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Abstract

To defend themselves against herbivores and pathogens, plants produce numerous secondary metabolites, either 
constitutively or de novo in response to attacks. An intriguing constitutive example is the exudate produced by cer-
tain root-cap cells that can induce a state of reversible quiescence in plant-parasitic nematodes, thereby providing 
protection against these antagonists. The effect of such root exudates on beneficial entomopathogenic nematodes 
(EPNs) remains unclear, but could potentially impair their use in pest management programmes. We therefore tested 
how the exudates secreted by green pea (Pisum sativum) root caps affect four commercial EPN species. The exu-
dates induced reversible quiescence in all EPN species tested. Quiescence levels varied with the green pea cultivars 
tested. Notably, after storage in root exudate, EPN performance traits were maintained over time, whereas perfor-
mances of EPNs stored in water rapidly declined. In sharp contrast to high concentrations, lower concentrations of 
the exudate resulted in a significant increase in EPN activity and infectiousness, but still reduced the activity of two 
plant-parasitic nematode species. Our study suggests a finely tuned dual bioactivity of the exudate from green pea 
root caps. Appropriately formulated, it can favour long-term storage of EPNs and boost their infectiousness, while it 
may also be used to protect plants from plant-parasitic nematodes.

Key words:  Below-ground food web, biological control, entomopathogenic nematode (EPN), Heterodera glycine, 
Heterorhabditis bacteriophora, Meloidogyne incognita, plant defence, plant-parasitic nematode, root-cap exudate.

Introduction

The estimated production of over 200,000 different com-
pounds (Barber and Martin, 1976) ranks plant’s secondary 
metabolites among the most diverse functional chemicals 
in the biosphere. Thousands of papers have been devoted 
to the description of ecological and evolutionary processes 
mediated by plant secondary metabolites (Dudareva et  al., 
2013). Stahl (1888) was one of the first to suggest that these 
metabolites are involved in plant defences and they have since 
been proposed to contribute as an important selecting force 
in the interaction between plants and herbivores (Ehrlich and 
Raven, 1964). Historically, work on chemical plant defences 

has focused on foliar parts of plants (Hartmann, 2007) and 
roots have been mostly ignored (Hunter, 2001). Yet up to 
20% of the photosynthetic fixed carbon is exuded via below-
ground tissues as secondary metabolites (Barber and Martin, 
1976) and these exudates shape rhizospheric interactions (e.g. 
Hiltpold and Turlings, 2012; Rasmann et al., 2012a and refer-
ences therein; Erb et al., 2013).

In the context of plant and plant-parasitic nematode inter-
actions, root exudates are often beneficial to the plant antago-
nists, as they may use plant secondary metabolites to locate 
host plants (Prot, 1980; Rolfe et al., 2000; Curtis et al., 2009; 
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Reynolds et  al., 2011). In addition to attracting nematodes, 
root exudates also trigger egg hatching in certain plant-para-
sitic nematode species (e.g. Perry and Clarke, 1981; Dennijs and 
Lock, 1992; Perry and Gaur, 1996; Gaur et al., 2000; Wesemael 
et al., 2006; Pudasaini et al., 2008; Khokon et al., 2009; Oka 
and Mizukubo, 2009). Yet root exudates can also protect roots 
against plant-parasitic nematodes. For instance, metabolites 
exuded from the root-cap cells of legumes and maize (Zea 
mays) slow down movement in plant-parasitic nematodes, 
sometimes resulting in a state of quiescence, reducing the abil-
ity of the nematodes to infect the plant (Zhao et al., 2000). This 
apparent defence mechanism has been found in several plant 
species and is usually reversible (Hubbard et al., 2005).

In addition to plant-parasitic nematodes, root exudates have 
also been reported to affect entomopathogenic nematodes 
(EPNs), plant protagonists in the rhizosphere. Rasmann et al. 
(2005) found that insect herbivory on maize roots induces the 
emission of volatile secondary metabolites that can attract 
the EPN Heterorhabditis megidis Poinar, Jackson and Klein. 
A similar phenomenon has since been shown for belowground 
interactions between plants and EPNs in other systems involv-
ing cultivated plants (Ali et  al., 2010; Hiltpold et  al., 2010c; 
Turlings et al., 2012), as well as in wild ecosystems (Rasmann 
et al., 2011). As EPNs are obligate parasites that kill their insect 
host in a very short period of time (Dillman et al., 2012), they 
are considered as very potent biological control agents in several 
cropping systems (Grewal et al., 2005). Hubbard et al. (2005) 
found that green pea (Pisum sativum) root cap exudate induces 
quiescence in the EPN Steinernema feltia Filipjev, implying that 
this putative plant defence strategy may impair EPN efficacy 
near root tips, where many herbivores prefer to feed.

