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SYMMETRIZATION INEQUALITIES FOR COMPOSITION
OPERATORS OF CARATHEODORY TYPE

H. HAJAIEJ anp C. A. STUART

1. Introduction

Symmetrization (or rearrangement) of a function is used for several purposes in
the field of partial differential equations, [1, 2, 4, 11, 12, 13]. One area where it
has played a significant role is the study of ground states of scalar field equations
of the form

Au+|ul’u+ru=0 forueH (RV)and NeR

where ¢ > 0. When a ground state exists, symmetrization inequalities show that it
is (up to a translation) a Schwarz symmetric function since the energy functional

1
_ 1 2+ o+2
J(u)—AN{2|Vu| — lul }dx

is decreased when u is replaced by its symmetrization u”, whereas [pv u? dx
remains unchanged. Furthermore, symmetrization helps to establish the
existence of a ground state. See [10, 14, 15] for examples of this. For the more
general equation

Au(x) +f(|x

the energy functional is

J(”):AN {3IVul* = F(|x[, u(x))} dx (1.2)

where F(r,t) = [of(r,s)ds and the extension of the procedure described above
rests upon the inequality

ANF(|x|,u(x))dx$%RNF(|x|,u*(x))dx. (13)

In the context of (1.1), it is natural to suppose that f, and hence F, is a function
of Carathéodory type. For a smooth function F (at least C %) such that O F<0
and 0,0, F <0, a version of (1.3) on a bounded open subset Q of R" appears as
Lemma 4.6 in [16]. However, we are not aware of any previous results
concerning (1.3) in the case where F is not continuous on (0, ) X [0, ).

In some circumstances the inequality (1.3) can be deduced from the inequality

A&N G(v(x), u(x))dx < [R{N G(v"(x), u"(x))dx (1.4)

by making an appropriate choice of the function v = v*. See [3, Corollary 1].
Now the inequality (1.4) has been established in [S] for a class of continuous

,u(x)) + Au(x) =0, (1.1)
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functions G (and it can be obtained for some Borel measurable functions G, [8])
but we do not believe that this approach can yield (1.3) for functions of
Carathéodory type. The purpose of this note is to present a self-contained proof of
this useful result in the context of Carathéodory functions F: (0, ) x [0, 00) — R
having the requisite properties. The inequality holds for a broad class F of non-
negative measurable functions u, containing the absolute values of all functions in
Ui<p<o L” (RM). Of course, the restriction to non-negative functions can be
relaxed by defining the symmetrization of u to be the symmetrization of |u].

In the next section we give a self-contained exposition of the basic notions
concerning Schwarz symmetrization that we need. Section 3 deals with simple
functions and, as a first application of our approach, we establish the Hardy-
Littlewood inequality for functions in our class Fy. In §4, we prove the identity

A@N G(u(x))dx:AN G(u*(x))dx (1.5)

under rather weak assumptions on G and u. It is one of the simplest results
concerning symmetrization but our assumptions (essentially that G is Borel
measurable) are a little weaker than those required in other approaches. For
example, (1.5) is stated in [12] for a function G which is the difference of two
monotone functions and it is proved for continuous functions G in [5].

Our results concerning (1.3) are given in §5. The essential ingredients of our
approach apply directly to Carathéodory functions having certain monotonicity
properties and this leads directly to Proposition 5.1 which establishes (1.3) for all
functions u in the class Fy which is introduced at the beginning of §2. We then
show that some of the restrictions on F can be relaxed, yielding Theorems 5.3
and 5.4. Results dealing explicitly with functions F' of the type appearing in (1.2)
are formulated as Corollaries 5.2 and 5.5. Finally, in § 6, we show how our results
concerning (1.3) can be used to obtain similar conclusions about functions u
defined on subsets of RY having finite measure. Applications of (1.3) to scalar
field equations like (1.1) are presented in [8] which builds on the present approach
to deal with the inequality

[, #xlot). u)dx = [ (1l 0.0 () dx

which generalizes simultaneously (1.3) and (1.4).

In an integral where no domain of integration is indicated, it is to be
understood that the integration extends over all of RY.

For r =0, B(0,r) = {x e R": |x| < r}.

2. Schwarz symmetrization

From now on all statements about measurability refer to the Lebesgue measure
on RY or on [0, ), except in §4 where we discuss the composition of a Borel
measurable function G with a Lebesgue measurable function u. If A is a
measurable subset of R”, its measure is denoted by w(A). There is a constant
Vy >0 such that u(B(0, r)) = Vyr" for all r> 0.

For a measurable subset A of R" with u(A) < oo,

A* =B(0,r) where Vyr" = pu(A).
Note that A* is open even though A may not be.
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The characteristic function of a set A is denoted by x 4.
Let My denote the set of all extended real-valued functions which are
measurable on RY. For u € My and r € R, let

d,(t) = p({x € R": u(x) > 1})
and set

Fy={ucMy:0<u<o ae. onR" and d,(r) < o for all > 0}.

For u € Fy, the distribution function d, is finite and non-increasing on (0, ).
(Such functions u are said to vanish weakly at infinity.) Furthermore,

lim d,(1) = M( () {xeRY: u(x)> t}> =pu({xeRY: u(x) =0}) =0
t>0

by [9, Theorem 9.E]. Similarly, [9, Theorem 9.D] shows that d, is right-continuous
on (0, c0) and that d,(0) = lim,_, ¢ d,(¢). Note that d,(0) may be infinite.

DEFINITION 2.1. An element u € Fyy is said to be Schwarz symmetric if there
exists a non-increasing function A: (0, ) — [0, 00) such that u(x) = h(|x]|) for
ae x€RY,

Note that we must have lim,_, , A(s) = 0. Furthermore, lim, _,,A(s) < oo if and
only if u € Fy N L®(R").

We shall show that Schwarz symmetric functions can be modified on a set of
measure zero so that the function £ is right-continuous.

