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Abstract: We present an adaptive multilevel Monte Carlo (MLMC) method for weak approximations of solu-

tions to Itô stochastic di�erential equations (SDE). The work [11] proposed and analyzed an MLMC method

based on a hierarchy of uniform time discretizations and control variates to reduce the computational ef-

fort required by a single level Euler–Maruyama Monte Carlo method fromO(TOL−3) toO(TOL−2 log(TOL−1)2)
for a mean square error of O(TOL2). Later, the work [17] presented an MLMC method using a hierarchy of

adaptively re�ned, non-uniform time discretizations, and, as such, it may be considered a generalization of

the uniform time discretizationMLMCmethod. This work improves the adaptive MLMC algorithms presented

in [17] and it also provides mathematical analysis of the improved algorithms. In particular, we show that un-

der some assumptions our adaptive MLMC algorithms are asymptotically accurate and essentially have the

correct complexity but with improved control of the complexity constant factor in the asymptotic analysis.

Numerical tests include one case with singular drift and one with stopped di�usion, where the complexity

of a uniform single level method is O(TOL−4). For both these cases the results con�rm the theory, exhibiting

savings in the computational cost for achieving the accuracy O(TOL) from O(TOL−3) for the adaptive single

level algorithm to essentially O(TOL−2 log(TOL−1)2) for the adaptive MLMC algorithm.
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1 Introduction
This work developsmultilevel adaptive algorithms for weak approximation of Itô stochastic di�erential equa-

tions (SDEs)

dX(t) = a(t, X(t))dt + b(t, X(t))dW(t), 0 < t < T, (1.1)

where X(t; ø) is a stochastic process in ℝd, with randomness generated by a k-dimensional Wiener process

with independent components W(t; ø), cf. [20, 28], and a(t, x) ∈ ℝd and b(t, x) ∈ ℝd×k are the drift and dif-

fusion �uxes. For any given su�ciently well behaved function g : ℝd → ℝ our goal is to approximate the

expected value E[g(X(T))] by adaptive multilevel Monte Carlo (MLMC) methods. A typical application is to

compute option prices in mathematical �nance, cf. [13, 19], and other related models based on stochastic dy-

namics are used for example in molecular dynamics simulations at constant temperature [5], for stochastic

climate prediction [23], and for wave propagation in randommedia [1].

The computational complexity of a Monte Carlo method is determined by the number of sample realiza-

tions approximatingg(X(T))and their average cost.Whena standardMonteCarlomethodbasedonauniform

time stepping scheme of weak order one is used to compute E[g(X(T))] to an accuracy TOLwith high proba-

bility, the cost is asymptotically proportional to TOL−3, provided that the functions a, b, and g are su�ciently

regular. A Monte Carlo method cannot do better than a cost proportional to TOL−2, since this is the total cost
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when each realization of g(X(T)) is generated exactly at a unit cost. The goal of this work is to combine two

techniques for improving the standard Monte Carlo method: the �rst is to use adaptive time stepping which

retains the single level complexity O(TOL−3) for a wider set of problems than a uniform time stepping does,

and can reduce the proportionality constant for other problems with widely varying scales. The second is the

MLMC method, which in many cases can reduce the complexity to nearly the optimal O(TOL−2) when based

on the Euler–Maruyama scheme, and which can achieve the optimal rate using the Milstein scheme.

In the context of weak approximation of SDEs, the MLMC method based on uniform time stepping was

introduced by Giles in [11], and around ten years prior to Giles’ method, a similar MLMC idea was presented

for applications in the context of parametric integration, cf. [15, 16]. Giles’ MLMC method, which is an ex-

tension of a two-level control variate technique, cf. [21], reduces the complexity of weak approximations of

SDEs by a control variate type variance reduction. The variance reduction is obtained using subtly correlated

numerical realizations of the SDE (1.1) on hierarchies of uniform time meshes of size

Ätℓ = C−ℓÄt0, C ∈ {2, 3, . . .} and ℓ ∈ {0, 1, . . . , L}. (1.2)

