

r"(η, ε,X )r
X

%
r"(η

j
, 2ε

j
,X )r

X
'αc

".

Sending X to infinity, we obtain d"(η, ε)'αc
". The proposition is proved.

Proof of Lemma 3.1. Fix a generic θ `4r and let η and ε be from Proposition 3.4.

C 1. If η is not generic in 4 then α( 1.

Proof. If η is not generic, then it belongs to the torsion of 4, say, mη¯ 0 for

some non-zero m `:. In this case "(η, ε) is a union of several complete residue classes

modm. Since A is open, "(θ,A) intersects all residue classes modm. Therefore

"(η, ε)¯:. This yields α( 1 since d"(η, ε)'αc
".

To simplify notation, put I¯ [®ε, ε]4.

C 2. If (θ, η) is generic in 4r¬4, then α( 1.

Proof. Suppose that (θ, η) is generic. Then d"((θ, η),A¬I )¯ 2εµ(A) by the

theorem of Weyl. On the other hand, since "(θ,A)X"(η, ε), we have

"((θ, η),A¬I )¯"(θ,A),

whence d"((θ, η),A¬I )¯µ(A). Thus, 2ε¯ 1, which yields α( 1.
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The assertion of Lemma 3.1 is trivial when α( 1. Hence we may assume that

η is generic but (θ, η) is not. Since (θ, η) is not generic, there exist a character

χ :4r !4 and an integer m, not both zero, such that χ(θ)¯mη. Moreover, both χ and

m are non-zero, because both η and θ are generic. We define the pair (χ,m) in a unique

way requiring that m is positive and as small as possible.

C 3. If m" 1 then α( 1.

Proof. Let ∆ be the subgroup of 4r¬4 consisting of (x, y) satisfying χ(x)¯my.

Then (θ, η) `∆, and by the minimality of m, the element (θ, η) is generic in ∆.

Denote by π
"
:∆!4r and π

#
:∆!4 the projections to the first and second

coordinate, respectively. Put U¯π−"

"
(A). Then "(θ,A)¯"((η, θ),U ). By the theorem

of Kronecker, (η, θ)"(θ,A) is dense in U. It follows that η"(θ,A) is dense in π
#
(U ).

On the other hand, η"(θ,A)X η"(η, ε)Z I. Therefore π
#
(U )Z I.

For any x `π
#
(U ) we have x­Z

m
Zπ

#
(U), where Z

m
!4 is the cyclic subgroup

of order m. If m" 1 then the set x­Z
m

is not contained in an interval shorter than

1®m−"& 1}2. Consequently, 2ε& 1}2, whence α( 1.

Thus, we may assume that m¯ 1, whence χ(θ)¯ η. It follows that χ(θ"(θ,A))X
η"(η, ε)Z I. Again by the theorem of Kronecker, θ"(θ,A) is dense in A, and we

obtain finally χ(A)X I. The lemma is proved.

4. Proof of Theorem 1.4

To begin, we fix some conventions. In this section A,BZ4r. We define α, β

and γ as in (1) and fix τ& 1. We put C¯AeB. We assume that

τ−"α% β%α, γ!α­2β.

We can assume that 04r `AfB, translating A and B if necessary. Further, if β¯ 0

then trivially γ&α­2β. Therefore γ"α& β" 0.

All constants implied by the symbols ',( and O(…) depend only on τ.

4.1. Open Jordan sets

In this subsection we assume that the sets A, B, A­A, A­B and B­B are open

Jordan sets. Then C and C­C are open Jordan sets as well. As in Section 3, fix a

generic θ `4r.

P 4.1.1. For sufficiently large N we ha�e the inequality

r"(θ,C,N )­"(θ,C,N )r& "

&
µ(C­C )N. (18)

Proof. Since C­C is Jordan and µ(C­C )" 0, there exists a closed Jordan set

FZC­C such that µ(F )& "

#
µ(C­C ). Since θ"(θ,C ) is dense in C, we have

FZC­CX 5
n `"(θ,C)

(θn­C ).