LEMMAa 2.1. Let h,g: (0,0)—[0,00) be two functions which are
non-increasing and right-continuous on (0, ). Suppose that, for all t >0,

p({xeRY: h(|x)) > 1}) = p({x € R": g(|x]) > 1}).
Then h(r) = g(r) for all r € (0, o).
Proof.  Suppose that there is a number R > 0 such that i#(R) < g(R) and then

choose 7 € (h(R), g(R)). Then ¢ > 0 and there exists 6 >0 such that g(r) > ¢ for all
r < R+ 6. This implies that

{x € R™: h(|x]) >t} cB(0,R)
whereas
B(0,R+6) c {xeR": g(|x|) > 1}.
Thus, for this choice of ¢,
p({xeRY: h(|x)) > 1}) <u({x e RY: g(|x]) > 1}),
contradicting our assumption. Hence we must have h(r) = g(r) for all r>0.

Interchanging the roles of 4 and g yields the equality of these functions. O

This means that every Schwarz symmetric function has a unique normalized
form as shown in the next result.
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PrROPOSITION 2.2. Let u € Fyy be a Schwarz symmetric function. There exists a
unique function u € Fy such that
(@) w(x) = H(|x|) for all x€RY\{0} where H: (0,0) — [0, ) is non-
increasing and right-continuous on (0, o) and u(0) = limy_ o H(s),
(b) u(x) = u(x) a.e. on R",
The function u is Schwarz symmetric and lower semi-continuous on RY.

Proof. Since u is Schwarz symmetric, there is a non-increasing function
h: (0, 00) — [0, ) such that u(x) = &(|x]|) for a.e. x € R". By the monotony of #,
there exists a countable set D such that & is continuous on (0, c0)\D. The function
H(r) =limy_,,, h(s) is right-continuous and non-increasing on (0, ©). Setting
u(x) = H(|x|) for all x € R\ {0} and %(0) = lim,_ . H(s), we see that (a) holds.
Since H = h on (0, ©)\D, it follows that u(x) = h(|x|) = H(|x|) = u(x) for a.e.
x € RY. This proves (b) which implies that u € Fy. To establish the uniqueness of
u, let us consider a function g with the same properties as H such that
u(x) = g(|x|) for a.e. x € R". Then, for >0,

p({x e BY: g(x]) > 1}) = p({r € RY: u(x) > 1})
— u(fre RY: H(|x]) > 1))

and it follows from Lemma 2.1 that ¢ = H, proving the uniqueness of .
Clearly u is Schwarz symmetric. For the lower semicontinuity, we need only
show that {x € R": 7i(x) >} is open for all r € R. See [7, p.218]. For >0,

{(xeRY: %(x) > 1} = {x e RY\{0}: H(|x]) >t} U {0}

if lim,_, o H(s) >t and
{(xeRY: u(x)>1} =0

if lim,_ o, H(s) <t. Thus for >0, {x € R": %(x) >t} is either an open ball or
the empty set. Thus {x € R": %(x) >0} = U, »o{x € R: %(x) > 1} is also open.
For 1 <0, {x € R": %(x) >t} = R". Hence # is lower semi-continuous on R". ~ [J

Schwarz symmetrization associates with every element u € Fyy a Schwarz
symmetric function u* having the same distribution function as u. With the
normalization shown in Proposition 2.2, the element u* is uniquely determined by
u. There are several ways of showing that this kind of symmetrization is possible.
We use one of them and then we establish the properties of symmetrization that
are required for the proof of our main results.

Given u € Fy, we can define a function h,: (0, ) — [0, c0) by setting

h,(s) = inf{r=0:d,(t) < Vys"} for s> 0.

The set {r=0:d,(r) < Vys"} is not empty since d,(t) — 0 as t — oo, and by
the monotonicity and right-continuity of d,, {t=0: d,(t) < Vys"} = [h,(s), ).
Clearly h, is non-increasing on (0, o). Setting £,(0) =lim,_ (o, h,(s), we
observe that h,(0) < o if and only if u € Fy nL*(RY).
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LEMMA 2.3. For every u € Fy,
(i) h, is right-continuous on (0, ©) and
(i) for all s,t=0, h,(s) >t if and only if d,(t) > Vys".

Proof. (i) Consider s> 0 and a decreasing sequence {s;} < (s, ) such that
sy — s. Then, {h,(s;)} is a non-decreasing sequence with h,(s;) < h,(s) for all
keN. Let L = limh, (s;). Clearly L < h,(s). But L = h,(s;) and so d, (L) < Vys{’
for all k € N. Thus d, (L) < Vys" showing that h,(s) < L.

(ii) Suppose that h,(s)>t. If s>0, this implies that d, () > Vys" by the
definition of h,. If s =0, there exists 7 >0 such that h,(7) >t since h,(0) was
defined to be lim,_ o, /,(s). Thus d,(r) > Vy 7" >0 when s = 0.

Conversely, suppose that d,(t) > Vy sV, If s>0, the right-continuity of d,
implies that 7 < h,(s). For s =0, we have d,(¢) >0 and hence there exists 7> 0
such that d,(f)>Vy7". Thus h,(7) >t and consequently, /,(0)>¢ by the
monotonicity of 4,. |

DErFINITION 2.2. The Schwarz symmetrization of an element u € Fy is the
function u* defined by

u”(x) = hy(|x]).

If v=u ae. on RY, then v* = u*. The next result shows that u* is the unique
normalized (in the sense of Proposition 2.2) Schwarz symmetric function having
the same distribution function as u.

PrROPOSITION 2.4.  Consider u € Fy.
() For all t>0, {xeR": u*(x)>1} = {x € R": u(x)>1}* = B(0, r) where
VyrY =d,(1). Also, d,-(t) = d, (1) for all t = 0.

(ii) The function u* € Fy, u™ is Schwarz symmetric and u”™ is lower semi-
continuous on R".

(iii) If u is Schwarz symmetric, u* = u a.e. on RY.
(iv) If v e Fy with u<v a.e. on RY, then u* <v* on R".