That is, the MLMC method approximates E[g(X(T))] by the multilevel estimator

AML(g(X(T));M0) =
M0

∑
i=1

g(X0(T; øi,0))
M0

+
L
∑
ℓ=1

Mℓ

∑
i=1

g(Xℓ(T; øi,ℓ)) − g(Xℓ−1(T; øi,ℓ))
Mℓ

, (1.3)

withXℓ(T; ø) denoting a numerical solution realization generated on a mesh with uniform step size Ätℓ. The
multilevel estimator is a sum of L + 1 sample averages computed frommutually independent sample sets on

the given mesh levels withMℓ respective, independent realizations. Furthermore, the number of realizations

on the higher leveles, {Mℓ}
L
ℓ=1, have a �xed relation to the number of realizations on the coarsest mesh, M0,

which is the only free parameter in (1.3), when the number of levels L is �xed. To reduce the variance in the es-

timator (1.3), the realization pairsXℓ(T; øi,ℓ) andXℓ−1(T; øi,ℓ) of the summands g(Xℓ(T; øi,ℓ)) − g(Xℓ−1(T; øi,ℓ))
for each level ℓ > 0 are generated from the same Brownian path,W(t; øi,ℓ), but realized on di�erent temporal

grids with uniform time steps, Ätℓ and Ätℓ−1, respectively. The e�ciency of the multilevel estimator stems

from an a priori known order of strong convergence for the numerical method employed on each level of the

hierarchy.

Supposing TOL > 0 is the desired accuracy in the approximation of E[g(X(T))], the main result of Giles’

work [11] is that the computational cost needed to achieve the Mean Square Error (MSE)

E[(AML(g(X(T));M0) − E[g(X(T))])2] = O(TOL2), (1.4)

when generating numerical realizationsXℓ(T; ø) using the �rst order accurate Forward Euler method, can be

reduced from O(TOL−3) with the standard Monte Carlo method to O((TOL−1 log(TOL−1))2) using the MLMC

method. Furthermore, whenever the function g is Lipschitz and for scalar Itô SDE, the computational cost

can be further reduced toO(TOL−2) using the �rst order strong convergenceMilsteinmethod. In addition, the

work [10] shows how to apply the Milstein method for several scalar SDE cases where the Lipschitz condition

is not ful�lled and still obtain the cost O(TOL−2).
Building on thework on adaptivemethods for weak approximation of SDE presented in [25, 29] and Giles’

work on uniform time stepping MLMCmethods [11], the contribution of the present paper is the development

and analysis of two novel MLMC algorithms with adaptive, non-uniform time stepping: one algorithm that

uses adaptive mesh re�nements to construct a path dependent mesh for each realization and another al-

gorithm that constructs the meshes adaptively based on sample averaged error densities and then uses the

samemesh for all realizations on a givenmesh level in the hierarchy. The former algorithm is referred to as the

stochastic time stepping algorithm and the latter as the deterministic time stepping algorithm. Adaptivity is

useful for problems lacking regularity since adaptivemesh re�nement algorithms resolve singular points bet-

ter than uniformmesh algorithms by construction, andmay consequently also have considerably lower com-

putational complexity, cf. [26]. The idea of extending the MLMC method [11] to hierarchies of adaptively re-

�ned, non-uniform time discretizations that are generated by the adaptive algorithm introduced in [8, 25, 26]

was �rst introduced and tested computationally by the authors in [17].
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Thenumericalmethod for SDEconsidered in this paper is theEuler–Maruyamamethodwithnon-uniform

time stepping which we now recall for the reader’s convenience. Let 0 = t0 < t1 < ⋅ ⋅ ⋅ < tN = T denote a given

time discretization, without reference to its place in the hierarchies, and {0 = W(t0; ø),W(t1; ø), . . . ,W(tN; ø)}
denote a realization of the Wiener process on that discretization. Then the Euler–Maruyama approximation

to the true solution of (1.1) is given by the scheme

X(t0; ø) = X(0),

X(tn+1; ø) = a(X(tn; ø), tn)(tn+1 − tn) + b(X(tn; ø), tn)(W(tn+1; ø) − W(tn; ø)),
(1.5)