Since F is compact, for some N
!
" 0 we have

FZ 5
n `"(θ,C,N

!
)

(θn­C ). (19)
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Now pick n `"(θ,F ). By (19), there exists n
"
`"(θ,C,N

!
) such that nθ®n

"
θ `C. Then

n®n
"
`"(θ,C ) and rn®n

"
r% rnr­N

!
. Therefore for any N"N

!
we have

"(θ,F,N®N
!
)X"(θ,C,N®N

!
)­"(θ,C,N )X"(θ,C,N )­"(θ,C,N ). (20)

On the other hand, since F is Jordan, for sufficiently large N we have

r"(θ,F,N®N
!
)r& "

#
µ(F ) (N®N

!
)& "

&
µ(C­C )N, (21)

and the result follows from (20) and (21).

P 4.1.2. There exists a non-zero character χ :4r !4 such that χ(C )X
[®ε, ε]4, where 0! ε'αc

#. Here c
#

is a positi�e constant, depending on τ.

Proof. For sufficiently large N we have

r"(θ,A,N )r& "

#
αN, r"(θ,B,N )& "

#
βN,

r"(θ,A­B, 2N )r% 3γN, r"(θ,C,N )r% 2µ(C )N. (22)

Now fix N such that (18) and (22) hold. Then

r"(θ,A,N )­"(θ,B,N )r% r"(θ,A­B, 2N )r% 3(α­2β)N

%
1

2
3

4

(6­3τ) βN

9αN

' r"(θ,B,N )r,
' r"(θ,A,N )r.

By Lemma 2.2.1

r"(θ,A,N )­"(θ,A,N )r' r"(θ,B,N )r, r"(θ,B,N )­"(θ,B,N )r' r"(θ,A,N )r.

Hence

µ(C­C )N' r"(θ,C,N )­"(θ,C,N)r

% r"(θ,A,N )­"(θ,A,N )r­r"(θ,A,N )­"(θ,B,N )r

­r"(θ,B,N )­"(θ,B,N )r

' r"(θ,A,N )r­r"(θ,B,N )r

' r"(θ,C,N )r

'µ(C )N.

Thus, µ(C­C )'µ(C ). By Lemma 3.1, there exists a non-zero character χ such

that χ(C ) lies in an interval of length O(µ(C )c#), where c
#
¯ c

#
(τ)" 0. Since 04r `C, we

may assume this interval to be of the form [®ε, ε]4, where ε'µ(C )c# 'αc
#. This

proves the proposition.

A character χ is primiti�e if ker χ is connected. Any non-zero character χ can be

uniquely presented as qχ
!
, where χ

!
is primitive and q¯ q(χ) a positive integer (it is

equal to the number of components of ker χ).

By Proposition 4.1.2, there exists a positive ε'αc
# such that χ(C )X [®ε, ε]4 for

some non-zero character χ. However, there can be several characters with this

property; choose one with the minimal �alue of q(χ).

By a coordinate system on 4r we mean a system of closed one-dimensional

subgroups 4
"
,…,4

r
, such that 4r ¯4

"
GIG4

r
, where for any 4

i
an isomorphism

4
i
F4 is fixed. Given a coordinate system, we write an element of 4r as (x

"
,… ,x

r
),

where x
i
`4.



524  

Write our character as χ¯ q(χ) χ
!
, and fix a coordinate system such that none of

4
"
,…,4

r
is a subgroup of ker χ

!
. Then χ

!
(x

"
,… ,x

r
)¯ ν

"
x
"
­Iν

r
x
r
, where ν

"
,…, ν

r

are non-zero integers with gcd(ν
"
,…, ν

r
)¯ 1.

As in [15], let P
"
,… ,P

r
be distinct odd primes, all greater than q¯ q(χ), and let Z

Pi

be the cyclic subgroup of 4
i
of order P

i
. Then G¯Z

Pi

GIGZ
Pr

is a cyclic subgroup

of 4r of order P¯P
"
…P

r
. By the construction, Gfker χ

!
¯ 0, and even Gfker χ¯ 0,

since gcd(P, q)¯ 1. Therefore χ maps G isomorphically onto the cyclic group Z
P
!4.

For any XZ4r define a set of integers X4 as follows:

X4 ¯²k `: : rkr!P}2 and (k}P)4 ` χ(XfG)´.

Obviously, rX4 r¯ rXfGr. It is important to notice that rxr% εP for any x `C4 .

P 4.1.3. If P
"
,… ,P

r
are sufficiently large then gcd(C4 )¯ 1.

Proof. Since C is open and contains the origin, it also contains the r points

(04,…, 04, (1}P
i
)4, 04,…, 04) for 1% i% r,

provided that the P
i

are large enough. Therefore χ(CfG)Y ²qν
"
}P

"
,… , qν

r
}P

r
´4.

