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Accepted 2009 February 9. Received 2009 February 4; in original form 2008 December 3

S U M M A R Y
The analytical transient acoustic solution and dispersion characteristics for the double-porosity
model are obtained over the whole frequency range for a homogeneous medium. The solution is
also obtained by approximating the double porosity model with a uniform poro-viscoacoustic
model and then constructing the transient response. The comparison between the results of
the two models shows the likely validity and limitations of numerical solutions using a poro-
viscoacoustic model to represent a double porosity medium in the heterogeneous case. Our
calculations show that the dissipation by local mesoscopic flow of the double porosity model
is very hard to fit over the entire frequency range by a single Zener element. However, since
seismic exploration is normally restricted to a fairly narrow frequency band, this means that
for frequency-dependent material properties, such as attenuation, the values around the centre
frequency of the source will primarily determine the wave propagation characteristics. We
choose the relaxation function that just approximates the dispersion behaviour of the double
porosity model around the source centre frequency. It is shown that if the frequency is much
lower than the peak attenuation frequency of the double porosity model, then wave propagation
can be well described by the poro-viscoaoustic model with a single Zener element. For most
water-filled sandstones having a double porosity structure, this holds true across the seismic
frequency range. The transient solution for the heterogeneous double porosity medium is
numerically obtained by a time splitting and Fourier pseudo-spectral staggered-grid method.
As illustrative examples, the 2-D wavefield in a two-layer, water-saturated double porosity
model are approximated by poro-viscoacoustic and poro-viscoelastic methods, respectively.

Key words: Numerical solutions, Elasticity and anelasticity; Seismic attenuation; Wave
propagation.

1 I N T RO D U C T I O N

It is well known that Biot theory (Biot 1956, 1962) of porous-media acoustics ignores all wave-induced flow at mesoscopic scales, that
is, scales greater than the grain size but less that the wavelength. Biot’s theory used in homogeneous media cannot explain the high level
of attenuation observed in natural porous media such as fluid-filled sands or sandstone over the seismic frequency range (10–200 Hz).
This attenuation is successfully described by the mesoscopic heterogeneity models (e.g. White 1975; Dutta & Odé 1979a,b; Gurevich
& Lopatnikov 1995; Gelinksy & Shapiro 1997; Johnson 2001; Carcione 2007). By applying the volume averaging theory to the local
Biot poroelastic law, Pride & Berryman (2003a,b) developed the double-porosity, dual permeability (DPDP) model. It provides a theoret-
ical framework, including the field equations governing the linear acoustics of composites with two isotropic porous constituents (phase
1 and phase 2), to model acoustic wave propagation through heterogeneous porous structures. In simple terms, it is an internal fluid
transfer model, which is introduced to describe the flow between phase 1 and phase 2 in this theory, which provides an important en-
ergy dissipation mechanism for explaining the high attenuation at seismic frequencies. Unlike Darcy’s fluid flux, the internal transport
is a mesoscopic scale flow, which does not depend on the pore pressure gradient but the difference between the average fluid pres-
sures. Pride et al. (2004) show that this theory can also be designed to approximate the patchy-saturation model (Johnson 2001) and the
squirt-flow model (Dvorkin et al. 1994), which explain attenuation at ultrasonic frequencies. Under the assumption that phase 2 is en-
tirely embedded in phase 1, the double-porosity theory is reduced to the effective Biot theory with complex frequency-dependent elastic
moduli, through which the internal mesoscopic flow is incorporated. This theory provides good agreement with actual measurements of
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attenuation over the seismic and ultrasonic frequency bands (Pride et al. 2004). However, this theory is limited to isotropic macroscopic
media.

In this paper, we refer to the effective Biot theory as the double porosity theory. Obviously, double porosity theory not only provides a
more general model to describe the attenuation mechanism but also the governing equations to calculate the averaged wave fields in porous
media having mescoscopic heterogeneities. Otherwise, it is very difficult to numerically model a macroscopic wave in a porous medium (of
dimensions hundreds to thousands of metres), having mescoscopic heterogeneities (with a size of several millimeters).

Carcione & Quiroga-Goode (1996) analytically solved the Biot acoustic field equations in homogeneous porous media in the frequency
domain and then applied an inverse Fourier transformation to get the waveform in the time domain. Comparing the governing equations of
the double porosity theory with those of Biot theory, we find the only difference is that the moduli of the double porosity theory are complex
and frequency-dependent. The similarity between the two theories implies that the field equations of the double porosity theory can be solved
analytically in homogeneous double porosity media, in both the frequency and the time domains. Here, the word ‘homogeneous’ means at
the macroscopic level. The analytical solution is very important for understanding the influence of the material properties of double porosity
media. This includes the effects of poroelastic mechanics of the host material (phase 1), the volume fraction and size of inclusions of phase
2, the fluid viscosity, etc. on the velocity and the inverse quality factor (attenuation) of the composite medium. Furthermore, the analytical
solutions provide a means of checking the numerical simulation of waves in double porosity media.

It is very difficult to analytically solve the field equations in heterogeneous double porosity media. This requires a numerical approach.
Although there are several methods to numerically solve the wave equations, like the finite element method and the finite difference method
(see the review article by Carcione et al. 2002), wave propagation in fluid-filled porous medium presents special difficulties for modelling
because of the interaction between the solid frame and the pore fluid. For example, the equations are stiff and the moduli are frequency-
dependent. This implies energy dissipation, and the solutions should be expressed as convolution integrals in the time domain. It is worth
briefly reviewing some numerical approaches for modelling waves in porous media.

The presence of the Biot slow P wave makes Biot’s differential equation stiff at low frequencies (Carcione & Quiroga-Goode 1995), since
the slow P wave is actually diffusive, having a very small wavelength whereas the normal or fast P wave has a large wavelength. Thus, it is
very difficult to choose an appropriate time step for both P waves. To circumvent this difficulty, Carcione & Quiroga-Goode (1995) partitioned
the governing equation into two sets of differential equations, one stiff and the other non-stiff. The splitting technique is to solve the stiff
part analytically and then the non-stiff part by the fourth-order Runge-Kutta algorithm. Two energy dissipation mechanisms have been well
described by the standard linear solid or Zener model, which allows the convolution integral to be replaced by memory equations (according to
Carcione 1996, 1998). One refers to Biot’s viscodynamic operators in the high frequency range, or the Biot mechanism, and the other denotes
squirt flow. Since the Biot attenuation mechanism is not related to bulk deformation, the Zener model, which generalizes compressibility to a
relaxation function, is not appropriate to describe the Biot complex moduli (see Carcione 1998). Instead, the compressional wave attenuation
and velocity dispersion are matched directly by using relaxation functions associated with each wave mode (Carcione 1996, 1998). Carcione
(1998) also shows that a homogeneous porous medium can actually be modelled by a single-phase viscoelastic medium and that only one
relaxation mechanism (or Zener relaxation function) for each viscoelastic modulus is enough to describe the moduli of the porous medium.

In parallel with the above issue are the questions as to whether the internal mesoscopic flow model can be represented by one Zener
element, and how one should solve for wave propagation in heterogeneous double porosity media. To the best of our knowledge, there is
no paper providing solutions to the wavefields in heterogeneous, double porosity media. However, the current double porosity model (Pride
et al. 2003, 2004) does not include the shear wave response. It is acoustic response only. There is no current analytic model describing shear
wave energy attenuation due to mesoscopic inhomogeneities in fluid-saturated porous medium. Some experiments (Jones 1986) show that
the intrinsic attenuation of shear waves could be of a similar magnitude to that of compressional waves in fluid saturated porous media. This
means that acoustic wave modelling is not realistic. Therefore, we apply a poro-viscoelastic approach to compensate for this deficiency. As a
special case of poro-viscoelasticity with zero shear response, the poro-viscoacoustic approach can be compared with the analytical (acoustic)
solution of double porosity theory to assess its validity and limitations.