) If {uy} € Fy with uy < uy,, and limy_ o u; = u on R", then

. N
lim u), =u™ on R".

k— oo
Proof. (i) For t >0,
{xeRY: u*(x) > 1} = {xeR": h,(|x|) > 1}.
Now, h,(|x|) >t if and only if d,(f) > Vy|x|" by Lemma 2.3(ii), and so
{xeRY: u*(x) > 1} = {x e R": d,(t) > Vy|x|"} = B(0, 1)
and Vyr" =d,(r). But, by definition, {x€R": u(x)>t}* =B(0,r) where
VyrY = p({x € RY: u(x) > 1}). Since d,, (1) = u({x € R": u(x) > 1}), it follows that

{xeRY: u*(x) > 1} = {x e RY: u(x) > 1}* forr > 0.Since p({x € R": u(x) > 1}*) =
w({x € RY: u(x) > t}), this proves that

d(1) = p({x eRY: u"(x) > 1}) = p({x e RY: u(x) > 1}) = 4, (1)
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for all > 0. Finally, d,-(0) =lim, o, d,-(¢) =1lim, o, d,(t) = d,(0), as noted
just before Definition 2.1.

(ii) The lower semicontinuity of u™ follows from the same arguments as in
Proposition 2.2. These properties also show that u* is measurable on RY. Since
d,(t)=d,(t) <o for all t>0 and 0 <u"(x)<oo for x#0, it follows that
u* € Fy. Clearly u™ is Schwarz symmetric.

(iii)) Suppose that u is Schwarz symmetric. Then, by Proposition 2.2, there
exists a non-increasing right-continuous function H: (0, ) — [0, o) such that
u(x) = H(|x|) for a.e. x€ R". On the other hand, &,: (0, ) — [0, %) is also a
non-increasing, right-continuous function and, for any ¢ > 0,

w(fx € RY: by ((x]) > 1}) = p(fx € RY: u'(x) > 1)
=dy (1) = dy (1)
= p({x e RY: u(x) > 1})
— w(r e RY: H(lx]) > 1))

by pa}\llrt (i). It follows from Lemma 2.1 that 4, = H and hence that u* = u a..
on R™.

(iv) Forany t =0, {x € R": u(x) > 1} c {x e R": v(x) >} UA where u(A) =0
and so d,(t) < d,(t). Then, for any s >0,

{t=0:d,(t) < Vys"}c{r=0:d,(t) < Vys"}

and hence ,(s) < hy(s). Thus h,(0) < h,(0) too and we have u* < v* on R".

(v) By part (iv), uf <uj,, <u"*. Fix =0 and set A, = {x € R": u;(x) > }.
Then Ay c Ay, and JgenAr = {x € RY: u(x) > 1}. By [9, Theorem 9.D],

4,(0) = pl{r € RY: u(x) > 1) = fim u(Ay) = fim d,, (1),

Now the proof of part (iv) shows that h, < h,, | <h,. Thus

lim h,, (5) = h (5
for all s=0. Suppose that h,(s)>0 and consider T € [0, h,(s)). By Lemma
2.3(ii), d,(T) > Vys". Hence there exists k € N such that d, (T)>Vy sV and so

Lemma 2.3(ii) now yields %, (s) > 7. Thus lim; _, %, (s) > T and we have shown
that limy _, 1, (s) = h,(s) for all s =0. It follows immediately that

klim wp(x) = u*(x) forall x e R". O

3. Simple functions

The symmetrization of simple functions can be done in a very direct manner.
Recall that a simple function is a measurable function whose range consists of a
finite number of points in R. Let

Ey = {u € Fy: u is a simple function}.
That is to say, E is the set of all functions which can be written as
k
u= a;xs, forsomekeN (3.1)
i=0
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where a; € (0,) with a;>a;,;, A; is a measurable subset of R" with
p(A;) <oo and A;NA; = 0 for i #j.

We now show that the Schwarz symmetrization of an element in Ey is also a
simple function. Let u be the function (3.1) and set

Si=|JA; and S7=B(0,r;) for0<isk. (3.2)
i=0

j=

Then 0 <ry=<...<r, <00 and it is easy to check that

k i
du N Z |:Z M<Aj)} Xla; i 1a;) with k1 = 0

i=0 Lj=0
and then that

k
h, = Z aiXj, ,.r) Wherer_;=0.
i=0
We note that r;_; < r; if and only if u(A;) > 0. It follows that

k
M* = Z aiXC,- (33)

i=0

where Cy = B(0, ry) and C; = B(0, r;)\B(0, r;_;) for i = 1,..., k. Thus C; # 0 if
and only if u(A;) >0, and so the range of u" is {a;: u(A;) >0} U {0}.

The symmetrization of a simple function can be expressed in an alternative way
which is very convenient for some purposes. It is a consequence of the following
simple lemma which will be used several times in §4.

LemMa 3.1. Let {p;:i=0,1,....,k}cRand {q;:i=0,1,...,k} cR. Then

k k
Z pPiqi = Z P;Q; (3.4)
i=0 i=0

where P, =p;, —p;, for i=0,1,...,k—1, P, = p; and Qi:Z;:Oqj.

Proof. We have
k k
>-ro-r
i=0 i=0

Consider now a simple function expressed as (3.1). Using (3.4), we have

k k i k
u:ZaiXA,- :ZaiZXA; :ZaiXS,- (3.5)

i=0 i=0 j=0 i=0

i k k
O‘Ij:ZCIj -

J=( i

i=j j=0

(=)

where o; =a; —a;, for i=0,1,..., k (recall that a;,; =0) and §; is defined
by (3.2). Similarly, using (3.3), we have

k k i k
u*zzach,- :ZaiZXq :ZaiXB,- (3.6)
i=0 j=0 i=0

i=0
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where B; = B(0, r;) = U}:o C;. Observing that S; = B; by (3.2), we see from
(3.1) and (3.3) that
(XS,-)* :XB, fori:O, 1,...,k. (37)

Hence the expressions (3.5) and (3.6) show that

k sk k
(Z O‘iXS,») :Zo‘i(XSi)* :Za,-xsi*. (3.8)
i=0 i=0 i—0

These attractive formulae for simple functions become more consequential when
we recall that every positive measurable function is the limit of an increasing
sequence of simple functions.

PROPOSITION 3.2. Let u € Fy. There is a sequence {uy} C Ey such that

. N
uy<ug,; and klirrgouk:u on R™.

This result is a minor adaptation of [9, Theorem 20.B], for example.
These considerations lead to a short proof (see also [10]) of the following
famous result which we need later.