When the P
i
are large enough we have rqν

i
P}P

i
r!P}2, whence

C4 Y ²qν
"
P}P

"
,… , qν

r
P}P

r
´.

It follows that d¯ gcd(C4 ) divides q, because the ν
i

are distinct from zero and

gcd(ν
"
,…, ν

r
)¯ 1.

Now write C4 ¯²dn
"
,… , dn

k
´. Then rdn

i
}Pr% ε, whence

(q}d ) χ
!
(CfG)¯²n

"
}P,… , n

k
}P´4 Z [®ε}d, ε}d]4.

We may assume P
"
,… ,P

r
to be so large that χ

!
(C) is contained in the (ε}q)-

neighbourhood of χ
!
(CfG). It follows that (q}d)χ

!
(C) is contained in the (ε}d)-

neighbourhood of (q}d)χ
!
(CfG), that is, (q}d)χ

!
(C)X [®2ε}d, 2ε}d]. From the

minimality of q we conclude that d¯ 1. The proposition is proved.

P 4.1.4. If ε! 1}4 then A4­B4 XA f­B.

Proof. If a `A4 and b `B4 then obviously ((a­b)}P)4 ` χ((A­B)fG). Since

rar% εP and rbr% εP, we have ra­br% 2εP!P}2, whence a­b `A f­B. The

proposition is proved.

Since ε'αc
#, we have ε! "

%
when α% c

$
(τ). We shall assume this in the sequel. It

is worth noting that this is the single point in the whole argument where we need the

extra condition α% c
$
(τ).

Let δ" 0 be so small that γ­5δ!α­2β ; if α" β then we require in addition that

α®δ" β­δ. Assume that P
i
are so large that

δP& 3, )rAfGr
P

®α)% δ, )rBfGr
P

®β)% δ, )r(A­B)fGr
P

®γ)% δ, (23)

and

(*) for any x `A (respectively, B) there exists x« `AfG (respectively, BfG) such

that χ(x®x«) ` [®δ, δ]4.
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We can also assume that rB4 r% rA4 r. Indeed, if β!α then β­δ!α®δ, which yields

Bh !A4 by (23) (recall that rA4 r¯ rAfGr and rB4 r¯ rBfGr). If α¯ β then the assertion

is symmetric in A and B, and we can interchange them if it happens that rB4 r" rA4 r.
By Proposition 4.1.3 we have gcd(A4eB4 )¯ 1. Since 04r `AfB, we have 0 `A4fB4 .

Since A4­B4 XA f­B, we have

rA4­B4 r% rA f­Br% (γ­δ)P! ((α®δ)­2(β®δ)®δ)P% rA4 r­2rB4 r®3.

Hence gcd(A4 )¯ gcd(B4 )¯ 1 by Proposition 2.2.3(b), and

max(l(A4 ), l(B4 ))% rA4 r­rB4 r®3

by Lemma 2.2.2(b). It follows now from Proposition 2.2.3(a) that

l(A4 )% rA4­B4 r®rB4 r% (γ®β­2δ)P, l(B4 )% rA4­B4 r®rA4 r% (γ®α­2δ)P.

Therefore χ(AfG) is contained in an interval of length γ®β­2δ. By (*), χ(A) is a

subset of an interval of length γ®β­4δ. Sending δ to zero, we conclude that χ(A) is

contained in an interval of length γ®β. Similarly χ(B) is a subset of an interval of

length γ®α. This completes the proof of Theorem 1.4 in the case when A and B are

open Jordan sets.

4.2. Closed sets

We begin with a very simple lemma.

L 4.2.1. Let X be a subset of 4r with µ(X )" 0. Then for any fixed λ! 1

there exist only finitely many characters χ :4r !4 such that µ(χ(X ))% λ.

Proof. We use induction in r. Thus, put r¯ 1 and let XX4 have positive

measure. Fix a density point x of X and find ε" 0 such that any open interval I which

contains x and is of length at most ε satisfies µ(IfX )" λµ(I ).

Any character χ :4!4 is the multiplication by an integer ν¯ ν(χ). If rνr& ε−"

then we have an interval I of length ν−" such that µ(IfX )" λµ(I ). The character χ

maps I faithfully onto 4, whence µ(χ(X ))&µ(χ(IfX ))" λ. Thus, µ(χ(X ))% λ yields

rν(χ)r! ε−", which proves the lemma in the case r¯ 1.