With the current study we aimed at assessing the effect of 
such exudate on four commercial EPN species. As different 
crop varieties can greatly vary in defensive metabolite patterns 
(Takabayashi et al., 1991; Loughrin et al., 1995; Wooley et al., 
2007; Erb et al., 2011), we tested the exudate of a number of 
different pea cultivars for their potency in inducing quiescence 
in EPNs. In addition, to evaluate the impact of the root-cap 
exudate on the quality of stored EPNs over time, we performed 
a series of experiments to assess EPN infectiousness, mobility, 
and lipid content after recovery from induced quiescence. We 
also examined to what extent diluting the concentration of the 
exudate affects quiescence induction and whether heat or cold 
treatment has an effect on exudate activity.

Materials and methods

Plant material
Pisum sativum L. cv. Lancet seeds (Wyss Samen und Planzen AG, 
Switzerland) were sterilized in 95% ethanol for 5 min. Seeds were 
then rinsed and immersed in pasteurized distilled water for 12 h. 
Imbibed seeds were germinated for 3  days at 25°C in the dark in 
plastic boxes (15 × 13.5 × 5 cm) on a 1.5 cm layer of 1.0% PhytoAgar 
(Duchefa Biochemie, The Netherlands).

Root-cap exudate collection
Exudates were collected from 15 pea germinates by arranging them 
on a Teflon plate at the periphery of a 1 ml drop of ultra-pure water, 

with only the tips (~5 mm) submerged. After 2 min of immersion, 
the liquid was gently agitated in order to disperse the border cells 
and the associated exudate. The solution obtained was then cen-
trifuged at 4000 g for 10 min in a 1.5 ml centrifuge tube (Vaudaux-
Eppendorf AG, Switzerland), resulting in a pellet of the suspended 
border cells. The supernatant, defined as root-cap exudate, was col-
lected. Following this technique, exudates from several hundred of 
pea germinates were collected, and pooled in one solution. To facili-
tate the experimentation, this last solution was split into 7 ml amber 
vials (Suppelco, Sigma-Aldrich Chemie GmbH, Switzerland) before 
being stored at –20°C.

Exudate-induced quiescence and recovery of EPNs
The pea root-cap exudate was tested on the following EPN 
species: Heterorhabditis bacteriophora Poinar (Rhabditida: 
Heterorhabditidae), Heterorhabditis megidis Poinar, Jackson 
and Klein (Rhabditida: Heterorhabditidae), Steinernema feltiae 
Filipjev (Rhabditida: Steinernematidae), and S. carpocapsae Weiser 
(Rhabditida: Steinernematidae), following the methodology by 
Hubbard et al. (2005). H. bacteriophora, S. feltiae, and S. carpocap-
sae were provided by Landi-Reba AG (Switzerland), and H. megidis 
by Becker Underwood (UK).

Briefly, ~1000 active infective juveniles of each EPN species 
were taken from batches freshly hatched from Galleria mellonella 
L.  (Lepidoptera: Galleridae). EPNs were suspended in water and 
aliquots of 30 infective juveniles in 50 µl of  water were pipetted into 
36 wells of a 96-well plate (BD Biosciences, CA, USA) and 175 µl 
of  root cap exudate was added to each EPN suspension. After 
12 h, using a dissecting microscope, the number of quiescent EPN-
infective juveniles was evaluated by direct counting of individuals 
exhibiting, or not exhibiting, an active sinusoidal form and move-
ment. Instead of root-cap exudate, 175 µl of  water was pipetted into 
the wells of the control plates. The experiment was repeated 10 times 
for each EPN species.

To evaluate EPN recovery from exudate-induced quiescence, 
125  µl was pipetted out of the wells, leaving settled EPN in the 
bottom, and replaced with the same volume of water. After 12 h, 
resumption of EPN activity was evaluated using a dissecting micro-
scope. To test if  recovered EPNs were still infectious, five times 10 
individuals per species per replicate were sampled and applied on 
top of G. mellonella larvae that had been individually placed in wells 
of a 24-well plate. The baits were then covered with 10% moist sand 
(white sand, Migros, Switzerland) and stored at 25°C in the dark. 
EPN infection was assessed after 48 h.