ProrposiTioN 3.3 (Hardy-Littlewood inequality). For all u, v € Fy,
/ u(x)ov(x)dx < / u” (x)v" (x) dx.

Proof.  Suppose first that u, v € Ey and that, in the notation (3.5),

i
-

I
=3

m
a;xs, and v= Z Bixr,
=0

Then, by (3.6),
k m
u* :Zaixgi and " :ZBJXD/
i=0 ji=o0

where S; = B; and T; = D;. Thus,

k m
/uvdx—z Zalﬁj/xs,xndx

i=0 j=0
and
k m
/u*v* dx = Z Z aiIBj/XB,-XDj dx.
i=0 j=0
But,
/ x5, xp dx = p(S; A T) < min{u(S,), (7))}
whereas

/XB[ Xp, dx = min{u(B;), n(D;)}



404 H. HAJAIEJ AND C. A. STUART

since B; and D; are open balls centered at the origin. Recalling that u(B;) = u(S;)

and u(D;) = u(7T;), we see that
/uvdx$ /u*v* dx forall u,ve€Ey

since o;3;>0 for all i=0,1...,kand j=0,1,...,m.

Using Proposition 3.2 and Proposition 2.4(v), we see that the Monotone
Convergence Theorem (see [9, Theorem 27.B], for example) yields the same
inequality for all u, v € Fy. O

4. Composition with a Borel function

In this section we consider G o u and G o u* where u € Fy and G is a real-
valued Borel measurable function on [0, o). In this case, Gou and G o u™ are
both (Lebesgue) measurable on RY. Indeed, there is a set A c R" (depending on
u) such that u(A) =0 and u(x) € [0, o) for all x € R\ A. Now, for any 7 € R,

{x e R"M\A: G(u(x)) > 1} = {x e R": u(x) € G '((1, 0))}
and G~ '((1, )) is a Borel subset of R. This proves that G o u is measurable on
RN \A and hence, by an arbitrary extension, it can be considered to be
measurable on all R". Clearly the same is true for G o u*. It is well known that
the Borel measurability of G cannot be replaced by Lebesgue measurability in

these statements.
In this context we shall establish the identity

/G(u(x))dx:/G(u*(x))dx (4.1)

under rather weak additional restrictions on G or u, including cases where the
integrals are infinite. We begin with the case where G is positive and then extend
the conclusion to the general case in a standard way. The following property of
Schwarz symmetrization is crucial for our approach.

LEMMA 4.1. Let u € Fy and let A be a Borel subset of (0, o). Then
p({x e RY: u(x) € A}) = p({x e R": u*(x) € A}).

Proof. By Proposition 2.4(i), d, = d,- and so
p({xeRY: u(x)>1}) = p({x e RY: u*(x) > 1}) (4.2)
for all € R since u and u™ are non-negative.
Let & denote the set of all intervals of the form
(a, b], (a, ) and 0

where 0 <a < b < 00, In the same way as on [7, p.33], the collection of all finite
disjoint unions of elements of & is an algebra of sets, which we denote by ¥, and
furthermore the o-algebra generated by ¥ is the collection of all Borel subsets
of (0, c0).

We now define two functions m and M on the o-algebra of Borel sets of (0, o)
by setting

m(A) = p({x e RY: u(x) €A}) and M(A) = u({x € R": u*(x) € A})
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for any Borel subset A of (0, ). Since u is a measure on R”", it is easy to check
that m and M are both Borel measures on (0, ). Consequently, they are both
premeasures on ¥. That is to say, m(0) =0 and, if {A;: j € N} is a sequence of
disjoint sets in ¥ such that |J;cnA; € ¥, then m(|U;enA;) =D jenm(A;); and
M has the same properties. Furthermore, since u({x € R": u(x) >1/n}) < o for
all n € N, m is o-finite on ¥. By [7, Theorem 1.14], there exists a unique Borel
measure p on (0, o) such that p(A) = m(A) for all A € V.

Using (4.2), one can easily check that m(A) = M(A) for all A€ ® and hence
for all A € V. Thus, since we have already noted that m and M are both Borel
measures on (0, o), it follows that p = m = M. O

REMARK. The lemma cannot be extended to all Borel subsets of [0, ) as the
following example shows. Let w: R — [0, o) be defined by

w(x) = e " Xo,00)(x) forxeR. (4.3)

Clearly w e F; and p({x € R: w(x) = 0}) = co. However, w"(x) = ¢ 2*! for all
x€R and so p({x€R: w'(x) =0}) =0. This function w also shows that the
equality (4.1) cannot hold for all Borel functions G. Indeed, setting G = xyq), we
see that G: [0, o) — [0, o) is a Borel function, but

/ G(w(x))dx — oo whereas / G (w* (x)) dx = 0.
With this example in mind we establish a preliminary result.

LEMMA 4.2. Let G: [0, 00) — [0, ) be a Borel measurable function. Then

/ G(u(x))dx—/ Glu(x)) dx
{x:u(x)>0} {x:u*(x)>0}

Jor all u € Fy.

Proof. Let g = G|(0,oo>. By [9, Theorem 20B], there is an increasing sequence
{g,} of non-negative Borel measurable simple functions on (0, ) such that
ga(s) — g(s) for all s >0. Let

k
8n = E aAi XA,
i=1

where a; € (0, ) with a; # a; when i #j and A; is a Borel measurable subset of
(0, ) with A; "A; =0 when i #j. Then

/ G(u(x))dx:/ g(u(x))dx = lim gn(u(x))dx
{x:u(x)>0} {x:u(x)>0} n—=0 Jix:u(x)>0}

by the Monotone Convergence Theorem, [9, Theorem 27B] for example. Similarly,

/ G(u*(x))dx = lim g, (u™(x)) dx.
{x:u*(x)>0} n—=0 [fx:u*(x)>0}

But,

k
/{x:u(x)>0} gn(u(x))dx = Z aip({xeR™: u(x) €A;})

i=1
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and
k
/ g () dx =3 an(fr e RY: u'(v) € AL},
{x:u*(x)>0} =1
so the result now follows from Lemma 4.1. O

PrROPOSITION 4.3. Let G: [0, ) — [0, 00) be a Borel measurable function.
(1) We have

/G(u(x)>dx>/c(u*(x))dx for all uc Fy.