Now consider arbitrary r" 1 and present 4r as 4r−"¬4. By the theorem of

Fubini, there exists x `4r such that µ(Xf(x­4r−"))" 0 and µ(Xf(x­4))" 0.

(Here we denote by µ the normalized Lebesgue measures on x­4r−" and x­4,

respectively.) Translating X, we may assume that x¯ 04r. By induction, there are

finitely many possibilities for the restrictions χr4r−"
and χr4. Hence there are finitely

many possibilities for χ. The lemma is proved.

In this subsection A and B are closed sets. Fix an epimorphism 2r !4r and denote

by Oε Z4r the image of the open ball in 2r having centre in the origin and radius ε.

Obviously, Oε is an open Jordan set.

Since A and B are closed, so is F¯A­B. Therefore

F¯ 4
ε"

!

(F­Oε ),

and similarly for A and B. Pick δ" 0 such that γ­δ!α­2β and α" β­δ in the

case α" β. Let ε¯ ε(δ) be such that

µ(B­Oε)% β­δ, µ(F­O
#
ε )% γ­δ.
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Since A is compact, its open covering V
a `A

(a­Oε) has a finite subcovering.

Arguing similarly with B, we obtain finite subsets A# ZA and B# ZB such that

AZA«BA#­Oε and BZB«BB# ­Oε. Both A« and B« are open Jordan sets (each of

them is a union of finitely many translates of Oε), and so are the sets A«­A«, A«­B«
and B«­B« (which are unions of finitely many translates of O

#
ε). We can assume that

µ(A«)&µ(B«) : if α" β, this follows from α" β­δ ; if α¯ β, then interchange A and B

if necessary.

Now

µ(A«­B«)%µ(F­O
#
ε)% γ­δ!α­2β%µ(A«)­2µ(B«).

Therefore there exists a non-zero character χ mapping A« and B« into intervals of

length γ®β­δ and γ®α­δ, respectively.

Formally, we cannot now send δ to 0, because the character χ depends on δ, so

we have to write it as χδ. However, by Lemma 4.2.1, there are at most finitely many

possibilities for χδ. Therefore we have a sequence δ
n
! 0 such that all the χδ

n

are equal

to the same character χ. This completes the proof of the theorem in the case when A

and B are closed.

4.3. Arbitrary sets

Now we make no additional assumptions about A and B. Since the closure Aa is
compact, for any δ" 0 and any character χ there exists a finite set A(χ, δ)ZA with

the following property: for any x `A there is x« `A(χ, δ) such that χ(x®x«) ` [®δ, δ]4.

Similarly we define B(χ, δ).

For every small δ" 0 we want to find a non-zero character χ¯ χδ mapping the

sets A(χ, δ) and B(χ, δ) into intervals of length γ®β­δ and γ®α­δ, respectively.

Such a χ would map A and B into intervals of length γ®β­3δ and γ®α­3δ,

respectively, and we would be able to complete the proof using Lemma 4.2.1 in the

same manner, as at the end of the previous subsection.

Thus, fix δ" 0 so small that γ!α­2β®3δ and α®δ" β in the case α" β. Let

A«XA and B«XB be closed sets such that µ(A«)&α®δ and µ(B«)& β®δ. Again, we

may assume that µ(A«)&µ(B«).
By Lemma 4.2.1, there exist only finitely many characters χ mapping A« into an

interval of length γ®α­δ. Put

A§¯A«e05
χ

A(χ, δ)1 ,
the union being over the characters quoted in the previous sentence. Since we added

to the set A« only finitely many new elements, the set A§ is closed and µ(A§)¯µ(A«).
In the same manner define the set B§.

Since A§­B§ is closed, we have

µ(A§­B§)%µ(A­B)¯ γ! (α®δ)­2(β®δ)%µ(A§)­2µ(B§).

Therefore there exists a non-zero character χ mapping A§ and B§ into intervals of

length γ®β­δ and γ®α­δ, respectively. This χ maps A« into an interval of length

γ®β­δ, whence A(χ, δ)ZA§. Thus, χ maps A(χ, δ) into an interval of length
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γ®β­δ ; by the similar reason it maps B(χ, δ) into an interval of length γ®α­δ. This

completes the proof of Theorem 1.4.
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