In this paper, we first derive the phase velocity and the specific quality factor dispersion relations for the double porosity model and the
poro-viscoacoustic model in which the complex modulus matrix is replaced with a Zener relaxation function. We then develop an analytic
transient wave field solution for both models under the acoustic approximation, which allows a comparison of the phase velocity and intrinsic
attenuation between the two models. Finally, the 2-D wavefield in a two-layer, water-saturated double porosity model are approximated by
poro-viscoacoustic and poro-viscoelastic methods, respectively.

2 T H E A NA LY T I C A L S O LU T I O N F O R A H O M O G E N E O U S M E D I U M

2.1 Double porosity model

The double porosity model (or effective single-porosity Biot theory developed by Pride et al. 2003, 2004) includes constitutive equations,
the linear transport law and the linear momentum conservation law. Under a time dependence ofe −iωt , the frequency-domain constitutive
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equations are

1

iω

[
∇ · v
∇ · q

]
=
[

a∗
11 a∗

12

a∗
12 a∗

22

][
pc

pf

]
, (1)

∇v + (∇v)T − 2
3 ∇ · vI = −iωσ D

/
[G(ω) − iωg(ω)]. (2)

Here v is the average particle velocity of the solid grains, q is the macroscopic fluid flux through phase 1, pc is the average total pressure,
p f is the average fluid pressure within phase 1. σ D is the average viscous deviatoric stress tensor acting on the solid grains; it is defined as
σ D = σ − pcI, where σ and I represent the average total stress tensor and the second-order unit tensor respectively; G(ω) and g(ω) are both
real functions that are Hillbert transforms of each other. At the low-frequency limit, G(ω) corresponds to the drained-shear modulus of the
composite. The coefficients a∗

mn(m, n = 1, 2)depend on material parameters and frequency ω. They are listed in Appendix A. However, the
DPDP model to date is entirely acoustic and, so, G(ω) and g(ω)are not given in Appendix A.

The linear transport law can be stated as

∇ pf = iωρf v − η

κ∗(ω)
q, (3)

where ρ f and η are the density and the viscosity of the pore fluid, respectively, and κ∗ (ω) is the dynamic permeability of the composite
medium. Pride et al. (2003a, 2004) suggested taking the harmonic mean of the constituents as the best way to approximate it:

1

κ∗(ω)
= 1 − ν2

κ1(ω)
+ ν2

κ2(ω)
. (4)

Here, κ 1(ω)and κ 2(ω) are the dynamic permeabilities (Johnson et al. 1987) of phase 1 and phase 2, respectively, whereas ν 2is the volume
fraction of phase 2.

The conservation of linear momentum equation is expressed as

∇ · σ D − ∇ pc = −iω (ρv + ρf q) , (5)

where ρ is the total average density of the composite.
Eqs(1)–(3) and (5) are the governing equations in the frequency-domain for the double porosity model with a fully embedded phase 2.
Since the analytic transient solution can be easily obtained for the acoustic case, we firstly set to zero the shear response in the above

equations. The acoustic wave dispersion characteristics are also easily obtained. Taking the divergence of eqs.(3) and (5), combining with
eq.(1), eliminating the v and q terms, and adding in a source force term S, we obtain

� (P − S) + ω2D · P = 0, (6)

where

P =
[

pc

pf

]
, S =

[
S
Sf

]
and D = � · M, (7)

with

� =
[

ρ ρf

ρf − η

iωκ∗(ω)

]
, M =

[
a∗

11 a∗
12

a∗
12 a∗

22

]
. (8)

Comparing eq. (6) with eq. (26) in the paper by Carcione & Quiroga-Goode (1996), we find that there are some differences. On one
hand the a∗

i j elements of the M matrix are complex frequency-dependent values (see Appendix A), whereas the corresponding elements in
Carcione’s eq. (26) are real values. On the other hand, the effective permeability κ∗ (ω) in the � matrix of eq. (8) is defined by eq. (4),
and it’s frequency response depends on the combined response of both porous phases following the Johnson model (Johnson et al. 1987).
Eq. (4) is assumed to hold true over the full frequency range (low and high frequencies), whereas Carcione & Quiroga-Goode (1996) use
the simplification of η

κ∗(ω) , given by Biot (1962b) at low frequency and that given by Auriault et al. (1985) at high frequency, respectively.
Following their approach, eq. (6) can be solved to get the characteristic equation

det

[
D −

(
k

ω

)2

I

]
= 0, (9)

where k = |k|, and k is the complex wavevector. The eigenvalues of D are given by

λ1(2) = 1

2

[
U ±

√
U 2 − 4 det M det �

]
(10)

and

U = ρa∗
11 + 2ρf a

∗
12 − η

iωκ∗ a∗
22. (11)

The complex velocities are given by

Vv = 1√
λv

, v = 1, 2, (12)

where v = 1, 2 corresponds to the fast and the slow P waves, respectively.
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The phase velocities cv and quality factors Q vcan be expressed as

cv(ω) =
(

Re

[
1

Vv

])−1

andQv(ω) = Re
[
V 2

v

]
Im
[
V 2

v

] . (13)

The slow wave is very difficult to measure because of the extremely high attenuation. In this paper, we focus on the fast wave.
Following Carcione & Quiroga-Goode (1996) and Carcione (2007), the transient solution of (6) is shown to be

P = G(D) · Sh(ω), (14)

where

G(D) = 1

λ1 − λ2
{[G(λ1) − G(λ2)] D + [λ1G(λ2) − λ2G(λ1)] I} , (15)

G(λv) = − [ω2λvg(λv) + 8δ(x)
]
v = 1, 2, (16)⎧⎨

⎩ g(λv) = −2iH (2)
0

[
ωr
√

λv(ω)
]

r = √
x2 + z2

for the 2D solution (line source), (17)

⎧⎨
⎩ g(λv) = 1

r exp
[
−iωr

√
λv(ω)

]
r =

√
x2 + y2 + z2

for the 3D solution (point source). (18)

Here H (2)
0 is the Hankel function of the second kind, S = [S, Sf ] is a constant vector and set as S = [1, 1] in this paper, whereas h(ω)

represents the source frequency spectrum.
The analytical solution in the time domain can be obtained by an inverse Fourier transformation.
For the following example, we choose the source to be a Ricker wavelet time function (from Carcione & Quiroga-Goode 1995):

f (t) = exp

[
−1

2
f 2
c (t − t0)2

]
cos [π fc(t − t0)] , (19)

where t0 = 3/ fc and f c is the centre frequency.
To compare with the numerical solutions in the following sections, the source term in eq. (14) should be written as

h(ω) = F( f (t))

iω
, (20)

where F( f (t)) means the Fourier transform of f (t).

2.2 Poro-viscoacoustic model

Based on the double porosity model, the poro-viscoacoustic model is obtained by replacing the complex modulus in the constitutive equations
by the viscoacoustic model (Carcione 2007).

Eq.(1) can be rewritten as

iω

⎡
⎣ pc(ω)

p f (ω)

⎤
⎦ =

⎡
⎣ a−∗

11 (ω) a−∗
12 (ω)

a−∗
12 (ω) a−∗

22 (ω)

⎤
⎦
[∇ · v(ω)

∇ · q(ω)

]
, (21)

where a−∗
i j (ω) is the complex modulus matrix and equal to the inverse of matrix a∗

i j (ω). The general form of eq. (21) can be rewritten in
terms of relaxation functions ψ mn (m,n = 1,2) in the time domain as

−
[

ṗc(t)

ṗ f (t)

]
=
[

ψ̇11(t) ψ̇12(t)

ψ̇21(t) ψ̇22(t)

]
∗
[∇ · v(t)

∇ · q(t)

]
. (22)

Here ∗ denotes time convolution. This equation is obtained by assuming homogeneous media; therefore the simulation based on the
equation has this approximation.