(i) If G(0) =0 then
/G(u(x))dx = /G(u*(x))dx for all u € Fy.
Proof. First we note that

/G(u(x)) dx = /{x:u(x)>0} G(u(x))dx + G0)u({x € R": u(x) = 0})

where it is understood that G(0)u({x € R": u(x) = 0}) = 0 when G(0) = 0, even
if p({x€R": u(x) =0}) = co. Similarly

/G(u*(x))dx = /{x:u*(x)>0} G(u*(x))dx + G0)u({x € RY: u*(x) = 0}).

Thus part (ii) follows immediately from the preceding lemma. Suppose now
that G(0)>0. If p({x€R": u(x) =0}) = oo, then [G(u(x))dx =00 and the
inequality (i) certainly holds. If w({x€R": u(x) =0}) <o, we claim that
p({xeR": u*(x) =0}) =0 and so the inequality (i) follows from the lemma.
To justify our claim, we observe that if z € {x € R": u*(x) = 0}, then u*(x) =0
for all x € RV\B(0,|z|). Hence,

p({fx e RY: u”(x) > 0}) < p(B(0,]z])) < o0
and
p({x e RY: u*(x) = 0}) = 0.
But, by Proposition 2.4(i), we know that

p(fx € RY: w*(x) > 01) = p({x € RY: u(x) > 0})
and so
. p{x e RY: u(x) = 0}) = o

RY = {x e R": u(x) >0} U {x € R": u(x) = 0}.

Thus if p({x€R": u(x) =0})<oo, we must have {xecR":u*(x)=0}=0,
establishing the claim. O
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REMARK. The proof of part (i) shows that in fact

/G(u(x))dx>/G(u*(x))dx
whenever G(0) >0 and u € Fyy is such that

/G(u(x))dx<00 and 0 <pu({xcR": u(x) =0}).

We now extend the second part of this result to non-positive functions G in the
usual way. Let

G_(s) = max{G(s),0} and G_(s) = max{—G(s),0}.

If G: [0, 0) — R is a Borel measurable function, then G, and G_ are both non-
negative Borel measurable functions on [0, c0) and G =G, — G_.

THEOREM 4.4. Let G:[0,0) — R be a Borel measurable function with
G(0) = 0. Then the equality (4.1) holds for all u € Fy such that at least one of
the integrals

/G+(u(x))dx or /G(u(x))dx is finite.
Proof. For all u € Fy, the previous result shows that

/Gt(u(x))dx: /Gi(u*(x))dx.

If [G,(u(x))dx< oo, it follows that [ G (u"(x))dx < oo and so we can write

/G(u(x))dx: /G+(u(x))dx—/G_(u(x))dx
:/G+(u*(x))dx—/G_(u*(x))dx
:/G(u*(x))dx.

The case where [G_(u(x))dx < oo is similar. O

5. Composition with a Carathéodory function

We begin by recalling the notion of Carathéodory function in the context of
our discussion.

DEFINITION 5.1. A function F: (0, 00) x [0, 00) — R is called a Carathéodory
function when
(1) F(-,s): (0,0) — R is measurable on (0, ) for all s =0, and
(2) F(r, +): [0,0) — R is continuous on [0, o0) for all r € (0, ©)\T' where T
is a subset of (0, ©) having one-dimensional measure zero.

An important property of such a function is that the composition
x+— F(|x|,u(x)) is measurable on R" for every function u € Fy. (See [6,
Theorem 2.1], for example.) In fact, for u € Fy there is a set A C RY such that
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w(A) =0 and 0<u(x) <o for all x€ RY\A. Thus F(|x|, u(x)) is defined and
measurable on R\ [A U {0}] and consequently, it is measurable on R".

PROPOSITION 5.1. Let F: (0,00)x[0,0) — R be a Carathéodory function
such that

(i) F(r,0) =0 for all r € (0, 0)\T,
(ii) for all r,R € (0, 0)\T with R=r and all a, b € |0, ) with b = a,
F(R,b) — F(R,a) — F(r,b) + F(r,a) <0,
(iii) F(r,+): [0, 00) — R is non-decreasing on [0, o) for all r € (0, 00)\T.
Then the inequalities

0</F(|x|,u(x))dx</[7(|x

hold for all u € Fy.

,ut(x))dx

REMARK 1. Note that the properties (i) and (iii) imply that
F(r,s)=0 forall r€ (0,0)\T and all s=0 (5.1)
and that (i) and (ii) imply that
F(r,s)=F(R,s) forall r,Re (0,00)\I with R=r and all s =0. (5.2)
Thus F(r, s) is non-negative, non-increasing in r and non-decreasing in s.
REMARK 2. Under the hypotheses of the proposition, the function
F(|+|,u"(+)) is easily seen to be Schwarz symmetric. However, except in trivial
cases, it is not the symmetrization of the function F(|+|, u(+)). The subsequent

theorems in this section deal with weaker assumptions on F under which it is no
longer true that F(|+|, u™(+)) is Schwarz symmetric.

Proof. 'We begin by establishing the inequality (1.3) for elements of Ey. Let u
be a function of the form (3.1). Then

k
[ Falu)ax= [ Fllal.apa o dx (53)
i=0
since F(|x],0) =0 and A;NA; =0 for i #j. Now by (3.4),
k k
D F(lxla)xa,(x) = gi(x)xs, (x) (5.4)
i=0 i=0

where S; = |Jj_oA; and g;(x) = h;(|x|) with
hi(r)=F(r,a;) —F(r,a;,,) fori=0,1,... k.

Recall that a;,,; = 0. Using the properties (ii) and (iii) of F, we see that, for
i=0,1,...,k, the functions h; have the following properties:

(i) h;(r)=0 for r € (0, 00)\TI and
(ii) h;(r) = h;(R) for all r, R € (0, 00)\T with R=r.
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Now we modify /; on a set of measure zero by introducing
H;(r) = sup{h;(R): R>r and R € (0, ©)\T}.