iterated for n = 1, 2, . . . . In the setting of adaptive mesh re�nement there is no given notion of mesh size,

so the hierarchy of meshes for the multilevel estimator (1.3) cannot be described as for the uniform time

stepping (1.2). Instead, we generate a hierarchy of meshes by successively increasing the accuracy in our

computations, introducing the time discretization error tolerance levels¹

TOLT, ℓ = 2ℓ−LTOLT, ℓ ∈ {0, 1, . . . , L}, (1.6)

and (by adaptive re�nements based on error indicators) determining the corresponding meshes so that for

each level ℓ ∈ {0, 1, . . . , L},
|E[g(X(T))] − E[g(Xℓ(T))]| ≲ TOLT, ℓ.

In Section 4, we prove that this procedure results in an adaptive MLMC algorithm ful�lling

|AML(g(X(T));M0) − E[g(X(T))]| ≤ TOL, (1.7)

with probability close to one, and that the computational cost for obtaining this error estimate (1.4) is essen-

tially O(TOL−2 log(TOL−1)2), cf. Theorem 4.1 and 4.2, respectively. Analogous theoretical results also hold for

the adaptive algorithm with deterministic stepping, but, for the sake of brevity, they are not included here,

see [25] for more information on this setting.

This work also includes three numerical examples, the most relevant ones being one with a drift sin-

gularity and one with a stopped di�usion. For both of these examples the observed computational work of

multilevel Monte Carlo based on adaptive time stepping is approximatelyO(TOL−2 log(TOL−1)2), that is close
to the optimal complexity and more e�cient than the single level version of the adaptive algorithm. The rest

of this paper is organized as follows. Section 1.1 introduces the notion of error density and error indicators,

and recalls useful results for single level adaptive forward Euler Monte Carlo methods. Section 2 describes

the adaptive multilevel Monte Carlo algorithms. Section 3 presents numerical examples and Section 4 proves

accuracy and complexity results for the adaptive MLMC algorithm.

1.1 A single level posteriori error expansion

In this subsection we give a short description the adaptive numerical method we will use for SDE, recalling

theoretical results and stating required regularity condition for the method.

Assume that the processX satis�es (1.1) and its corresponding numerical solutionX is given by (1.5), then

the error expansions in [29, Theorem 1.2 and 2.2] have the form

E[g(X(T)) − g(X(T))] = E[
N−1
∑
n=0

ñnÄt
2
n] + higher order terms, (1.8)

where ñnÄt
2
n are computable error indicators and ñn measures the density of the global error in (1.8). Typically,

an adaptive algorithm does the two following things iteratively:

(1) if the error indicators satisfy an accuracy condition, then stop; otherwise

(2) the algorithm chooses where to re�ne the mesh based on the error indicators and return to step (1).

1 For error control, the tolerance is split into a statistical error tolerance and a time discretization error tolerance, that is,

TOL = TOLS + TOLT, cf. Section 2.
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In addition to estimating the global error E[g(X(T)) − g(X(T))] in the sense of equation (1.8), the error indi-

cators ñnÄt
2
n indicate which mesh intervals that should be re�ned to reach the optimal mesh; a result that

follows from the almost sure convergence of the density ñn as TOLT ↓ 0, cf. [26, Section 4].

Given an initial timediscretizationÄt[0](t), the stochastic time stepping algorithm re�nes the initialmesh

until²

|ñ(t, ø)|(Ät(t))2 < constant. (1.9)

The �nal mesh re�nment Ät(t) is obtained by repeated halving of mesh intervals and thus takes the form

Ät(t) = Ät[0](t)/2n for some natural number n = n(t, ø).

The criterion (1.9) uses an approximate error density function ñ, satisfying for t ∈ [0, T] and all outcomes ø
the uniform upper and lower bounds

ñlow(TOLT) ≤ |ñ(t, ø)| ≤ ñup(TOLT). (1.10)

In this construction the positive functions ñlow and ñup are chosen so that the limits

ñup(TOLT) → +∞, ñlow(TOLT) → 0 and

TOLT
ñlow(TOLT)

→ 0

hold as TOLT ↓ 0.
For each realization, successive subdivisions of the time steps will asymptotically yield the smallest

mesh, in terms of grid points, satisfying (1.9). Furthermore, the Wiener increments ÄW generated on the re-

�ned mesh by Brownian bridge interpolation, cf. [20], will have the correct distribution with the necessary

independence. At this point we note that adaptive time stepping for SDE is a subtle construction that may

lead to wrong results if implemented incorrectly, cf. [9].