The Fourier transform of eq. (22) is:

iω

[
pc(ω)

p f (ω)

]
=
[

F(ψ̇11) F(ψ̇12)

F(ψ̇21) F(ψ̇22)

][∇ · v(ω)

∇ · q(ω)

]
, (23)

whereF denotes Fourier transformation.
We use the Zener model to represent the relaxation functions and investigate the discrepancy between this replacement and the double

porosity model.
The relaxation functions of the Zener model are given by Carcione (1996, 2007) as

ψmn = �

ψmn H (t), (24)
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where H (t) refers to the Heaviside (unit step) function, and

�

ψmn = ψmn(t = ∞)

[
1 − 1

Lmn

Lmn∑
l=1

(
1 − τ εl

mn

τ σ l
mn

)
exp

(
− t

τ σ l
mn

)]
. (25)

In equ 2.24 ψ mn(t = ∞) are the values of the relaxation function at infinite time, which will determine the velocity of propagation; Lmn

is the number of standard linear solid elements or Zener elements of ψ mn; τ εl
mn andτ σ l

mn are the relaxation times of the average particle velocity
and the average stress of the solid phase, which will determine the attenuation property.

The Fourier transform F(ψ̇mn) is

F(ψ̇mn) = ψmn(t = ∞)

Lmn

Lmn∑
l=1

1 − iωτεl
mn

1 − iωτσ l
mn

. (26)

Inserting eq. (26) into eq. (23) and comparing with (21) we find that:

a−∗
mn (ω) = F(ψ̇mn) (27)

or

a−∗
mn (ω) = ψmn(t = ∞)

Lmn

Lmn∑
l=1

1 − iωτεl
mn

1 − iωτσ l
mn

. (28)

Setting ω = 0 and ω = ∞ results in

a−∗
mn (ω = 0) = ψmn(t = ∞) (29)

and

a−∗
mn (ω = ∞) = ψmn(t = ∞)

Lmn

Lmn∑
l=1

τ εl
mn

τ σ l
mn

. (30)

By eq. (25),

ψmn(t = 0+) = ψmn(t = ∞)

Lmn

Lmn∑
l=1

τ εl
mn

τ σ l
mn

. (31)

This means

a−∗
mn (ω = ∞) = ψmn(t = 0+). (32)

Combining eqs (32), (29) and (31) gives,

a−∗
mn (ω = ∞) = a−∗

mn (ω = 0)

Lmn

Lmn∑
l=1

τ εl
mn

τ σ l
mn

. (33)

If the Zener model can fully describe the double porosity model, then both eq. (28) and (33) must be satisfied. However, as we will see
the Zener element cannot fully represent the double porosity model. On the other hand, since all the field quantities of double porosity theory
are defined as the volumetric average values, which require that the wavelength is larger than the size of mesoscopic heterogeneities, this
assumption will not be valid for infinite (very large) frequency. In the following calculations, all terms a−∗

mn (ω = ∞)should be replaced by
a−∗

mn (ω = 0)through eq. (33).
Eqs (23), (5) and (3) are the governing equations of the poro-viscoacoustic model in the frequency domain.
Taking the divergence of eqs (5), (3), combining with eq. (23) and eliminating v(ω) and q(ω), we obtain the dispersion equation for

homogeneous poro-viscoacoustic waves. It can be expressed by

�

[
pc

p f

]
+ω2

[
ρ ρ f

ρ f − η

iωκ∗(ω)

][
F(ψ̇11) F(ψ̇12)
F(ψ̇21) F(ψ̇22)

]−1 [
pc

p f

]
= 0. (34)

Adding in a source force term S to the above equation and rewriting it we get

� (P − S) + ω2�N−1P = 0, (35)

where S and �are defined in eqs (7) and (8). The other terms are defined by

P =
[

pc

p f

]
and N =

[
F(ψ̇11) F(ψ̇12)

F(ψ̇21) F(ψ̇22)

]
. (36)

The eigenvalues λ̂1,2 of �N−1 are given by

λ̂1,2 = 1

2 det (N)

[
Û ±

√
Û 2 − 4 det(�) det(N)

]
(37)

and

Û = ρF(ψ̇22) − ρ f

[
F(ψ̇21) + F(ψ̇12)

]− F(ψ̇11)
η

iωκ∗(ω)
. (38)

C© 2009 The Authors, GJI, 178, 375–393

Journal compilation C© 2009 RAS



380 X. Liu, S. Greenhalgh and B. Zhou

Similarly, the transient solution of (35) can be obtained by replacing λ1and λ2 in (17) and (18) with λ̂1and λ̂2, respectively. The hat
symbol ‘∧’ above λ implies the value of the poro- viscoacoustic model.

To fully represent the double porosity model means that the Zener elements should be chosen to make λ̂1,2 = λ1,2 over the whole
frequency range. Carcione (1998) shows that just one relaxation mechanism is enough for characterising each dissipation mechanism of
squirt-flow, or the Biot mechanism. However, in the double porosity model, because the local mesoscopic flow is included in the complex
modulus, we try the same Zener model for the averaged movements v and q of both the solid frame and pore fluid. Therefore we assume
a single Zener element with one set of relaxation times which meansτ εl

m1 = τ εl
m2 = τ εandτ σ l

m1 = τ σ l
m2 = τ σ . The relaxation times will be

determined by the peak inverse quality factor 1/Q( fp)and the frequency f pof the double porosity model, in the following way:

τ ε = 1

2π fp

[√
Q2( fp) + 1 + 1

]
andτ δ = 1

2π fp

[√
Q2( fp) + 1 − 1

]
. (39)

3 VA L I D I T Y A N D L I M I TAT I O N S

We now wish to examine the limitations and range of applicability of the poro-viscoacoustic model in double porosity media. We do so by
means of specific examples. Two sample double porosity materials are denoted as Material A and Material B. Both materials have sandstone
as the host rock (phase 1) and a volume fraction 3 per cent of sand as the inclusions (phase 2). Material A corresponds to a depth of 100 m
and material B to a depth of 10 m according to Walton theory and the Hashin and Shtrikman bound (see Pride et al. 2004 for details). The
material properties are listed in Table 1, and the physical meaning of the parameters is explained in Appendix A.

By means of eq. (13), the phase velocity c( f p) and attenuation 1/Q( fp) dispersion curves of the double porosity model for materials
A and B are computed and shown as the solid lines in Figs 1 and 2. In Fig. 1, for the material A, the peak inverse quality factor 1/Q( fp) is
0.0437 (Q ∼= 23) at a peak frequency f p of 14 788 Hz, at which the phase velocity c( f p) is 2957 m s–1. In Fig. 2, for material B, the peak
value of 1/Q( fp) is 0.0972 (Q ∼= 10) and f p is 4471 Hz, with a corresponding c( f p) of 2757 m s–1. The peak frequency f p refers to the
frequency at which the mesoscopic structure just has time to equilibrate in one cycle.

The phase velocities ĉ( fp) and inverse quality factors 1/Q̂( fp)of the visco-acoustic model can be obtained by inserting (39) into (26)
and using λ̂1 in (37) to replace λ1 in (12) and (13). The results are shown as the dashed lines in Figs 1 and 2 for homogeneous material A and
B, respectively. They have the same peak frequency f p as those of the solid lines.

Comparing the dashed line with the solid line in each figure reveals a significant discrepancy between the double porosity model and
poro-viscoacoustic medium. Although the peak inverse quality factors 1/Q̂( fp) and 1/Qp are very similar around the peak frequency f p, the
phase velocity ĉ is much different from c when the frequency is near f p. This means that the dissipation mechanism of local flow of the
double porosity model is very hard to be fit by one Zener element, which is inadequate to approximate the wave in the double porosity model
over the whole frequency range.

However, the wave pulse used in field seismic exploration is usually at lower frequencies, less than several hundred hertz and has a
relatively narrow band. This means that for frequency-dependent material properties, only the values around the centre frequency of the

Table 1. Material properties of the sample rocks and fluids.