It follows that H; is non-negative, non-increasing and right-continuous on (0, o)
and that there is a subset ® of one-dimensional measure zero such that I' c ® and
H;(r) = h;(r) for all r € (0, c0)\®. Setting

G;(x) = H;(|x]) —L; for xe R¥\{0},

where L; =1lim,_ , H;(r), we see that G; is Schwarz symmetric and that
G,=g —L;ae. on RY. Recalling (5.3) and (5.4), we have

/F<|x|,u<x>>dx=i/ )+ Lixs, (1) dx
and by Proposition 3.3, _
[ Gitoxs x| Gites) ) dx
where G; = G, by part (iii) of Proposition 2.4 and (xs,)" = xp, by (3.7). Thus

/F(|x|, dx</z x) + Ly]xg, (x dx—/Zg, X)xs,(X)dx  (5.5)

since u(S;) = n(B;).
On the other hand, using the notation introduced in (3.3), we have

[ Fslawnax= [ #(1x izk;aixCi<x>)dx= / izk;F<|x|,a,->xC,.<x>dx

since F(|x[,0) =0 and C;C; =0 for i # j. Now by (3.4),

k k
Y F(lxladxe®) =Y gix)xs, ()
i=0 i=0

since B; = U}:O C; where the functions g; are the same as in (5.4). Hence

[l @yar= [ 3 st dx (56)

Comparing (5.5) and (5.6), we see that (1.3) holds for all u € Ey. Using
Proposition 3.2 and Proposition 2.4(v), the Monotone Convergence Theorem (see
[9, Theorem 27.B], for example) yields the same inequality for all u € Fy. U

For dealing with the energy functional of a differential equation like (1.1), we
formulate the following result which is an immediate consequence of
Proposition 5.1.

CoROLLARY 5.2. Let f:(0,00)x%x[0,0) — R be a Carathéodory function
such that

(i) f(r,s) =0 for all r € (0,00)\T and all s =0,
@) f(r,s) =f(R,s) for all r,R€ (0,0)\T with R=r and all s=0.
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Let F: (0, ) x [0, 00) — R be such that

F(r,s) /frtdt for r€ (0, 0)\T and s = 0.
Then the inequality (1.3) holds for all u € Fy.

We now show how the hypotheses of Proposition 5.1 can be relaxed by making
use of (4.1). Recall that an extended real-valued function w: RY — R is said to
be integrable if both of the functions w, and w_ have a finite integral over RY.

THEOREM 5.3. Let F: (0,0)x[0,00) =R be a Carathéodory function
such that

(i) F(|x|,0) is integrable on R,
(ii) for all r,R € (0, 0)\T with R=r and all a, b € |0, ) with b = q,

F(R,b) — F(R,a) — F(r,b) + F(r,a) <0,
(iii) there exists a continuous function G: [0, ©) — R such that G(0) =0 and
lim {F(r,a) — F(r,b)} < G(a) — G(D)

for all a, b €0, ) with b= a.
Then the inequalities

—oo</F(|x|,u(x>)dxs/F(|x|,u*(x))dx
hold for all u € Fy such that G(u) is integrable on R".

ReEMARK 1. The assumption (ii) in this result is the same as in Proposition 5.1
and it implies that, for fixed a,b € [0, 00) with b=a, {F(r,a) — F(r,b)} is a
non-decreasing function of r. Thus the limit in (iii) exists and

{F(r,a) — F(r,b)} < rlLIrgo{F(r, a)— F(r,b)} forall re (0, 00)\T.

REMARK 2. Iflim,_, o F(r, s) = F*(s) exists for all s =0 and F™: [0, 0) — R
is a continuous function, then the condition (iii) is satisfied by setting G = F*.
Proof. We consider the function ®: (0, 00) x [0, 00) — R defined by
®(r,s) =F(r,s) —F(r,0) — G(s).

This is a Carathéodory function which satisfies the hypotheses (i) and (ii) of
Proposition 5.1. But, for r € (0, 0)\T" and a, b € [0, ©) with b = a,

®(r,a) — ®(r,b) = F(r,a) — F(r, b) — {G(a) — G(b)}
< rlerlo{F(r, a)—F(r,b)} —{G(a) —G(b)} <0

by the monotonicity of F(r,a) — F(r,b) and the assumption (iii). Thus we see
that & satisfies all the conditions of Proposition 5.1 and so

OS/<1>(|x|,u(x))de/<I>(|x|,u*(x))dx for all u € Fy,
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os/}mu
s/ﬂﬂﬂmmm—Fmam—Gw%mhh

for all u € Fy. But, by Theorem 4.4,

—00</G(u(x))dx:/G(u*(x))dx<oo

that is to say,

»u(x)) — F(|x],0) — G(u(x))} dx

for all u € Fy such that G(u) is integrable and, by hypothesis

—00 < /F(|x|,0)dx< 0o,

The conclusion follows. O

The remainder of this section deals with functions u in the Lebesgue spaces L” (R")
for some p € [, ), and with situations where F(|x|, u(x)) and F(|x|, u"(x)) are
both integrable on R”.

THEOREM 5.4. Let F:(0,00)x[0,0) — R be a Carathéodory function
such that:

(1) the condition (i) of Theorem 5.3 is satisfied, and

(ii) there exist a measurable function a on (0, ) and constants b =0 and
p =1 such that

|F(r,s)| <a(r)+bs" forallr>0and s=0
where

/ a(r)yr™ ldr < co.
0

Then
—m</ﬂxﬂgmus/nu

forall ue LY, ={u € Fy: [u(x)’ dx < o}.

,ut(x))dx < oo

REMARK 1. The set Lf consists of the non-negative elements in the usual
Lebesgue space L”(R™). As is well known, the condition (i) is necessary and
sufficient for ensuring that the composition operator u+— F(|+|,u(+)) maps
LP(RY) into L'(R").

REMARK 2. To obtain the conclusion for a given element u € L” rather than
for all such functions, the condition (ii) can be relaxed and this will be used when
we deal with functions u defined on subsets of R" in §6. Suppose that Q is a
measurable subset of [0, ) such that

u(x) =u*(x) =0 for all x € R" such that |x| & Q.
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Then the hypothesis (ii) can be replaced by
(i), F(-,0)=0 and there exist a measurable function A on Q and constants
b=0 and p =1 such that
|F(r,s)| <A(r) +bs? forall r€Qand s=0

where

/A(r)rN Ldr < oo,
Q

Proof. The assumption (ii) ensures that the function F(]|-|,0) is integrable on
R". This means that it is enough to establish the result for the function F — F(| - |,0)
rather than for F itself. Consequently, we assume henceforth that F(-, 0) =0.