Quiescence induction by the root exudates of various green-pea 
cultivars
Following the procedures described above, eight additional cul-
tivars (cv. Kelvin, cv. Kelvin Sprinter, cv. Merveilles précoces, 
and cv. Sprint, Wyss Samen und Planzen AG, Switzerland; cv. 
Exquis, cv. Surab, cv. Picolo, and cv. Carmini, Landi-Reba AG, 
Switzerland) were tested for their ability to induce quiescence 
in H. bacteriophora. Water was used as a control and the EPNs 
were kept in the respective solutions for 12 h before the number 
of  quiescent nematodes was recorded. Each test was repeated 10 
times.

Effect of root-cap exudate on the quality of EPNs over time
Either 41.25 ml of root-cap exudate from green pea cv. Lancet or 
the same amount of water (control) were poured into 50 ml culture 
flasks (BD Biosciences, CA, USA), and 7.5 ml of water containing 
20 000 H. bacteriophora infective juveniles were added. The flasks 
were then stored at room temperature (25°C) in the dark. Every 
third day, starting 12 h after the induction of quiescence, the infec-
tiousness, mobility, and lipid content of the nematodes from both 
solutions were assessed for 18 days.
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EPN infectiousness  EPN infectiousness was measured using the five-
on-one sand well bioassay (modified after Grewal, 2005): In a 24-well 
tissue plate (BD Biosciences, CA, USA), 10 G. mellonella larvae were 
individually placed in wells and covered with 10% moist sand (white 
sand, Migros, Switzerland). Five infective juveniles were pipetted 
from either root-cap exudate or water solution and added to each well. 
24-well plates were stored at 25°C for 3 days and G. mellonella larvae 
were dissected. The number of infected insect larvae was recorded.
EPN mobility  EPN mobility was measured using a method modi-
fied after Tomalak, 2005. Into a 10-cm diameter Petri dish, we pipet-
ted a 10-µl drop of 0.1% caffeine (99% pure, Alfa Aesar GmbH, 
Germany) on top of the 10 ml of 2% solidified agar. About 100 
EPNs from either root-cap exudate or water formulations were 
slowly pipetted onto a 5-mm diameter filter paper (cut out of bigger 
filter papers; Schleicher & Schuell GmbH, Germany). To facilitate 
removal of excessive water, the filter paper was laid on a paper towel. 
The filter was transferred immediately onto the drop of caffeine, with 
the EPNs on the upper side of the disc. The Petri dish was covered 
and stored in the dark at room temperature for 30 min. As caffeine 
strongly repels EPNs, motile EPNs would quickly crawl away from 
this region onto the agar plate. After incubation, the disc was rinsed 
in a 1.5-ml centrifuge tube (Vaudaux-Eppendorf AG, Switzerland) 
containing water and the total number of sessile nematodes, recov-
ered from the disc, was counted and the percentage of mobile EPNs 
calculated. This experiment was repeated five times per treatment.
Estimation of the neutral lipid content  Estimation of the neutral 
lipid content was performed using a method modified after Patel 
et al., 1997). About 50 infective juveniles were sampled from each 
formulation described above. They were poured into a glass vial 
(7 ml amber glass vial; Suppelco, Sigma-Aldrich Chemie GmbH, 
Switzerland) and flooded with 70% ethanol saturated with Oil Red 
O (Sigma-Aldrich Chemie GmbH, Switzerland). The glass vials 
were incubated at 60°C for 20 min. The excess of staining solution 
was removed before the addition of 5 ml of glycerol:water (50:50 v/v) 
solution. EPNs were left to settle overnight at room temperature. 
After placing the EPNs on a slide, the lipid content of the stained 
nematodes was estimated by comparison with a neutral lipid index 
scale [from 8 (fully stained) to 1 (no staining): Patel et al., 1997].

Heat and cold stability of the green-pea exudate
The stability of green-pea exudate exposed to a temperature gradi-
ent was assessed. Aliquots of the exudate were either frozen (–80°C 
and –20°C) for 12 h or heated up (20, 30, 40, 60, 80, and 100°C) 
for 10 min. Controls consisted of water only, subjected to the same 
temperature treatments. For all treatments, induction of EPN qui-
escence was tested as described above and repeated seven times with 
two batches of EPNs.