Grain and fluid
Parameter Grains Parameter Water

Ks (N m−2) 3.9 ×10+10 K f (N m−2) 2.25 × 109

Gs (N m−2) 4.4 ×10+10 ρ f (kg m−3) 1000
ρs (kg m−3) 2650.0 η f (kg m−1 s−1) 0.001

Materials A and B (corresponding to 100- and 10-m-depth double porosity sandstone)
Parameter Phase 1 Phase 2 Parameter Composite

Kd j (N m−2) 2.23 ×1010 6.45 × 108 Kd (N m−2) 1.41 ×1010

2.23 ×1010∗ 2.04 × 108∗ 7.85 ×109∗
Gd j (N m−2) 2.20 ×1010 3.87 × 108 Gd (N m−2) 1.19 ×1010

2.20 ×1010∗ 1.22 × 108∗ 5.98 ×109∗
L1 (m) 0.0086 0.0086 ν2 0.03
φ j 0.20 0.36 φ φ = (1 − ν2)φ1 + ν2φ2

κ0 j (m2) 1.0 ×10–14 1.0 × 10–9 κ0(m2) 1/κ0 = (1 − ν2/κ01 + ν2κ02

V/S (m) 0.005

Note: The physical meaning of the various parameters is explained in Appendix A.
Subscript j denoting Phase 1 or 2
∗implying material B
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Figure 1. The dispersion curves of phase velocity c (upper) and inverse quality factor 1/Q (lower) for material A, which corresponds to water-filled double
porosity sandstone at 100 m depth, and having a concentration of 3 per cent sand inclusions. The solid lines are the results for the double porosity model. The
dashed lines, the dotted lines and the dash-dot lines are for porous-visco-acoustic material with a single relaxation function having a centre frequency of 50,
100 and 14 788 Hz (i.e. the peak attenuation frequency of the double porosity model), respectively.
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Figure 2. The dispersion curves of phase velocity (upper) and inverse quality factor (lower) for material B corresponding to water-filled double porosity
sandstone at 10 m depth, and with a concentration of 3 per cent sand inclusions. The solid lines are the results for the double porosity model. The dashed
lines, the dotted lines and the dash-dot lines are for porous-visco-acoustic material with a single relaxation function having a centre frequency of 50, 1000 and
4471 Hz (i.e. the peak attenuation frequency of the double porosity model), respectively.

seismic source f c will determine the wave propagation. Therefore, we choose the relaxation function that just needs to approximate the
dispersion behaviour of the double porosity model around f c, which is also the peak frequency of the Zener element.

Now we use the dispersion curves of the double porosity model to determine the relaxation times of the poro-viscoacoustic model. By
eq. (39) and replacing f p with f c and 1/Q( fp) with 1/Q( fc), we get

τ ε = 1

2π fc

[√
Q2( fc) + 1 + 1

]
andτ δ = 1

2π fc

[√
Q2( fc) + 1 − 1

]
. (40)

It should be noted that the phase velocity of the double porosity model c( fc) does not enter into the poro-viscoacoustic model, which
actually depends on c( f = 0).

We choose two different frequencies, f c equal to 1000 and 50 Hz, and plot the dispersion curves of ĉ( fc) and 1/Q̂( fc) of the poro-
viscoacoustic model as the dotted and the dash-dot lines, respectively, in Figs 1 and 2. The dispersion values at the peak or central frequency
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Table 2. Phase velocity c and specific quality factor Q dispersion values at the peak or central frequency.

Material A
Frequency (Hz) Quality factor Quality factor Velocity (m s–1) Velocity (m s–1)

f p = 14788 Q( f p) = 23 Q̂( f p) = 23 c( f p) = 2957 ĉ( f p) = 2867
fc = 1000 Q( fc) = 36 Q̂( fc) = 36 c( fc) = 2856 ĉ( fc) = 2843
fc = 50 Q( fc) = 111 Q̂( fc) = 111 c( fc) = 2812 ĉ( fc) = 2817

Material B

f p = 4470 Q( f p) = 10 Q̂( f p) = 10 c( f p) = 2757 ĉ( f p) = 2583
fc = 1000 Q( fc) = 12 Q̂( fc) = 12 c( fc) = 2628 ĉ( fc) = 2566
fc = 50 Q( fc) = 30 Q̂( fc) = 30 c( fc) = 2474 ĉ( fc) = 2498

are shown in Table 2. This table and the two figures show that there is good agreement between the attenuation of the poro-viscoacoustic
model and that of the double porosity model at the centre frequency f c, but the agreement of the phase velocity depends on f c. When f c is
near to f p or the peak attenuation frequency of the double porosity model, the phase velocities ĉ( fc) and c( f c) are very different. However,
f p of material B (corresponding to sandstone at 10 m depth) is already 4470 Hz, and the f p at larger depth will become much larger. So,
for a seismic survey having frequencies typically less than 100 Hz, a Zener element still well approximates the double porosity sandstone.
For example, Table 2 shows that the phase velocity difference between ĉ( fc) and c( f c) is less than 1 per cent for f c = 50 Hz. In this case,
f c is much lower than f p, and then the poro-viscoacoustic model can be confidently applied to successfully approximate the double porosity
medium.

By the fact that a single Zener element produces good agreement in attenuation with that of the double porosity model at the centre
frequency of the Zener element, we can infer that several Zener elements around the centre frequency of the source wavelet could make for
excellent agreement of the attenuation with the double porosity in the narrow frequency band of the source wavelet. However, it is very hard
to make a good match of the velocity dispersion between the two models if they are apparently different at the centre frequency of f c. This
means that if a single Zener element gives a significantly different velocity to that of the double porosity model at f c, then several Zener
elements with their centre frequencies around f c will not to eliminate the difference. Therefore, this difference will limit the application of
the poro-viscoacoustic model.

We have calculated 2-D analytical transient solutions of the average pressure wave pc and the average fluid pressure wave p f in
homogeneous double porosity materials A and B and the corresponding poro-viscoacoustic model as well. Computations of waveforms were
done for receiver distances of 283 and 849 m and a source centre frequency of 50 Hz and receiver distances of 14.1 and 42.3 m for a source
centre frequency of 1000 Hz. For the 50 Hz source, the amplitudes of pc and p f were normalized to the peak value of pc at a distance of
283 m; and for the 1000 Hz source, the normalization was with respect to peak values at a distance of 14.1 m.

Fig. 3 shows the pcwaveform (upper diagram) and the p f waveform (lower diagram) with a source centre frequency of 50 Hz for
material A. The corresponding waveforms for a source centre frequency of 1000 Hz are given in Fig. 4. The very good agreement between
the double porosity model and the poro-viscoacoustic model means that the double porosity sandstone can be adequately approximated by
the poro-viscoacoustic model with only one Zener element in both cases.

Fig. 5 shows the pcwaveform (upper diagram) and the p f waveform (lower diagram) with a source centre frequency of 50 Hz for
material B. Good agreement between the double porosity model and the viscoacoustic model only occurs for the lower frequency (f c =
50 Hz). However, for the source with f c = 1000 Hz, the results, which are shown in Fig. 6, are very different from each other. In this case,
the double porosity sandstone cannot be approximated by the poro-viscoacoustic medium.

Such a comparison provides a criterion for checking the validity of the approximations. If an acoustic wave in a heterogeneous double
porosity medium needs to be numerically simulated through the approximation of the poroviscoacoustic model, then the source centre
frequency should be much lower than the lowest peak attenuation frequency of every component making up the heterogeneous medium.

4 2 - D N U M E R I C A L S O LU T I O N I N A H E T E RO G E N E O U S M E D I U M

The previous treatment was for homogeneous media, for which we were able to derive analytic transient solutions. Now we consider
heterogeneous models. First, we present the governing equations in time-domain form.