Let

K = {u € Ey: u has compact support}.
We first prove the result for elements of K and then we extend the conclusion to
all of L.
Let u € K be fixed. There are constants 7 ¢ I" and S (depending on u) such that
u(x)=u"(x) =0 for|x|=T
and
0 < max{u(x),u”(x)} <S forall |[x|<T.
We define a function ®: (0, 00) x [0, ) — R as follows:
F(r,s) ifre(0,T]and s<S§,
F(T,s) ifre(T,o)ands<S§,
®(r,s) = )
F(r,S) ifre(0,T]ands>S,
F(T,S) if re(T,o0) and s> S.
Clearly ®: (0, ) x [0, 00) — R is a Carathéodory function with ®(r,0) =0 and
®(r, +): [0, 0) — R is continuous for all r € (0, ©)\T'. Furthermore, ® satisfies

the condition (ii) of Theorem 5.3.
Now set

F(T,s) fors<S§,
G(s) =
F(T,S) fors>S.

Clearly G: [0, ) — R is a continuous function and G(0) =0. Also, for all
a,b e |0, ),

rlergo{é(r, a) —®(r,b)} = G(a) — G(b),
so the function & satisfies the condition (iii) of Theorem 5.3. Furthermore, since
u € K, we see that G(u) is integrable on RY. Thus & satisfies the hypotheses of
Theorem 5.3 and we obtain

—00</<I>(|x ,u(x))dx$/<l>(|x

But max{u(x), u™(x)} < S and (suppu) U (suppu”) < B(0, T), and so this inequality

,u”(x))dx.
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can be written as

/F(|x|, u(x)) dx < /F(|x Ju(x)) do.

This establishes (1.3) for all elements of K.
Now consider an arbitrary element u € L”.. First we observe that

J1ECstuldn= [Halxh +blucol} ax< o

Furthermore, by Proposition 3.2, there is a sequence {u,}cEy such that
O0<u,<u,., and u, —u on R". Let v, = UyXp(0,n)- Now, for all neN,
v, € K and we have

0<v,<v,.;<u and v, —u onR"
In particular,

0=<|u—nv,|"<2"u’

and so by the Dominated Convergence Theorem, ||v, — u||, — O where || - ||, denotes
the usual norm on the Banach space L”(R"). By the basic result about Nemytskii
operators (see [6, Theorem 2.3], for example), the assumption (ii) implies that

JALE

(Note that, in the context of (ii),, ,(x) = 0 for all x € R" such that |x| ¢ Q.) Hence,

—00</F(|x|,u(x))dx:nlijrgo/Fﬂx,7),,(x))dx<00. (5.7)

,u(x))]dx<oo and / |F(|x],2,(x)) — F(]x], u(x))|dx — 0.

By Proposition 2.4(v),
N
0<9,<v,,;<u" and v, —u" onR",

and, by Proposition 4.3,

/<u*<x))"dx - /(u(x))pdx < oo,

As before, the Dominated Convergence Theorem shows that ||v, —u"||, — 0 and
so the continuity of the Nemytskii operator yields

—oo< /F(|x|, W (x)) dx = ’11ergo/F(|x|,v;(x))dx< . (5.8)

But we have established that
/F(|x|,v,,(x))dxs/F(|x|,v;(x))dx for all (5.9)
since v, € K. Combining (5.7)—(5.9) completes the proof. ]

We can now state a variant of Corollary 5.2 which is well adapted to dealing
with energy functionals on Sobolev spaces.
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COROLLARY 5.5. Let f:(0,0)x[0,0) — R be a Carathéodory function
such that

(i) there exist a measurable function a on (0, 00) and constants b =0 and
p =1 such that
|f(r.s)| <a(r)+bs”"'  forall r>0and s=0
where foooa(r)qu_ldr< oo with 1/qg+1/p=1if p>1 and a(r)=0 if
p =1 (in this case f is bounded),
@) f(r,s) =f(R,s) for all r,R€ (0,00)\T with R=r and all s=0.
Let F: (0, 0) X [0, ) — R be such that

F(r,s) = /Sf(r, 1)dt forre (0,00)\T and s=0.
Then i

—oo</F(x|,u(x))dxs/F(|x|,u*<x))dx<oo
holds for all u e L.

For smooth functions the condition (ii) in Proposition 5.1 and Theorem 5.3 is
essentially equivalent to the condition d,d,F < 0. This observation yields the
following result.

THEOREM 5.6. Suppose that F has the following properties:

(i) FeC*([0,0)x[0,00)) with 9,0, F(r, s) <0 for all r,s =0;

(ii) there exist a measurable function a on (0, ) and constants b =0 and
p =1 such that

|F(r,s)|<a(r)+bs” forallr>0and s=0
where [3° a(r)r" ™' dr < oo,

Then
—00</F(x|,u(x))de/F(|x|,u*(x))dx<00

for all ue L.

Proof. The hypotheses of Theorem 5.4 are clearly satisfied. O

6. Symmetrization on finite subsets of RV

So far we have considered only the symmetrization of functions defined on all
of RY. However it is easy enough to derive results about functions defined on
bounded sets from this case.

More generally, let w be a measurable subset of R" which has finite measure
and let w" =B(0,T). Let Fy(w) denote the set of all extended real-valued
functions u such that

(i) u is measurable on w and
(i1)) 0=su<oo ae. on w.
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Clearly, f|, € Fy(w) for all f € Fy and, conversely, given any f € Fy(w) we have
f € Fy where f is defined by

~ [fx) ifx€w,
f_{o if xe RV \w. (6.1)

The Schwarz symmetrization of an element of Fy(w) can be defined as follows.

DEFINITION 6.1. Given u € Fy(w), the Schwarz symmetrization of u is the
function u” defined on w” by

w = [(u)]

where % is the extension of u to all of R" defined by (6.1).

w*

Let us note some important properties of u™.