Dilution of root cap exudate and the effect on bioactivity
Following the procedure described in the previous sections, different 
concentrations of pea root-cap exudate were tested. Exudate from 
green pea cv. Lancet was collected and freeze dried. The resulting 
material was diluted in 1 ml (original concentration), 1.25, 1.5, 1.75, 
2, 3, and 4 ml of water. Quiescence induction in H. bacteriophora 
was tested for each concentration; controls consisted of water only. 
The number of quiescent nematodes was recorded after 12 h of 
induction. Each test was repeated 15 times.

Increasing activity of EPNs was observed with the reduction of 
the exudate concentration. Therefore, we assessed EPN activity more 
precisely by counting the number of oscillations per minute for indi-
vidual H. bacteriophora after 12 h exposure to a low concentration of 
pea root-cap exudate (in 1.5 ml of water). Head oscillations of EPNs 
exposed to the original concentration of the exudate (in 1 ml of water) 
and to water only were also recorded. This test was repeated with 10 
different individuals from three different batches of nematodes.

Following the five-on-one methodology (see above and Grewal, 
2005), the infectiousness of highly active EPNs in low concentration 

green pea exudate was compared to those in water only. In 24-well 
plates, 12 G.  mellonella larvae were covered with 10% moist sand 
previously mixed with either 1.5× diluted green-pea exudate or 
water (9:1, v/v). Five infective juveniles of the EPN H. bacteriophora 
were individually transferred in each well. Plates were wrapped in 
Parafilm and incubated at 25°C in the dark. The number of EPN-
infected larvae was recorded every 12 h for 96 h, starting 12 h after 
EPN inoculation. This experiment was replicated four times with 
three different batches of EPNs.

The effect of the exudate concentrations was also tested on plant-
parasitic nematodes. Following the procedure described above, the 
head oscillation counts per minute of the soybean cyst nematode 
Heterodera glycine Ichinohe (Tylenchida: Heteroderinae) and the root-
knot nematode Meloidogyne incognita Kofoid and White (Tylenchida: 
Heteroderinae) were recorded in 1.5×-diluted exudate and in water.

Statistical analyses
Statistical tests were conducted in SigmaPlot 12.1.0.15 (Systat 
Software GmbH Germany).
Quiescence induction by the root exudates of various green pea culti-
vars  To determine differences in quiescence induced by the different 
cultivars we analysed the data using a one-way ANOVA procedure. 
Statistical differences within groups were evaluated using a Tukey 
post-hoc test.
Effect of root-cap exudate on the quality of EPNs over time  EPN 
infectiousness, mobility, and neutral lipid content were tested using 
an RM two-way ANOVA procedure with treatment and time as 
factors. Statistical differences within groups were evaluated using a 
Tukey post-hoc test.
Heat and cold stability of the green pea exudate  Differences in 
induced quiescence after temperature treatments were measured 
using a one-way ANOVA on ranks procedure. Statistical differences 
within groups were evaluated using a Tukey post-hoc test.
Dilution of root-cap exudate and the effect on bioactivity  The effect 
of dilution on the induced quiescence to EPNs was tested using 
one-way ANOVA on ranks procedure. Statistical differences within 
groups were evaluated using a Tukey post-hoc test.

Increased activity was tested with a one-way ANOVA comparing 
the EPN head oscillations when exposed to both concentrations of 
green pea exudate or water. Infectiousness of EPNs exposed to either 
water or low-concentration exudate was tested using an RM two-way 
ANOVA procedure with treatment and time as factors. Statistical dif-
ferences within groups were evaluated using a Tukey post-hoc test.

Differences between H. glycine and M. incognita head oscillations 
per minute recorded in water or in both concentrations of exudate 
were tested with a one-way ANOVA and a one-way ANOVA on 
ranks, respectively.

Results

Exudate-induced quiescence and recovery of EPNs

Each EPN species that experienced contact with the green 
pea root exudate exhibited a state of quiescence (Table  1). 
Recovery was complete for S. carpocapsae, H. megidis, and 
H.  bacteriophora. A  large majority of S.  feltiae recovered 
from quiescence. Each EPN species was still infectious after 
recovering from induced quiescence (Table 1).