Remark 1.1. Although the time and Wiener increments adaptively generated to satisfy (1.9)–(1.10) are not

adapted to the natural Wiener �ltration, it is veri�ed in [29] that the adaptive method indeed converges to the

correct limit, equaling the limit of the Euler–Maruyama method with adapted time steps.

Remark 1.2. Thework [29] includes an additional assumption, namely that the sensitivity of the error density

to values of the Wiener process can be bounded by a deterministic function of TOLT. This assumption can

be removed by estimating the sensitivity of the error density to values of the Wiener process directly in terms

of polynomials of the Wiener increments and then following essentially the same steps of the analysis given

in [29, Section 3], taking into account that an accepted sequence of re�nements remains the same under

perturbations of the Wiener increments if all the signs of the re�nement inequalities (1.9) remain unchanged

for all time steps during the �nite sequence of re�nements. This line of analysis yields the same estimates for

strong and weak convergence as stated in [29].

The regularity conditions presented in the following lemma is a subset of the conditions required in

the work [27] for developing an adaptive weak approximation method in the more general setting of jump

di�usions.

Lemma 1.3 (Regularity [27, Lemma 2.1]). (a) Assume that the following regularity conditions hold:

(1) The functions a(t, x) and b(t, x) are continuous in (t, x) and are twice continuously di�erentiable with

respect to x.
(2) The partial derivatives of �rst and second order with respect to x of the functions a and b are uniformly

bounded.

(3) The function g is twice continuously di�erentiable, and together with its partial derivatives of �rst and

second order it is uniformly bounded.

Then the cost to go function, de�ned by

u(t, x) = E[g(X(T)) | X(t) = x], (1.11)

2 The precise expressions including the constants are given in (2.7) and (2.20) below.
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satis�es the Kolmogorov equation

àtu(t, x) + akàku(t, x) + dknàknu(t, x) = 0, u(T, ⋅ ) = g, (1.12)

where we use the Einstein summation convention³ and dkn := blkb
l
n/2.

(b) Assume further that the following extra regularity conditions are satis�ed:

(1) The functions àâa(t, ⋅ ) and àâb(t, ⋅ ) are bounded uniformly in t for multi-indices â with 1 ≤ |â| ≤ 8.
(2) The functions a( ⋅ , x), b( ⋅ , x) have continuous and uniformly bounded �rst order time derivatives.

(3) The function g has spatial derivatives àâg, with polynomial growth for |â| ≤ 8.
Then the function u has continuous partial derivatives with respect to x up to the order 8, satisfying the

following polynomial growth condition: for all i ∈ {0, 1, 2} and á ∈ ℕd
with i + |á| ≤ 8 there exist pá,i ∈ ℕ

and Cá,i > 0 such that

max
0≤t≤T

|àitàáu(t, x)| ≤ Cá,i(1 + |x|pá,i ) for all x ∈ ℝd.

The strong convergence result we present next was stated and proved in [29, Lemma 3.1]. The convergence

result is helpful for proving the existence of a stochastic time error expansion and for bounding the statistical

error of the weak approximation.

Lemma 1.4 (Strong convergence). ForX, the solution of (1.1), suppose that a, b, and g satisfy the assumptions

in Lemma 1.3, thatX is constructed by the forward Eulermethod based on the stochastic time stepping algorithm

described in Section 2 with step size Ätn satisfying (1.9)–(1.10), and that the corresponding ÄWn are generated

by Brownian bridges. Then

sup
0≤t≤T
E[|X(t) − X(t)|

2
] = O(Ätsup) = O(

TOLT
ñlow(TOLT)

) → 0 (1.13)

as TOLT ↓ 0, where Ätsup ≡ supn,ø Ätn(ø).