LEMMA 6.1. For any u € Fy(w),
(i) ()" (x) = 0 for all x € R"\w",

(i) for all t=0, p({x € w: u(x) >1}) =p({x€w™ u*(x) >1}), and

(i) p({x € w: u(x) =0}) =p({x€w™ u"(x) =0}).

Proof. (i) For all =0, {x€ R": ui(x) >} = {x € w: u(x) >} and so

dy(t) = p({x eR™: 0(x) > 1}) < p(w) = Vy T

Hence, hy(s) =0 for all s=T. Thus (u)*(x) =0 for all x€ B(0,T) = w".

(i1) For all t =0,

{x€w ux)>1} = {xeR": u(x) > 1}
and, by part (i),
xeRY: (@) (x) >t} = {xcw™ (W) (x)>1} = {xcw®: u(x)>1}.
But, by Proposition 2.4,
p({x eRY: () > 1) = p({x e RY: (@) (x) > 1)),

yielding the desired result.
(iii)) We have

w({x € o u(x) = 0})

w\{x € v u(x) >0})
= p(w) —p({x € w: ux)>0})
and similarly,
pfrew™u’(x) =0}) = plo’) —p({xew™ u’(x) > 0}).
The result follows using part (ii). O

REMARK. As we showed using the function (4.3), the equality in part (iii) can
fail when w has infinite measure.

For functions u € Fy(w) we can now obtain results analogous to those already
established for functions u € Fy. We give some typical examples. The first one
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deals with composition with a Borel function. In keeping with Lemma 6.1(iii), it
turns out that the restriction G(0) =0 which we required in §4 is no longer
necessary. Here we recover the result in the form established in [13]. See also
[11] for the case where G is continuous.

THEOREM 6.2. Let G: [0,0) — R be a Borel measurable function. Then
the equality

AGMMM—AGMMMx 6.2)

holds for all u € Fy(w) such that at least one of the integrals [, G, (u(x))dx and
J. G- ))dx is finite.

Proof. Let g(s) = G(s) — G(0). It follows from Theorem 4.4 that

/ ¢(@(x)) dx = / ¢((@)' (x)) dx (6.3)

provided that at least one of the integrals [g, (u(x))dx and [g (u(x))dx is
finite. But

g.(s) = max{G(s) — G(0), 0} < max{G,(s) + G_(0), 0} = G, (s) + G_(0).
Therefore, since g(0) =0,

[e-@yar= [ g utwyar= [ 6 wm)dx+ 6 O

Thus, if [, G, (u(x))dx is finite, then [g,(u(x))dx is also finite and we can
conclude that (6.3) holds. That is to say, using Lemma 6.1(i), we have

L et dx = [ gliydx= [ oy @)dr= [ sy )ds

since g(0) = 0. Hence

[16) - 60y ax= [ gt as

— [ sty @ax= [ {6(@) () - GO)}dx

which yields (6.2) in the case when fw G_(u(x))dx is finite.
If [, G (u(x))dx = oo, then [, G_ (x))dx is finite. Noting that

¢ (s) = max{~G(s) + G(0), 0} = max{G_(5) + G, (0), 0} = G_(s) + G, (0),
we find that
[e@yax= [ ¢ wwyax= [ 6 @e)dr+ 6. 0uw <.

and the proof can be completed as in the previous case. O

THEOREM 6.3. Let F satisfy the conditions (ii) and (iii) of Theorem 5.3 and
suppose that F(|x|,0) is integrable on w and on ™ with

Lmumm<£fm,

0) dx. (6.4)
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The inequalities

—00</F(|x ,u(x))dx$/ F(|x|, u* (x)) dx
hold for all u € Fy(w) such that G(u) is integrable on w.

ReEMARK. The condition (6.4) is clearly necessary. Furthermore, the restriction
that G(0) = 0 in condition (iii) of Theorem 5.3 now involves no loss of generality
since we can replace G by G — G(0) without influencing the integrability of G(u).

Proof. Setting ®(r,s) = F(r,s) — F(r,0), we see that & satisfies all the
hypotheses of Theorem 5.3 with the same function G. Thus

/G+(ﬂ(x))dx:LG+(u(x))dx

showing that G (i) is integrable on R". Hence, by Theorem 5.3,

< / B(|x], () dx = / &(|xl. ()" () dx

which can be written as

< / {F(x], u(x)) - F(|x] 0)} dx = / (I (@) - F(lx, 0)} dx.

This yields the desired inequality since F(|x|,0) is integrable on w and w” and
(6.4) holds. O

Finally we note that we can easily recover the result in [16] concerning smooth
functions ¥ which we mentioned in § 1. The hypothesis
F(r, s) is non-increasing with respect to r,
which was added in the Corrigendum to [16], implies that our condition (6.4)

is satisfied.

THEOREM 6.4. Let F: (0,00)%x[0,00) =R be a Carathéodory function
satisfying (6.4) and the condition (ii) of Theorem 5.3. Let Q= {|x|: x € w U w"}
and suppose that there exist a measurable function A on Q and constants b =0
and p = 1 such that

|F(r,s)| <A(r)+bs” forallr€Qand s=0
where
[ZA(r)er dr < oo,
Then
—00 < /F(|x|, u(x))dx < / F(|x], u™(x))dx < o
forall ue Lf (w) ={ueL’(w): u=0 ae. on v}

Proof. Let ®(r,s) =F(r,s) — F(r,0). For any u€ L’ (w), it is clear that
uelL” and that

u(x) = ()" (x) =0 for all x€ R" such that |x| ¢ Q.
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Hence & satisfies the condition (ii); that was introduced in the Remark 2
following Theorem 5.4. But ®: (0, 00) x [0, 00) — R is clearly a Carathéodory
function satisfying the condition (i) of Theorem 5.4. Hence,

—oo</<1>(|x|,zz(x))dxs/<1>(|x|, ()" (x)) dx < .

But, since ®(r, 0) =0, we find that

/ B(|x],7(x)) dx = / {F(x] u(@) — F(x].0)} dx
and, using Lemma 6.1, we have

/ &(|x]. (7)) dx = / {F(lx ' (@) = F(1x].0)} d.

Now |F(r,0)| <A(r) and so F(|x],0) is integrable on w and on w". Using (6.4),

we have the required result. O
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