The linear transport laws eq. (3) can rewritten in the time domain as

−∇ pf = ρf v̇ + F−1(η/κ∗(ω)) × q̇, (41)

where F−1means inverse Fourier transformation. The convolution term in (41) represents Biot’s attenuation and can also be approached by
the introduction of relaxation functions and memory equations. For the sake of simplicity, only the low-frequency range will be considered
in the numerical modelling. According to Biot (1962b), at low frequency (lower than Biot’s relaxation frequency ωc), the above equation can
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Figure 3. Analytical solution for pressures pc (upper) and p f (lower) of the double porosity model (solid line) and the poro-visco-acoustic model (dashed
line) in material A. The source pulse has a centre frequency of 50 Hz. The numbers 283 and 849 denote the source–receiver distances of 283 and 849 m. The
difference between the solid line and dashed line shows the effect of the approximation. At the same distance, the curves (dashed and solid lines) for both pc

and p f show an almost perfect match.
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Figure 4. Analytical solution for pressures pc (upper) and p f (lower) of the double porosity model (solid line) and the poro-visco-acoustic model (dashed
line) in material A. The source pulse has a centre frequency of 1000 Hz. The numbers 14.1 and 42.3 denote the source-receiver distances of 14.1 and 42.3 m.
The difference between the solid line and the dashed line shows the effect of the approximation. At the same distance, the curves (dashed and solid lines) for
both pc and p f show a good match.

be written as

−∇ pf = ρf v̇ + mq̇ + η

κ∗
0

q, (42)

where m = Tρf/φ; φ the overall porosity, κ∗
0 the effective static permeability of the double porosity composite and T denotes the tortuosity

(we assume T ≈ φ−2/3).
The conservation of linear momentum (eq. 5) can be written in the time domain as

σ D − ∇ pc = ρv̇ + ρf q̇, (43)

Eqs (2), (22), (42) and (43) constitute the poro-viscoelastic governing equations of double porosity media in the time domain.
Based on our previous findings, a single Zener element can well describe the double porosity medium under the condition that the

centre frequency is much lower than the peak attenuation frequency. The wave in the heterogeneous double porosity medium can be solved

C© 2009 The Authors, GJI, 178, 375–393

Journal compilation C© 2009 RAS



384 X. Liu, S. Greenhalgh and B. Zhou

0.0 0.1 0.2 0.3 0.4 0.5

-0.6

-0.3

0.0

0.3

0.6

 283d
 849d

 283v
 849v

0.0 0.1 0.2 0.3 0.4 0.5

-1.0

-0.5

0.0

0.5

1.0

 283d

 849d
 283v

 849v

Time (s) 

p c
p f

Figure 5. Analytical solution for pressure pc(upper) and p f (lower) of the double porosity model (solid line) and the poro-viscoacoustic model (dashed line) in
material B. The source pulse has a centre frequency of 50 Hz. The numbers 283 and 849 denote the source-receiver distances of 283 and 849 m. The difference
between the solid line and the dashed line shows the effect of the approximation. At the same distance, the curves (dashed and solid lines) for both pc and pf
show a very good match.

Figure 6. Analytical solution for pressures pc (upper) and p f (lower) of the double porosity model (solid line) and the poro-viscoacoustic model (dashed line)
in material B. The source pulse has a centre frequency of 1000 Hz. The numbers 14.1 and 42.3 denote the source-receiver distances of 14.1 and 42.3 m. The
difference between the solid line and the dashed line shows the effect of the approximation. At the same distance, the curves (dashed and solid lines) for both
pc and p f show a poor match.

numerically by the poro-viscoelastic model. We apply relaxation functions of the Zener model to eqs. (22) to get two different sets of
memory equations for the solid and the fluid, respectively; and if we choose a single relaxation function, the 2-D constitutive equations can
be approximated as follows using three memory variables ev, eq and es(see Appendix B for details).

The governing equations can be written in matrix form as

Ḟ = MF + S, (44)

where the quantity F is the field vector to be solved, given by

F = [vx , vz, qx , qz, σ xx , σ xz, σ zz, p f , exx , es, ezz, eq
]
. (45)

The quantity S is the source vector, which can be written as

S = [0, 0, 0, 0, sxx , sxz, szz, s f , 0, 0, 0, 0
]
. (46)
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In eq. 44, the quantity M is the propagation matrix, which can be specified by the expanded form of eq. (44) as follows

v̇x = −β11∂ x pc − β12∂ x pf − η

κ∗
0

β12qx , (47)

v̇z = −β11∂ z pc − β12∂ z pf − η

κ∗
0

β12qz, (48)

q̇x = −β21∂ x pc − β22∂ x pf − η

κ∗
0

β22qx , (49)

q̇z = −β21∂ z pc − β22∂ z pf − η

κ∗
0

β22qz, (50)

σ̇ xx = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(ω = 0) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)vz,z + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(ω = 0) (qx,x + qz,z) + exx + sxx

⎫⎪⎪⎬
⎪⎪⎭ , (51)

σ̇ xz = 1

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0) (vx,z + vz,x ) + es + sxz, (52)

σ̇ zz = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(ω = 0) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)vx,x + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(ω = 0) (qx,x + qz,z) + ezz + szz

⎫⎪⎪⎬
⎪⎪⎭ , (53)

ṗ f (t) = − 1

τ σ

(
1 − τ ε

τ σ

)
[ψ21(ω = 0)(∂xvx + ∂zvz)+ψ22(ω = 0)(∂x qx + ∂zqz] − eq + s f , (54)

ėxx = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(ω = 0) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)vz,z + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(ω = 0) (q1x,x + q1z,z)

− 1

τ
p
σ

exx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (55)

ės = 1

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)

[
vx,z + vz,x

]− 1

τ
p
σ

el
si j , (56)

ėzz = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(ω = 0) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(ω = 0)vx,x + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(ω = 0) (q1x,x + q1z,z)

− 1

τ
p
σ

ezz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (57)

ėq = 1

τ σ

(
1 − τ ε

τ σ

)
[ψ21(ω = 0)(∂xvx + ∂zvz)+ψ22(ω = 0)(∂x qx + ∂zqz)] − 1

τ σ
eq . (58)

Here, eqs (47)–(50) are obtained from eqs (42) and (43), the relaxation times τ εand τ σ are determined by eq. (40), m is defined in eq.
(42) and we also have[

β11 β12

β21 β22

]
=
[

−m ρf

ρf − ρ

]/(
ρ2

f − ρm
)
. (59)

The stiff parts of the 2-D governing equations (47–50) are the terms with η

κ∗ βi j q1l , which can be solved by a time splitting method
(Carcione J.M. 1995, 1996); and the non-stiff parts can be solved by an explicit fourth-order Runge-Kutta method. The Fourier pseudo-spectral
staggered-grid method is used to calculate the spatial derivatives (Carcione & Hellet 1999).

We will now consider two specific numerical examples using the same two-layer DPDP medium but apply poro-viscoacoustic and
poro-viscoelastic models, respectively. The former numerical solution will be compared with the analytical solution of DPDP theory. The
poro-viscoacoustic governing equations are obtained by ignoring the shear response (see Appendix B). A staggered grid of 258 × 258 points
is used, and the source functions Ṡ and Ṡf are taken to be Ricker-type wavelets, eq. (19), with a central frequency of 50 Hz. The two-layer
heterogeneous 2-D model, shown in Fig. 7, has as its upper layer the double porosity material B, whose properties are listed in Table 1.
To get a strong reflection, the lower layer is chosen as the Biot porous medium, which corresponds to the phase 1 sandstone at a depth of
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Figure 7. The 2-D model extends 2560 m in the horizontal and vertical directions and comprises two layers. The interface is at Z = 1460 m.The upper layer
is the double porosity sandstone (Material A) and the lower layer is the Biot porous medium corresponding to phase 1 at 10 km depth. The source pulse has a
centre frequency of 50 Hz. The distances are shown along the X and Z axes, with a grid spacing of 10 m. The source is located at (1280 m, 128 0m) and the
three receivers denoted by numbers 1, 2 and 3 are at distances from the source of 283, 566 and 849 m, respectively.

Figure 8. Snapshot of pcwavefield at 300 ms in a two layer heterogeneous porous media. The upper layer is the double porosity sandstone (Material A) and
the lower layer is a Biot porous medium corresponding to phase 1 at 10 km depth. The source pulse has a centre frequency of 50 Hz. The distances are shown
along the X and Z axes, with a grid spacing of 10 m. The source is located at (1280 m, 1280 m) and the interface is at Z = 1460 m.

