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Fitting long-memory models by generalized linear regression

BY JAN BERAN
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SUMMARY

There is an increasing awareness of the importance of long-memory models in statistical
applications. If long memory is present, it has to be taken into account in order to obtain
reliable tests and confidence intervals. One obstacle to using models with long memory
in routine statistical analysis has been the lack of easily available and sufficiently versatile
statistical software. Here we propose a simple but flexible class of parametric models,
which can be used to model such behaviour. We demonstrate that these models can be
fitted by generalized linear regression. Standard statistical software packages can be used.
A data example is discussed.

Some key words: Fractional ARIMA; Generalized linear models; Long-range dependence; Maximum likelihood
estimation.

1. INTRODUCTION

Stationary time series models with long memory have become a very active field of
statistical research in the last decade; for a review of recent results see Beran (1992) and
Kiinsch (1986). Their importance in virtually all fields of statistical applications has been
demonstrated by numerous examples. References to the relevant literature and to data
sets are given by, for example, Mandelbrot (1983), Cox (1984), Hampel (1987), Beran
(1992), and by D. B. Percival in Technical Report No. 69, Department of Statistics,
University of Washington, Seattle.

In spite of the usefulness of long-memory models, their application in statistical practice
has been limited. The main reason is that, apart from some scattered specialized subrou-
tines with limited applicability, no general easily accessible software package for the stat-
istical analysis of such models exists. Moreover, estimation by maximum likelihood or
related methods seemed to require excessive CPU time, in particular when many parameters
have to be estimated. In this paper we demonstrate how a rich class of long-memory
models can be fitted by a Gaussian approximate maximum likelihood method, within the
setting of generalized linear models (McCullagh & Nelder, 1983). The statistical analysis,
i.e. estimation, tests, confidence intervals and diagnostics, of these models can therefore
be done by using standard statistical software for generalized linear regression, e.g. SPLUS,

GLIM. Estimation of the model parameters by generalized linear regression is not only fast,
but also turns out to be asymptotically efficient for Gaussian processes. Moreover, the
parameters are directly interpretable. The model class considered here is an extension of
short-memory models considered by Bloomfield (1973); also see Diggle (1990). The use
of regression packages for fitting times series models is suggested by Cameron & Turner
(1987). They apply generalized linear regression to ARMA-processes, Bloomfield's models
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and to a model suggested by Kolmogorov (1941) for the spectrum of turbulence in a fluid.
The first two models are short-memory processes, while the third model is a special
example of a long-memory process.

The paper is organized as follows. In § 2 we define what we mean by 'long memory'
and briefly review results on approximate Gaussian maximum likelihood estimators for
parametric models with long memory. In § 3 we introduce the new class of parametric
models. In § 4 we show, how for these models, the estimation procedure described in § 2
reduces to generalized linear regression. The practical application of the method is illus-
trated by a data example in § 5.

2. ESTIMATION OF LONG MEMORY

Let Xt be a linear stationary process with a one-sided moving average representation
X, = Z ak£t-k such that £ al < oo, where the summation is over the range k = 0 , . . . , oo,
and <j;s, seZ, are independent identically distributed random variables with E(£s) = 0 and
var (^s) < oo. The process X, is said to have long memory if the spectral density / has a
pole at the origin of the form

f{x)~b\x\l~2H (1)

as x->0, where \<H< 1 and b>0. In particular, (1) implies that the sum of all covari-
ances is infinite. More general definitions are possible, but (1) is sufficient in most situ-
ations. We consider parametric models f(x; 6) = <?i/(x; (1, y)), where y = (02, • • •, 0p+2) =
(H, 63,... ,6p+2). The first parameter 6t is the scale parameter, H determines the long-
term behaviour via equation (1), and the additional parameters 93,...,6p+2 allow for
flexible modelling of short-term properties.

Central limit theorems for approximate Gaussian maximum likelihood estimators of 6
are given in my ETH Zurich Ph.D. thesis, and by Fox & Taqqu (1986), Beran (1992),
Dahlhaus (1989) and by H. P. Graf in his ETH Zurich Ph.D. thesis for Gaussian processes,
and by Giraitis & Surgailis (1990) for the more general linear processes defined above. In
particular, Whittle's approximate maximum likelihood estimator 6 (Whittle, 1953) can be
obtained by treating the periodogram

\ - l E Xte»:

at Fourier frequencies xjn = 2nj/n, for ; = 1,2,.. . , n*, with n* equal to integer part of
\n — j , as independent exponential random variables with means f(xjn; 6), and maximizing
the corresponding likelihood function. The normalized difference n*(0 — 0) has asympto-
tically the same normal distribution as the exact Gaussian maximum likelihood estimator.
Although other techniques are used to prove this result (see the references above), the
same central limit theorem would be obtained by using the simplifying assumption that
all periodogram ordinates I(xln),..., /(xn*n) are exactly independent exponential random
variables with means f{xln),... , / (xn*n) .

3. DEFINITION OF FEXP-PROCESSES

The best known parametric models, which allow modelling of long memory and
short-range properties simultaneously, are fractional ARIMA models (Granger & Joyeux,
1980; Hosking, 1981). Fractional ARIMA models are a natural extension of standard ARIMA
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models (Box & Jenkins, 1970). Due to the special structure of these models, compu-
tationally fast approximate maximum likelihood methods can be developed; see e.g.
Haslett & Raftery (1989). As a simple alternative, we propose another class of models
which is an extension of Bloomfield (1973). The advantage of this class is that one can
estimate the parameters by using well known methods for generalized linear models.
Generalized linear regression is implemented in several standard statistics software
packages.