A theorem proving the existence of an error expansion for the more general setting of jump di�usions was

given in the work [27]. We recall that theorem here, in a form adapted to our setting.

Theorem 1.5 (Single level stochastic time stepping error expansion [27, Theorem 3.1]). Given the assump-

tions in Lemma 1.4 and a deterministic initial valueX(0), the time discretization error in (1.8)may be expressed

by an expansion based on the drift and di�usion �uxes and the discrete dual functions ÿ, ÿ�
, and ÿ��

given

in (1.16)–(1.21). The expansion has the following computable leading order terms:

|E[g(X(T))]−E[g(X(T))]| = E[
N−1
∑
n=0

̃ñ(tn, ø)(Ätn)
2]+O((

TOLT
ñlow(TOLT)

)
1/2

(
ñup(TOLT)

ñlow(TOLT)
)
å

)E[
N−1
∑
n=0

(Ätn)
2] (1.14)

for any å > 0 and where

̃ñ(tn, ø) ≡
1
2
((àtak + àjakaj + àijakdij)ÿk(tn+1)

+ (àtdkm + àjdkmaj + àijdkmdij + 2àjakdjm)ÿ
�
km(tn+1)

+ (2àjdkmdjr)ÿ
��
kmr(tn+1))

(1.15)

and the terms in the sum of (1.15) are evaluated at the a posteriori known points (tn, X(tn)), i.e.,

àáa ≡ àáa(tn, X(tn)), àáb ≡ àáb(tn, X(tn)), àád ≡ àád(tn, X(tn)).

Here ÿ ∈ ℝd is the solution of the discrete dual backward problem

ÿi(tn) = àicj(tn, X(tn))ÿj(tn+1), tn < T,

ÿi(T) = àig(X(T)),
(1.16)

3 When an index variable appears twice in a single term, this means that a summation over all possible values of the index takes

place. For example, akàku(t, x) = ∑d
k=1 akàku(t, x), where d is the space dimension of the SDE (a, x ∈ ℝd).
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with

ci(tn, x) ≡ xi + Ätnai(tn, x) + ÄWℓ
n b

ℓ
i (tn, x) (1.17)

and its respective �rst and second variation

ÿ�
ij ≡ àxj(tn)ÿi(tn) ≡

àÿi(tn; X(tn) = x)
àxj

, (1.18)

ÿ��
ikm(tn) ≡ àxm(tn)ÿ

�
ik(tn) ≡

àÿ�
ik(tn; X(tn) = x)

àxm
, (1.19)

respectively satisfying

ÿ�
ik(tn) = àicj(tn, X(tn))àkcp(tn, X(tn))ÿ

�
jp(tn+1) + àikcj(tn, X(tn))ÿj(tn+1), tn < T,

ÿ�
ik(T) = àikg(X(T)),

(1.20)

and

ÿ��
ikm(tn) = àicj(tn, X(tn))àkcp(tn, X(tn))àmcr(tn, X(tn))ÿ

��
jpr(tn+1)

+ àimcj(tn, X(tn))àkcp(tn, X(tn))ÿ
�
jp(tn+1) + àicj(tn, X(tn))àkmcp(tn, X(tn))ÿ

�
jp(tn+1)

+ àikcj(tn, X(tn))àmcp(tn, X(tn))ÿ
�
jp(tn+1) + àikmcj(tn, X(tn))ÿj(tn+1), tn < T,

ÿ��
ikm(T) = àikmg(X(T)).

(1.21)

Observe that the constant in O that appears in (1.14) may not be uniform with respect to the value å. Thus,
in practice one chooses å = å(TOL) to minimise the contribution of the remainder term to the error expan-

sion (1.14).