10 km by Walton theory (see Pride et al. 2004 for details). It has a porosity of 0.1, a permeability 1.0 × 10–16 m2, a drained bulk modulus
2.925 × 1010 N m−2 and a shear modulus 3.04 × 1010N m−2. As a special case of the double porosity model, we set the volume fraction of
phase 2, v2, to be equal to zero. The Biot porous medium does not have the internal flow mechanism and the relaxation frequency of the Biot
viscodynamic mechanism is set at 1.0 × 10+8 Hz. So, both materials can be well described by the poro-viscoacoustic model for the source
wave having a 50 Hz centre frequency. The source is located at the point x = 1280 m and z = 1280 m; the interface is at z = 1460 m. The
wavefield snapshots of pc and pc at 300 ms are shown in Figs 8 and 9, respectively.

Both pc and p f show a strong reflection wave front, which is the result of the interface of the macroscopic heterogeneity. Fig. 9 shows
that the p f wave front has a similar pattern with that of pc.However, the value of p f around the source point remains very high, which means
the double porosity model also has an average slow P wave, which was not explicitly discussed in this paper, but which arises in the numerical
solution.
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Figure 9. Snapshot of p f wavefield at 300 ms in a two layer heterogeneous porous medium. The upper layer is the double porosity sandstone (Material A) and
the lower layer is the Biot porous medium corresponding to phase 1 at 10 km depth. The source pulse has a centre frequency of 50 Hz. The distances are shown
along the X and Z axes, with a grid spacing of 10 m. The source is located at (1280 m, 1280 m) and the interface is at Z = 1460 m.
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Figure 10. Comparison of the pcwaveforms for the double porosity model (left-hand side) and the corresponding pure acoustic model—no intrinsic attenuation
(right-hand side). The amplitudes are normalized according to the maximum amplitude of receiver 1.

The high level attenuation in the double porosity material (upper layer) can be illustrated by the pc waveform (see the left-hand side
of Fig. 10) recorded by the three receivers located at distances of 283, 566 and 849 m from the source (see Fig. 7). The right-hand side of
Fig. 10 shows the corresponding acoustic pressure waveform for a two-layer pure acoustic model (no intrinsic attenuation), having the same
geometrical structure as our two-layer porous media. The layer densities of the pure acoustic model are equal to those of the porous model;
whereas the two wave speeds of the pure acoustic model are the same as the velocities of the upper and lower porous layers at a frequency
of 50 Hz . On the right-hand side of the figure, the change of maximum amplitude with distance from the source reflects pure geometrical
spreading of the wave front and loss due to reflection of energy. Compared with the pure acoustic situation (right-hand side), the maximum
amplitudes of the direct wave on the left-hand side of the figure (viscoacoustic case) significantly decrease with increasing distance. This
indicates very strong attenuation caused by the local flow mechanism of the double porosity model.

Since material B forming the upper layer and the source–receiver distances for receivers designated 1 and 3 are the same as that in Fig. 5,
we now compare the pc waveform computed with our numerical method against the analytical pc waveform of the poro-viscoacoustic model
in Fig. 5 for a homogenous medium (note the good agreement between the double porosity model and the visco-acoustic model). Results are
shown in Fig. 11. Apart from the reflected wavelet (in the inhomogeneous case), the normalized pc waveforms at the same distances perfectly
coincide. This clearly verifies the correctness of our numerical method and the computer code.
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Figure 11. Comparison between the pcwaveforms for receivers 1, 3 (left-hand side of Fig. 10) and that for 283v, 849v (Fig. 5). Source–receiver distances are
283 and 849 m.

Figure 12. Snapshot of the rock-frame vertical particle velocity at 300 ms in a two layer heterogeneous poro-viscoelastic media. The upper layer and the lower
layer are the same rocks shown as in Figs 8 and 9 (for the visco-acoustic case) but now having non-zero shear modulus (viscoelastic case). The source pulse
has a centre frequency of 50 Hz. The distances are shown along X and Z axes, with a grid spacing of 10 m. The source is located at (1280 m, 1280 m) and the
interface is at Z = 1460 m. Along the central vertical axis, from top to the bottom, there are six wave fronts corresponding to the direct P wave, the reflected P
and the direct S waves(interfering), the reflected S wave, the transmitted S and P waves, which are denoted as dP, rP, dS, rS, tS and tP, respectively.

For the same rock model, we extend the solution for the poro-viscoacoustic model to poro-viscoelastic case, which takes account of the
shear waves and therefore is more realistic. The shear wave relaxation times of the upper layer are chosen to be the same as those of the P
wave. The source is chosen as

S = [0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0] f (t). (60)

Here the pulse f (t) is given in eq. (19) (from Carcione & Quiroga-Goode 1995).
To compare with the poro-viscoelastic wave patterns published by Carcione & Hellet (1999) and Carcione & Seriani (2001), we show

in Fig. 12 the wavefield snapshot of the average solid particle velocity at a time of 300 ms. Shear waves including the direct, the reflected and
the transmitted shear waves are clear, along with the reflected and the transmitted P waves. The refracted S and P waves are excited along the
interface and form the head wave. The P waves in both the upper and lower layer are much faster that those in Figs 8 or 9. It is clear that the
shear moduli increase the P-wave moduli over those the poro-viscoacoustic case in which the shear moduli were set to be zero.
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5 C O N C LU S I O N S

In this paper, we have analytically solved for the phase velocity and inverse quality factor (attenuation) dispersion characteristics, as well as
the analytical transient pressure waveform for a homogeneous acoustic double porosity model and for a poro-viscoacoustic model. By the
method of fitting the relaxation times to the value of the quality factor of the double porosity model at the centre frequency of the Zener
element, the suggested poro-viscoacoustic model with a single Zener element can be used for the transient solution of the wave in a double
porosity model. The restriction, however, is that the centre frequency of the source wavelet is much lower than the relaxation frequency of
the internal mesoscopic flow. At low frequency, the tail of the mesoscopic peak can be well approximated by one flank of the Zener peak.
However, it is worth noting that a Kelvin–Voigt(KV) element as a replacement for the Zener element can be a better approximation in this
case, since attenuation 1/Q of the KV element is proportional to frequency ω(Carcione 2007; Carcione et al. 2004)

We have extended the poro-viscoacoustic model to the poro-viscoelastic case, which incorporates shear waves and is therefore more
realistic. For heterogeneous double porosity 2-D media, we obtained numerical transient solutions by means of poro-viscoelastic modeling,
using a time splitting method for the non-stiff parts. We used an explicit fourth-order Runge-Kutta method for the time integration and a
Fourier pseudospectral staggered-grid for handling the spatial derivative terms (Carcione J.M. 1995, 1996). For the same rock model, the
poro-viscoacoustic solution is a special case of the poro-viscoelastic solution. Comparison with the analytical solution for a homogeneous
model shows the correctness of this approach.

A C K N OW L E D G M E N T S

This research was supported by grants from the Australian Research Council and the Swiss National Science Foundation. We thank the
reviewers, Dr J Carcione and Dr E Saenger, for their constructive suggestions, which have improved the quality of the paper.

R E F E R E N C E S

Auriault, J.L., Borne, L. & Chambon, R., 1985. Dynamics of porous sat-
urated media, checking of the generalized law of Darcy, J. acoust. Soc.
Am., 77, 1641–1650.

Biot, M.A, 1956. Theory of propagation of elastic waves in a fluid-saturated
porous solid, I: low-frequency range, J. acoust. Soc. Am., 28(2), 168–178.

Biot, M.A., 1962. Mechanics of deformation and acoustic propagation in
porous media, J. appl. Phys., 33(4), 1482–1498.

Carcione, J.M., 1996. Wave propagation in anisotropic, saturated porous
media: plane-wave theory and numerical simulation, J. acoust. Soc. Am.,
99(5), 2655–2666.

Carcione, J.M., 1998. Viscoelastic effective rheologies for modelling wave
propagation in porous media, Geophys. Prospect., 46, 249–270.