Quiescence induction by the exudates of various 
green-pea cultivars

The induction of quiescence in H. bacteriophora was highly depend-
ent on the green-pea genotypes (Fig. 1, ANOVA, F8,93 = 26.686, P 
≤ 0.001). Exudate from cv. Kelvin Sprinter had the lowest induction 
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rate of quiescence (~25%), whereas the exudate of some cultivars 
resulted in almost 100% quiescence (i.e. cv. Picolo) (Fig. 1).

Effect of root-cap exudate on the quality of EPNs 
over time

Induced quiescence in H. bacteriophora helped to maintain its 
performance over time (Fig. 2A, B, C). Overall, infectiousness 
of H. bacteriophora that had been stored in exudate was higher 
than for EPNs that had been stored in water (Fig. 2A; two-
way RM ANOVA, F1,139 = 12.05, P ≤ 0.001). After recovering 
from quiescence, EPNs that had been stored in exudate were 
significantly more mobile than EPNs that had been stored 
in water (Fig.  2A; two-way RM ANOVA, F1,139  =  66.839, 
P ≤ 0.001) and this remained significantly higher over the 
18 days of the experiment (Fig. 2B; two-way RM ANOVA, 
F6,139 = 3.845, P = 0.003). Lipid reserves in quiescent nema-
todes were significantly higher than in EPNs stored in water 
(Fig. 2C; two-way RM ANOVA, F1,139 = 53.129, P ≤ 0.001) 
and remained so over the course of the experiment (Fig. 2C; 
two-way RM ANOVA, F6,139 = 2.414, P = 0.03).

Heat and cold stability of the green-pea exudate

Exposing the exudate to different temperatures did not 
impair its bioactivity, and quiescence induction levels were 

similar to those measured in the control exudate. After 
heating or freezing, the exudate still induced quiescence in 
exposed H.  bacteriophora, which was not the case for the 
water control [Supplementary Figure S1 (heat: ANOVA on 
ranks, H  =  45.419, P  <  0.001); Supplementary Figure S2 
(cold: ANOVA on ranks, H = 33.289, P ≤ 0.001)].

Dilution of root-cap exudate and the effect on 
bioactivity

Reducing the exudate concentration quickly reached a thresh-
old beyond which induction of quiescence in H. bacteriophora 
failed (Fig. 3; ANOVA on ranks, H7,15 = 52.42, P ≤ 0.001), 
but instead resulted in increased movement (Fig. 4; ANOVA, 
F2–89 = 491.427, P ≤ 0.001). At a low concentration, the exu-
date had a positive impact on the infectiousness of H. bac-
teriophora (Fig.  5; RM two-way ANOVA, F1,107  =  20.991, 
P = 0.006), and EPN exposed to low concentration exudates 
were more effective at killing G. mellonella over time as com-
pared to EPN exposed to water only (Fig. 5; RM two-way 
ANOVA, F8,107 = 5.88, P ≤ 0.001). Contrary to the effect on 
EPNs, the same low concentration of exudate significantly 
reduced the mobility of the tested plant-parasitic nema-
tode species H.  glycine (Fig.  4B; ANOVA, F2–89  =  225.023, 
P ≤ 0.001) and M.  incognita (Fig.  4C; ANOVA on ranks, 
H = 67.876, P ≤ 0.001).

Discussion

Earlier observations had revealed that green pea root-cap exu-
date causes a loss of mobility and induces a state of quies-
cence in several plant-parasitic nematode species (Zhao et al., 
2000; Hubbard et al., 2005), as well as in the bacteria-feeding 
nematode Cenorhabditis elegans Maupas (Zhao et al., 2000; 
Hubbard et al., 2005;), and the EPN S. feltiae (Hubbard et al., 
2005). The present study demonstrates that the activity of 
other EPN species also drops dramatically when exposed to the 
green pea root-cap exudate (Table 1). Quiescence is usually a 

Table 1.  Exudate-induced quiescence, recovery, and subsequent 
infectiousness of three EPN species

Quiescence (%) Recovery (%) Infectiousness

Steinernema feltia 91 ± 6 57 ± 12 +a

S. carpocapsae 93 ± 4 100 +
Heterorhabditis megidis 89 ± 9 97 ± 2 +
H. bacteriophora 95 ± 2 100 +

aSome individuals remained quiescent after removal of the exudate. 
Nonetheless, larvae treated with recovered S. feltia were infected.