At the end of this section, we describe how the error density ̃ñ(tn, ø) in (1.15) is modi�ed so that the

bounds (1.10) hold and Ätsup → 0 as TOLT ↓ 0. The latter criterion is needed to ensure that the adaptive

method converges strongly, cf. Lemma 1.4. For t ∈ [tn, tn+1) and n = 1, . . . , N, consider the piecewise constant

function

ñ(t) ≡ sign( ̃ñ(tn))min(max(| ̃ñ(tn)|, ñlow(TOLT)), ñup(TOLT)), (1.22)

where

ñlow(TOLT) = TOL
̄ã
T, 0 < ̄ã <

á
á + 2

, 0 < á <
1
2
,

ñup(TOLT) = TOL
−r
T , r > 0,

(1.23)

and sign(x) := 1 for x ≥ 0 and −1 for x < 0. The error density ñ de�ned by (1.22) is used in mesh re�nement,

cf. (2.19) and (2.20) for the stochastic time stepping algorithm, and (2.6) and (2.7) for the deterministic (path

independent) time stepping algorithm. From now on, with a slight abuse of notation, let ñ(tn) = ñn denote the
modi�ed density (1.22).

Following the error expansion in Theorem 1.5, the time discretization error is approximated by

|ET| = |E[g(X(T)) − g(X(T))]| ≲ E[
N−1
∑
n=0

r(n)] (1.24)

using the error indicator, r(n), de�ned by

r(n) ≡ |ñ(tn)|Ät
2
n (1.25)

with the modi�ed error density de�ned by (1.22). According to [25, Corollary 4.3 and Theorem 4.5], the error

density converges almost surely to a limit density we denote ̂ñ, i.e., ñ → ̂ñ as TOLT ↓ 0.

Remark 1.6 (More general expected values). Suppose that ℎ : [0, T] × ℝd → ℝ is su�ciently smooth. Then

the error estimates in Theorem 1.5 includes estimates of expected values of the form

E[
T

∫
0

ℎ(t, X(t))dt + g(X(T))].
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This follows from introducing the additional variable X(d+1)(t) and the equation dX(d+1)(t) = ℎ(t, X(t))dt to
the SDE (1.1) and eliminating the additional variables inX and ÿ, so that equation (1.16) is extended to

ÿi(tn) = àicj(tn, X(tn))ÿj(tn+1) + àiℎ(tn, X(tn))Ätn, tn < T,

ÿi(T) = àig(X(T)),

equation (1.20) is extended to

ÿ�
ik(tn) = àicj(tn, X(tn))àkcp(tn, X(tn))ÿ

�
jp(tn+1) + àikcj(tn, X(tn))ÿj(tn+1) + àikℎ(tn, X(tn))Ätn, tn < T,

ÿ�
ik(T) = àikg(X(T)),

and equation (1.21) is extended in a similar fashion.

2 Adaptive algorithms and multilevel variance reduction
In this section we describe two versions of the adaptive MLMC algorithm. In Section 2.1, we present the de-

terministic (path independent) time stepping adaptive MLMC algorithm. This algorithm is designed for SDEs

with singularities which occur essentially at deterministic times. For this class of problems the same re�ned

meshmay be used to e�ciently improve the accuracy of all realizations at a given accuracy threshold. An ex-

ample from this class of problems, which we present in more detail in Section 3.2, is the drift singularity

dX(t) =
{
{
{

X(t)dW(t), t ∈ [0, á],
X(t)
2√t−ádt + X(t)dW(t), á ∈ (0, T), t ∈ (á, T].

The deterministic time stepping adaptive MLMC algorithm constructs a mesh hierarchy by adaptive re�ne-

ments based on comparatively small sample sets and then performs a greater number of realizations on the

constructed mesh hierarchy to control the statistical error.

The second algorithm, which we present in Section 2.2, is the stochastic (path dependent) time stepping

adaptive MLMC algorithm. This algorithm is designed for SDE problems where the optimal mesh re�nement

depends strongly on the realization, or path, considered. The stopped di�usion SDE

dX(t) = 1X(t)<2(
11
36

X(t)dt +
1
6
X(t)dW(t)) and X(0) = 1.6

is an example of such a problem where the mesh re�nement of a numerical realization X(t; ø) is most im-

portant when the realization is close to the stopping barrier x = 2. See Section 3.3 for more on this stopped

di�usion problem. For the stochastic time stepping adaptive MLMC algorithm, meshes are adaptively re�ned

for each individual realization of the underlying Wiener process.