Carcione, J.M., 2007. Wave Fields in Real Media: Wave Propagation in
Anisotropic, Anelastic, Porous and Electromagnetic Media, Handbook of
Geophysical Exploration, Seismic Exploration, Second edition (Revised
and Extended), Vol. 38, edsHelbig K. and Treitel, S., Elsevier Ltd, Oxford,
UK, Amsterdam, The Netherlands.

Carcione, J.M., & Hellet, H.B., 1999. Numerical solution of the porovis-
coelastic wave equation on a staggered mesh, J. Comput. Physics, 154(2),
520–527

Carcione, J.M. & Quiroga-Goode, G., 1995. Some aspects of the physics and
numerical modelling of Biot compressional waves, J. Comput. Acoust.,
3(4), 261–280.

Carcione, J.M. & Quiroga-Goode, G., 1996. Full frequency-range transient
solution for compressional waves in a fluid-saturated viscoacoustic porous
medium, Geophys. Prospect., 44, 99–129.

Carcione, J.M. & Seriani, G., 2001. Wave simulation in frozen porous media,
J. Comput. Phys., 170, 676–695.

Carcione, J.M., Herman, G.C. & Kroode, A.P.E.T., 2002. Seismic modelling,
Geophysics, 67(4), 1304–1325.

Carcione, J.M., Poletto, F. & Gei, D., 2004, 3-D wave simulation in anelas-
tic meida using the Kelvin-Voigt constitutive equation, J. Comput. Phys.,
196, 282–287.
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A P P E N D I X A : T H E C O E F F I C I E N T S a
∗
mn O F T H E D P D P C O N S T I T U T I V E E Q UAT I O N S

The coefficients appearing in eq. (1) are defined by

a∗
11 = a11 − iωa2

13

iωa33 − r (ω)
, a∗

12 = a12 − a13
iωa23 + r (ω)

iωa33 − r (ω)

a∗
22 = a22 + a23 − (a23 + a33)

iωa23 + r (ω)

iωa33 − r (ω)

⎫⎪⎪⎬
⎪⎪⎭ . (A1)
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Here amn are the coefficients of the DPDP constitutive equations (given below) and r (ω) is the internal transport coefficient (Pride &
Berryman 2003a; Pride et al. 2004).

a11 = 1

K d
, a22 = v1α1

K d
1

[
1

B1
− α1(1 − Q1)

1 − K d
1

/
K d

2

]

a12 = −v1 Q1

K d
1

α1, a23 = − α1α2 K d
1

/
K d

2(
1 − K d

1

/
K d

2

)2
(

1

K d
− v1

K d
1

− v2

K d
2

)

a13 = −v2 Q2

K d
2

α2, a33 = v2α2

K d
2

(
1

B2
− α2(1 − Q2)

1 − K d
2

/
K d

1

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A2)

The subscript 1 or 2 represents phase 1 or 2 and is shown by i in the following definition, Kd
i is the drained bulk modulus, vi is the

volume fraction, Kd is defined as the overall drained bulk modulus of the two-phase composite (the modulus defined in the quasi-static limit
where the local fluid pressure throughout the composite is everywhere unchanged), and it is suggested to use the Hashin & Shtrikman (1963)
bounds; Qi are auxiliary constants given by

Qi = 1

vi

1 − K d
j

/
K d

1 − K d
j

/
K d

i

, j 	= i, (A3)

Bi is Skempton’s coefficient (fluid-pressure change divided by confining-pressure change for a sealed sample) and may be determined
from

Bi = 1
/

K d
i − 1

/
Ks

1
/

K d
i − 1

/
Ks + φi

(
1
/

Kf − 1
/

Ks

) , (A4)

where K s is the bulk modulus of the grains, K f is the bulk modulus of the fluid and φ i is the porosity.
The quantity α i is the Biot–Willis coefficient of phase i and may be determined from

αi = (1 − K d
i

/
K u

i

)/
Bi . (A5)

Here Ku
i is Gassmann’s undrained bulk modulus (confining-pressure change divided by sample dilatation for a sealed sample). It is given

by

K u
i = K d

i

1 − Bi (1 − K d
i

/
Ks)

. (A6)

The internal transport coefficient r (ω) was expressed by Pride & Berryman (2003a) and Pride et al. (2004) as

r (ω) = rm

√
1 − i

ω

ωm
, (A7)

where, for the situations where the two phases have strong contrasts in their physical properties and if k1/k2 << 1,

rm = −k1 K d
1

ηL2
1

[
a12 + B0(a22 + a33)

R1 − B0

/
B1

] [
1 + 0(k1

/
k2)
]
. (A8)

In the above equation, R1 is the ratio of the average static confining pressure in phase 1 to the pressure applied to the external surface of
a sealed sample of the composite and is given by

R1 = Q1 + α1(1 − Q1)B0

1 − K d
1

/
K d

2

− v2

v1

α2 (1 − Q2) B0

1 − K d
2

/
K d

1

, (A9)

The quantity B 0 is the static Skempton’s coefficient for the composite and given by

B0 = − (a12 + a13)

a22 + 2a23 + a33
, (A10)

The symbol L 1 stands for the characteristic length of the fluid pressure gradient. For a concentric sphere geometry, in which a sphere of
phase 2 having a radius of a is embedded within a sphere of phase 1 having a radius ofR, the characteristic length is given by

L2
1 = 9

14
R2

[
1 − 7

6

a

R
+ 0
(
a3
/

R3
)]

. (A11)

ωm is the transition frequency and is given by

ωm = ηB1 K d
1

k1α1

(
rm

V

S

)2
(

1 +
√

k1 B2 K d
2 α1

k2 B1 K d
1 α2

)
, (A12)

where V /S is the volume-to-surface ratio and S is the area of ∂�12 (the internal interface separating phase 1 and phase 2) in each volume V
of the composite.

Letting ω → ∞, and ω → 0, we have the limiting frequency values that determine the values of ψ mn(t = ∞) and ψ mn(t = 0+) in the
numerical calculations:

a∗
11(∞) = a11 − a2

13

a33
,a∗

12(∞) = a12 − a13
a23

a33
,a∗

22(∞) = a22 − a2
23

a33
, (A13)
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a∗
11(0) = a11,a

∗
12(0) = a12 + a13,a

∗
22(0) = a22 + 2a23 + a33. (A14)

A P P E N D I X B : T H E M E M O RY VA R I A B L E S A N D E Q UAT I O N S

Carcione (2007) considered a parallel system with L standard linear solid elements or a so-called generalized Zener material. The relaxation
functions of the standard linear solid model are given in eqs (24) and (25).

Differentiating eq. (24)

∂tψmn = �

ψmnδ(t) + ∂t

�

ψmn H (t). (B1)

Then, the right-hand side of eq. (22) can expressed as

∂tψm1 ∗ ∇ · v = ∫ t
−∞

[
�

ψm1(t − τ ) + �̇

ψm1(t − τ )H (t − τ )

]
∇ · vdτ

∂tψm2 ∗ ∇ · q = ∫ t
−∞

[
�

ψm2(t − τ ) + �̇

ψm2(t − τ )H (t − τ )

]
∇ · qdτ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (B2)

Here m = 1, 2 and the above equations can be rewritten as

∂tψm1 ∗ ∇ · v = �

ψm1(t = 0)∇ · v + ∂t

�

ψm1(t)H (t) ∗ ∇ · v

∂tψm2 ∗ ∇ · q = �

ψm2(t = 0)∇ · q + ∂t

�

ψm2(t)H (t) ∗ ∇ · q

⎫⎪⎬
⎪⎭ . (B3)

The memory variable emn can be defined as

em1 = ∂t

�

ψm1(t)H (t) ∗ ∇ · v

em2 = ∂t

�

ψm2(t)H (t) ∗ ∇ · q

⎫⎪⎬
⎪⎭ . (B4)

Then eq. (22) can be written as

−
[

ṗc(t)
ṗ f (t)

]
=
[

ψ11(t = 0+) ψ12(t = 0+)
ψ21(t = 0+) ψ22(t = 0+)