DEFINITION 1. Let g: [ — n, TT]->/?+ be a positive function such that

lim = 1
x->0 X

and g(x) = g(—x). Define ho=l, and let h1,h2,...,hp be functions which are piecewise
continuous in the whole interval [ — n, n~\. Also assume that hk(x) = hk(—x) and, for any n,
the n* x (p + 1) matrix H with column vectors

{hk(2n/n), hk(2n2/n), hk(2n3/n),..., hk(2nn*/n)}J (k = 0 , 1 , . . . , p)

is nonsingular. Furthermore, let 9 = (n0, H,nu..., np) be a real vector with \ ^H < 1. We
call Xt a fractional EXP-process (or an FEXP-process) with short-memory components
h1,...,hp and long-memory component g, if its spectral density is given by

f(x;9) = g(xy-™exp{ Y nMx)\. (2)

Similarly to fractional ARiMA-models, the class of FEXP-processes is very flexible.

Example 1: g(x) = | 1 — e'x\, hk(x) = cos kx (k = 0 , 1 , . . . , p). If H = \ (short memory), we
obtain the model class proposed by Bloomfield (1973). In its generality, this class is
comparable to ARMA-models: any piecewise continuous spectral density can be approxi-
mated with arbitrary accuracy. If 6j = 0 for j ^ 3, then we obtain a fractional ARIMA (0, d, 0)
model with d = H — \.

Example 2: g{x) = \\-eix\, ^(x) = |x|ft (k = 0,l,... ,p). A data example with H = \,
where a second order polynomial (p = 2) makes sense intuitively, is given by Diggle (1990,
pp. 125-6). In addition to that, Diggle multiplies the spectrum defined by (2) and H = \
by an AR(l)-spectrum 1/(1 — 2a cos x + a2). The same extension can be applied to the
models considered here.

4. APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION FOR FEXP-PROCESSES

For an FEXP-process, estimation of 0 by the method described in § 2 becomes very
simple. The method followed from the assumption that

with independent exponential random variables Zi and E(Zj)=l. For FEXP-models
we have

j = 0

Therefore, estimation of 9 reduces to the estimation of the regression parameters in a
generalized linear model with logarithmic hnk function, multiplicative exponential error,



820 JAN BERAN

intercept p0 = r]0, slope parameters (/?1}..., PP+i) = (1 — 2H, nu ..., rjp) and independent
x-variables logg(x), ht(x),..., hp(x). Estimation, tests, confidence intervals and diagnos-
tics can be obtained by applying standard methods and software for generalized linear
models. The introduction of the long-memory parameter does not destroy this convenient
property. This is due to the simple modelling of the long-memory component by an
exponential function

and due to the fact that the limiting properties of the periodogram are essentially, though
not exactly, the same as for short-memory processes; see § 2 above.

5. A DATA EXAMPLE

We consider the amount of coded information per frame, measured by the logarithm
of the number of so-called ATM cells per frame, for the first 1000 frames of a video signal
from a 'low activity' video scene with no camera movement and no change in the back-
ground; see Fig. 1. The scene was coded using a variable-bit-rate (VBR) codec, which is
designed for high-speed telecommunication networks. About 30 frames per second are
processed. More technical details about this series are given by Heeke (1991) and Heyman,
Tabatabai & Lakshman (1992). The periodogram in log-log coordinates is displayed in
Fig. 2. It was noted by J. Beran, R. Sherman, M. S. Taqqu and W. Willinger in a Bellcore,
Morristown technical memorandum that long memory is a typical feature of VBR-data.
Moreover, for several of the 20 data sets considered there, the periodogram, in log-log
coordinates, turned out to have the same qualitative features as Fig. 2, a negative slope
near the origin and otherwise an essentially concave shape. A simple way to model this
shape is to use the polynomial FEXP-models of Example 2 in § 3. One might in fact expect
that a low degree polynomial can capture the concave shape. This is confirmed by the
results in Table 1 and Fig. 2. Figure 2 shows a good agreement between observed and
fitted spectrum with p = 2. Together with the p-values in Table 1, this suggests that a
quadratic polynomial is sufficient.

200 400 600 800
Frame number

1000

Fig. 1. Variable-bit-rate data by H. Heeke and E. Hundt.

In conclusion, we can say that by embedding the analysis in the framework of gen-
eralized linear models, we can obtain a quick first analysis of the data, as well as develop
more complex models in an intuitive way. As in most situations where regression is applied,
the choice of the functions hu ..., hp is up to a certain degree arbitrary, and requires some
skill and experience. An interesting topic for future research will be to develop procedures
which would allow to estimate these functions nonparametrically, for example by using
estimation methods for additive models; see e.g. Buja, Hastie & Tibshirani (1989).
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Fig. 2. Periodogram and fitted spectrum of FEXP-model
(in log-log coordinates) for VBR data of Fig. 1.

Table 1. Parameter estimates for the FEXP

model with spectral density f(x; 6) =
|1 — eix\l~2H exp (L nj\x\J), where the summation
is over j = 0 , . . . , p, fitted to the data of Fig. 1, by

generalized linear regression

p Parameter Estimate St. dev. z-statist p-value

0o
0i
02

03

00

01

02

03

04

-1-343
-0-783

-2-856

0-428

-1-209
-0-741
-3124
0-579

-0027

0-249
0107
0-303
0072

0-425
0150
0-776
0-422
0076

-5-93
-7-32
-9-43
5-92

-2-84
-4-94
-403

1-37
-0-36

00000
00000
0-0000
00000

00045
00000
00001
01698
0-7218

•• 1. T h eNotation: Po = 1o, Pi=l-2H, Pj+1 = rij, for ; > 1. The
p-values are given for testing ft = 0 against the two-sided
alternative ft 4= 0.
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