2.1 Path independent time stepping

We recall that for a given SDE (1.1), function g : ℝd → ℝ, and tolerance TOL > 0, our goal is to construct an

adaptive MLMC algorithm for which the event

|AML(g(X(T));M0) − E[g(X(T))]| ≤ TOL

holds with probability close to one for the multilevel estimatorAML(g(X(T));M0) that is de�ned by (1.3). We

approach this goal by splitting the above approximation error as follows:

|AML(g(X(T));M0) − E[g(XT)]| ≤ |E[g(XL(T)) − g(X(T))]|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:ET

+ |AML(g(X(T));M0) − E[g(XL(T))]|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=:ES

,

and controlling the total error by requiring that the time discretization error ful�lls ET ≤ TOLT, asymptoti-

cally, and that the statistical error ful�lls ES ≤ TOLS, with high probability. Here, the tolerance also has been
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split into a time discretization error tolerance and a statistical error tolerance,

TOL = TOLT + TOLS.

The computations then naturally divides into two phases. The �rst phase, consisting of Algorithm 1 and Algo-

rithm 2, constructs a hierarchy of meshes to control the time discretization error ET. The second phase, con-

sisting of Algorithm3,Algorithm4andAlgorithm5, computes a su�ciently large number of Euler–Maruyama

realizations (1.5) on the constructed hierarchy of grids to ensure thatES ≤ TOLS, with probability close to one.

2.1.1 Generating the mesh hierarchy

We start by generating a hierarchy of meshes {Ät{ℓ}}Lℓ=0 for numerical approximation of the SDE (1.1), with the

ℓth mesh given by

Ät{ℓ} = (0 = t{ℓ}0 , t{ℓ}1 , . . . , t{ℓ}Nℓ
= T) and Ät{ℓ}n := t{ℓ}n+1 − t{ℓ}n .

The meshes are adaptively re�ned from a given initial, usually but not necessarily, uniform mesh Ät{−1} in
a sequential manner such that Ät{ℓ−1} ⊂ Ät{ℓ} for all ℓ ∈ {0, 1, . . . , L}. On level ℓ the mesh is constructed with

the aim that the time discretization error in the approximation of E[g(Xℓ(T))] ful�lls

|E[g(Xℓ(T)) − g(X(T))]| < 2L−ℓTOLT =: TOLT, ℓ, (2.1)

where Xℓ(T) denotes an Euler–Maruyama approximation of the SDE (1.1) on the mesh Ät{ℓ}. The number of

mesh levels L is chosen so that the largest tolerance

TOLT, 0 = 2LTOLT (2.2)

is much larger than TOLT and results in a quite coarse mesh on level 0. To be more precise, with a rough es-

timate of the magnitude of E[g(X(T))] taken into account we prescribe an upper bound⁴ TOLT,Max
for TOLT, 0

and determine L by the equation

L = ⌊log2(TOLT,Max
/TOLT)⌋. (2.3)

For the construction of a time step re�nement criterion we introduce the following notation for the mean

number of time steps of the accepted mesh on level ℓ:

Nℓ := E[
T

∫
0

1
Ät{ℓ}(ó)

dó], (2.4)

and Ät{ℓ}( ⋅ ) : [0, T] → ℝ+ denotes the step function

Ät{ℓ}(ó) := Ät{ℓ}n(ó), where n(ó) := {m ∈ {0, 1, . . . , Nℓ − 1} | t{ℓ}m ≤ ó < t{ℓ}m+1}.

Furthermore, for a set ofM independent samples, we let

A(f;M) :=
1
M

M
∑
i=1

f(øi) and V(f;M) :=
1

M − 1

M
∑
i=1

(f(øi) − A(f;M))2 (2.5)

denote the sample average operator and the sample variance operator, respectively.

The inputs in Algorithm 1 are: initial mesh Ät{−1}, initial number of sample realizations M−1, time dis-

cretization error tolerance TOLT, grid levels L, initial estimate of the number of time steps on the accepted

coarse mesh N0 (i.e., N0 ≈ N0), and the three parameters C
R
, C

S
, and R which are all used in the re�nement

and stopping conditions (2.7), (2.6), and (2.10), respectively. We choose the initial estimated number of time

stepsN0 as a small integer not smaller than the number of steps in Ät{−1}.