][
∇ · v(t)
∇ · q(t)

]
+
[

e11 + e12

e21 + e22

]
. (B5)

To obtain the memory equations, em1 can be extended (or integrated) as follows:

em1 =
∫ t

−∞
∂τ

�

ψm1(τ )H (τ )∇ · v(t − τ )dτ. (B6)

Then, we have

em1 =
∫ t

0+
∂τ

�

ψm1(τ )∇ · v(t − τ )dτ. (B7)

Substituting eq. (25) into eq.(B4) gives

em1 =
Li1∑
l=1

el
m1, (B8)

where

el
m1 = ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)∫ t

0+
exp

(
− τ

τ σ l
m1

)
∇ · v(t − τ )dτ . (B9)

The time derivative of (B9) gives the memory equation

∂t el
i1 = ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)

×
[∫ t

0+ exp
(
− τ

τσ l
m1

)
∂τ∇ · v(t − τ )dτ + exp

(
− t

τσ l
m1

)
∇ · v(t = 0)

]
⎫⎪⎪⎬
⎪⎪⎭ . (B10)

Integration by parts yields∫ t

0+
exp

(
− τ

τ σ l
m1

)
∂t∇ · v(t − τ )dτ

= − exp

(
− t

τ σ l
m1

)
∇ · v(t = 0) + ∇ · v(t)

− 1

τ σ l
m1

∫ τ=t

τ=0+
exp

(
− τ

τ σ l
m1

)
∇ · v(t − τ )dτ

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (B11)
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Eq. (B10) can then be rewritten as

∂t el
m1 = ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)

×
[
∇ · v(t) − 1

τ σ l
m1

∫ τ=t

τ=0+
exp

(
− τ

τ σ l
m1

)
∇ · v(t − τ )dτ

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (B12)

or

∂t el
m1 = ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)
∇ · v(t)

− 1

τ σ l
m1

[
ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)∫ τ=t

τ=0+
exp

(
− τ

τ σ l
m1

)
∇ · v(t − τ )dτ

]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (B13)

By (B9), we get the memory equation

∂t e
l
m1 = ψm1(t = ∞)

Lm1τ
σ l
m1

(
1 − τ εl

m1

τ σ l
m1

)
∇ · v − 1

τ σ l
m1

el
m1. (B14)

A similar derivation yields

∂t e
l
m2 = ψm2(t = ∞)

Lm2τ
σ l
m1

(
1 − τ εl

m2

τ σ l
m2

)
∇ · q − 1

τ σ l
m2

el
m2. (B15)

We now consider the deviatoric (or shear) constitutive equations.
By eq.(2), the shear relaxation function ψ s is defined as

σ̇ D = ∂tψs ∗
[
∇v + (∇v)T − 2

3
∇ · vI

]
, (B16)

ψs = �

ψ s H (t), (B17)

�

ψ s = ψs(t = ∞)

[
1 − 1

Ls

Ls∑
l=1

(
1 − τ εl

s

τ σ l
s

)
exp

(
− t

τ σ l
s

)]
, (B18)

where ψ s(t = ∞) is the value of relaxation functions at infinite time; Ls is the number of standard linear solid elements of ψ s and τ εl
s and

τ σ l
s are the relaxation times of the deviatoric average velocity and the stress of the solid phase.

A similar derivation as for (B5) gives in the viscoelastic case

σ̇ D
i j = ψs(t = 0+)

[
Vi, j + Vj,i − 2

3
Vi,iδi j

]
+

Ls∑
l=1

el
si j , (B19)

ėl
si j = − 1

τ σ l
s

el
si j + ψs(t = ∞)

Lsτ σ l
s

(
1 − τ εl

s

τ σ l
s

)[
Vi, j + Vj,i − 2

3
Vi,iδi j

]
l = 1, . . . Ls . (B20)

Multiplying both sides of ṗc(t) in eq. (B5) with δ i j and combining with eq.(B19) and using σ D = σ − pcI shows the constitutive relation
for the total stress in the solid frame to be

σ̇ i j =
[
ψ11(t = 0+)vi,i+ψ12(t = 0+)qi,i+

L11∑
l=1

el
11+

L12∑
l=1

el
12

]
δi j

+ψs(t = 0+)
[
vi, j + v j,i − 2

3 vi,iδi j

]+ Ls∑
l=1

el
si j .

(B21)

Now, the 2-D constitutive equations with the memory equations are approximated and specified from the equations derived above.
For the sake of simplicity, we choose the numbers L 11, L 12 and Ls equal to 1, and set all stress relaxation times equal to the acoustic

wave values τ σ1
mn = τ P

σ (m, n = 1, 2). We do likewise for the strain relaxation times τ ε1
mn = τ p

ε (m, n = 1, 2) because only one classic
P-wave dissipation peak is present. We also assume τ σ1

s = τ P
σ just for simplicity and rewrite τ ε1

s = τ s
ε , e1

11 + e1
12 = ev ; e1

21 + e1
22 = eq ; ev +

es
xx = exx, ev + es

zz = ezz, e1
sxz = es. Then we obtain the following expressions:

σ̇ xx =
[
ψ11(t = 0+) + 4

3
ψs(t = 0+)

]
(vx,x + vz,z)

− 2ψs(t = 0+)vz,z + ψ12(t = 0+) (qx,x + qz,z) + exx

⎫⎪⎬
⎪⎭ , (B22)

σ̇ xz = ψs(t = 0+) (vx,z + vz,x ) + es, (B23)

σ̇ zz =
[
ψ11(t = 0+) + 4

3
ψs(t = 0+)

]
(vx,x + vz,z)

− 2ψs(t = 0+)vx,x + ψ12(t = 0+) (qx,x + qz,z) + ezz

⎫⎪⎬
⎪⎭ , (B24)

ṗf (t) = −ψ21(t = 0+)∇ · v(t) − ψ22(t = 0+)∇ · q(t) − eq , (B25)
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∂

∂t
exx = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(t = ∞) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(t = ∞)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(t = ∞)vz,z + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(t = ∞) (qx,x + qz,z)

− 1

τ
p
σ

exx

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (B26)

ės = ψs(t = ∞)

τ
p
σ

(
1 − τ s

ε

τ
p
σ

) [
Vx,z + Vz,x

]− 1

τ
p
σ

el
si j , (B27)

∂

∂t
ezz = 1

τ
p
σ

[(
1 − τ p

ε

τ
p
σ

)
ψ11(t = ∞) + 4

3

(
1 − τ s

ε

τ
p
σ

)
ψs(t = ∞)

]
(vx,x + vz,z)

− 2

τ
p
σ

(
1 − τ s

ε

τ
p
σ

)
ψs(t = ∞)vx,x + 1

τ
p
σ

(
1 − τ p

ε

τ
p
σ

)
ψ12(t = ∞) (qx,x + qz,z)

− 1

τ
p
σ

ezz

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, (B28)

ėq = 1

τ σ

(
1 − τ ε

τ σ

)
[ψ21(t = ∞)(∂xvx + ∂zvz)+ψ22(t = ∞)(∂x qx + ∂zqz)] − 1

τ σ
eq . (B29)

Substituting eqs. (32) and (33) into the above equations, we get eqs (51)–(58).
Ignoring the shear response leads to the viscoacoustic equations

ṗc = −ψ11(∞)
τ ε

τ σ
(∂xvx + ∂zvz) − ψ12(∞)

τ ε

τ σ
(∂x qx + ∂zqz) − ev, (B30)

ṗf = −ψ21(∞)
τ ε

τ σ
(∂xvx + ∂zvz) − ψ22(∞)

τ ε

τ σ
(∂x qx + ∂zqz) − eq , (B31)

ėv = 1

τ σ

(
1 − τ ε

τ σ

)
[ψ11(t = ∞)(∂xvx + ∂zvz)+ψ12(t = ∞)(∂x qx + ∂zqz)] − 1

τ σ
ev. (B32)

The equation for eq is the same as eq. (58).
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