Fig. 1.  Induced quiescence in Heterorhabditis bacteriophora varies among green pea cultivars. Induced EPN quiescence was significantly influenced 
by the cultivar the root-cap exudates were collected from (grey bars). Three cultivars induced quiescence close or equal to 100% whereas some barely 
reached 30%, but were still different from the percentage of inactive nematodes recorded in water (white bar). One cultivar (Kelvin Sprinter) was not 
different from water. Letters indicate statistical differences. Bars represent SEM.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru345/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru345/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/eru345/-/DC1
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reversible response in nematodes to toxic or unfavourable envi-
ronmental conditions (Evans and Perry, 1976). As plant-para-
sitic nematodes, as well as other pathogens, preferably choose 
the elongation zone right behind the root tip to penetrate root 
tissues (Prot, 1980; Curl and Truelove, 1986; Gunawardena 
and Hawes, 2002), the induction of quiescence in root patho-
gens around this susceptible region has been interpreted as a 
defensive mechanism (Hawes et al., 2000; Zhao et al., 2000; 
Wuyts et al., 2006). Recent findings showed that plant histone-
linked extracellular DNA (exDNA) might be involved in this 
putative root tip defence (Wen et al., 2009; Hawes et al., 2011; 

Hawes et  al., 2012;). Functioning as an extracellular trap 
attracting and immobilizing pathogens (Hawes et al., 2012), 
exDNA has been shown to be a key component in plant resist-
ance to infection by pathogenic fungi (Wen et al., 2009). By 
reducing or inhibiting the motility of these pathogens, roots 
can grow away from the threat, avoiding damage to their api-
cal tips, while offering less vulnerable regions to herbivores. 
Interestingly, this is in contradiction to the common dogma 
that plants cannot escape a threat by moving away. Indeed, 
in addition to immobilizing pathogens (Hawes et al., 2000), 
roots can potentially grow through a cumulative total of 6 m 

Fig. 2.  Induced quiescence enhances over time storage of the EPN Heterorhabditis bacteriophora. Quality traits were better conserved over 
time when EPNs were stored in a solution with root-cap exudates from green pea cv. Lancet (grey circle) as compared to EPNs stored in water 
(white circle). (A) EPN infectiousness remained significantly higher in root-cap exudates as compared to water during most of the experiment. (B) 
When stored in root-cap exudates, EPNs stayed mobile for longer compared to the EPNs in water over most of the duration of the experiment. (C) 
Because EPNs stored in root-cap exudate were quiescent, their lipid reserves were maintained at a significantly higher level over time compared to 
lipid reserves measured in EPNs stored in water. (D–F) After being stained with Oil Red O, lipids appear in red inside the nematode body. A visual 
assessment allows an evaluation of the lipid content according to the 1–8 lipid index (Patel et al., 1997). According to this index, (D) fully stained EPNs 
were given an 8, (E) intermediately stained EPNs received a 4, and (F) individuals without staining were recorded as 1. Level of significance between 
treatments on one day are indicated as not significant (ns), P < 0.05 (*), P ≤ 0.01 (**), P ≤ 0.001 (***). Statistical differences within treatments over time 
are noted with letters. Bars indicate SEM.
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of soil within a day (Lynch and van Beem, 1993). This pro-
vides the roots with an escape strategy that is comparable to 
animals fleeing unfavourable biotic and abiotic conditions. 
To determine whether this strategy may indeed be effective 
against the relatively large and mobile nematodes requires 
additional experiments. The present study shows that the exu-
dates involved in this potential defence mechanism not only 
affects the roots’ ‘foes’ but can also momentarily impair ben-
eficial microorganisms such as EPNs (Table 1).

As with other plant defence traits, the quiescence potency 
of root exudates varies a lot among plant families (Hubbard 
et al., 2005), but we also found dissimilarities among geno-
types of a particular species (Fig. 1). The results presented here 
provide a new example of how plant breeding can affect the 
concentrations of secondary metabolites that are important 
for plant performance (e.g. Hubbard et al., 2005; Rasmann 
et al., 2005; Köllner et al., 2008; Hiltpold et al., 2010c; Erb 
et al., 2011; Robert et al., 2012; Meihls et al., 2013).

Fig. 3.  Level of induced quiescence in EPNs depends on root-cap exudate concentration. Lowering the concentration of the root-cap exudate reduced 
the induction of quiescence in the EPN Heterorhabditis bacteriophora. When freeze-dried exudates were diluted in 1.5× more water than its original 
concentration, the quiescence was reduced 4-fold compared to the original concentration. Low concentrations of exudates did not induce more 
quiescence than water. Letters indicate statistical differences. Bars indicate SEM.

Fig. 4.  Low root-exudate concentration has a dual effect on nematode activity. (A) The number of oscillations per minute was significantly increased 
when the EPN Heterorhabditis bacteriophora was exposed to 1.5×-diluted exudates (grey bar) as compared to those in water (white bar). The original 
(1×) concentration of exudate induced almost complete quiescence in the exposed EPN. (B) The plant-parasitic nematode Heterodera glycine oscillation 
counts were higher in diluted exudate as compared to the original concentration. Whereas quiescence induction was incomplete at low concentration, 
the plant-parasitic nematode oscillation activity was still almost 3-fold lower than observed in water alone. (C) A similar pattern was observed for the 
plant-parasitic nematode Meloidogyne incognita. Letters indicate statistical differences. Bars indicate SEM.
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Induced quiescence in EPNs may have interesting appli-
cations in biological control. Indeed, EPN mass produc-
tion has been optimized (Ehlers, 2001), but downstream 
processes such as storage and transport can still be prob-
lematic. Inducing quiescence in EPNs with the root exudate 
significantly maintained EPN performance traits such as 
infectiousness, mobility, and lipid content (Fig.  2A–C). As 
in insect parasitoids (Casas et al., 2005; Denis et al., 2013), 
EPNs rely on their lipid reserves while foraging and infecting 
insect hosts (Patel et al., 1997). Loss of lipids was significantly 
lower in quiescent H. bacteriophora than in EPNs stored in 
water (Fig. 2C), possibly explaining their higher mobility and 
infectiousness after recovery (Fig. 2A and B). Similar to root 
penetration by plant-parasitic nematodes (Hubbard et  al., 
2005), infectiousness and mobility of EPNs recovering from 
quiescence tended to increase (Fig. 2A and B), suggesting a 
general increase of nematode activity after quiescence recov-
ery. Whereas the timescale used in this study is not pertinent 
for long-term storage, these data clearly imply that the addi-
tion of the active compounds to the storage formulation will 
increase the EPN shelf life.

Induced quiescence in EPNs can be problematic when aim-
ing at controlling insect pests in the rhizosphere. However, 
this apparent biological conflict might not occur in natural 
environments. Indeed, at lower concentrations of the exudate, 
as can be expected in the field, EPN activity was significantly 
boosted, while plant-parasitic nematodes remained quies-
cent (Fig.  4). Further tests under natural conditions must 
be performed, but the enhanced infectiousness of ‘frenetic’ 
EPNs (Fig.  5) suggests a dual effect of the tested exudate: 
root defences can simultaneously subdue ‘foes’, and invigor-
ate ‘friends’.

The present study reinforces the idea that plant exudates can 
help shape the dynamics of interactions not only in the rhizo-
sphere, but also at more distant regions in the soil (Rasmann 
et  al., 2012b; Erb et  al., 2013; Hiltpold et  al., 2013;). The 
strategy of plants to protect their root tips with exudates is in 
apparent conflict with an alternative strategy, the attraction of 
natural enemies upon herbivorous attack. Yet, because exu-
date bioactivity seems tuned to have opposite effects on plant 
mutualists and antagonists, the two strategies might effectively 
complement each other. The complexity of biotic and abiotic 
interactions in the rhizosphere is huge and difficult to fully 
understand, but each new finding leads to a better and broader 
understanding of this very particular ecosystem. Therefore 
the prospect of harnessing root exudation and exploiting it 
for enhanced pest control (Hiltpold and Turlings, 2012) may 
indeed be realistic (Degenhardt et  al., 2009; Hiltpold et  al., 
2010a, b; Ali et al., 2012; Hiltpold et al., 2012).

Supplementary material

Supplementary data can be found at JXB online.
Supplementary Figure S1. Effect of heat on the bioactivity 

of the pea root-cap exudate and the induction of quiescence 
in H. bacteriophora.

Supplementary Figure S2. Induction of quiescence in 
H. bacteriophora after the exudate was frozen.
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