4 For example take TOLT,Max
as half the estimated value of E[g(X(T))].
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On a given level ℓ, the output mesh Ät{ℓ} is computed by �rst setting Ät{ℓ} = Ät{ℓ−1}, Mℓ = Mℓ−1, and

Nℓ = 2Nℓ−1 (Nℓ is an estimate of the generally unknown value Nℓ de�ned in (2.4)). Thereafter, Mℓ realiza-

tions of g(Xℓ(T)) are generated on the mesh Ät{ℓ} and the sampled error indicators r[ℓ](n), as de�ned in

equation (1.25), are computed for all the time steps of the mesh on each of the Mℓ generated realizations.

WithNℓ denoting the the number of timesteps in the present mesh Ät{ℓ}, the mesh is accepted if the stopping

condition

max
1≤n≤Nℓ

A(r[ℓ](n);Mℓ) < C
S

TOLℓ
Nℓ

(2.6)

is ful�lled. Otherwise, the n-th time step is re�ned by splitting it into two equal parts if

A(r[ℓ](n);Mℓ) ≥ C
R

TOLℓ
Nℓ

. (2.7)

Normally, the value for C
R
would be around 2, and one must take C

S
> C

R
following the theory developed

in [25, 26]. If the mesh is re�ned, the Wiener increments of each of the Mℓ realizations of g(Xℓ(T)) is corre-

spondingly re�nedbyBrownianbridge interpolation,Nℓ is set to thenumber of time steps in the re�nedmesh,

the estimated mean number of time steps is updated to Nℓ = max{Nℓ, Nℓ}, and the realizations of g(Xℓ(T))
are recomputed on the re�nedmesh. This proecdure is repeated until the stopping condition (2.6) is ful�lled.

The adaptive re�nements of the computational grid are based on the sample averaged error indica-

tors A(r[ℓ](n);Mℓ). To estimate the mean error indicators E[r[ℓ](n)] with su�cient accuracy, we need a mech-

anism for determining how many samples to use in the sample averages, i.e., Mℓ. With EÄt{ℓ} denoting the

computed estimate of the time discretization error, i.e.,

EÄt{ℓ} =
Nℓ

∑
n=1

A(r[ℓ](n);Mℓ), (2.8)

a reasonable reliability requirement is

√Var(EÄt{ℓ} ) < R E[EÄt{ℓ} ] (2.9)

for some suitably chosen 0 < R < 1. In our numerical examples, for instance, we use R = 0.2. The variance

of EÄt{ℓ} is however unknown, but the i.i.d. distribution of the sampled error indicators motivates the approx-

imation

Var(EÄt{ℓ} ) ≈
V(∑Nℓ

n=1 r[ℓ](n);Mℓ)
Mℓ

for ℓ = 0, 1, . . . , L.

We consequently approximate the reliability requirement (2.9) by

√V(∑Nℓ
n=1 r[ℓ](n);Mℓ)

Mℓ
< R EÄt{ℓ} for ℓ = 0, 1, . . . , L, (2.10)

where the number of sample realizations Mℓ used on level ℓ in the grid construction phase is increased by

repeated doubling, i.e., Mℓ = 2Mℓ, until inequality (2.10) is satis�ed. As described earlier, the initial batch

size at each level is set byMℓ = Mℓ−1, whereMℓ−1 denotes the stopped number of samples at level ℓ − 1, and
for level ℓ = 0 it turns out to be su�cient to use initial batch sizeM0 = M−1 with

M−1 = const ⋅ TOL−1T . (2.11)

The adaptive algorithm that generates the above describedmeshhierarchy for the deterministic time stepping

adaptive MLMC algorithm is presented in Algorithm 1–2 in Section 2.3.

2.1.2 Multilevel simulations on a given hierarchy

In the second phase we will describe the algorithms which ensure that our adaptive MLMC estimate

of E[g(XL(T))] ful�lls the statistical error bound

ES = |AML(g(X(T));M0) − E[g(XL(T))]| ≤ TOLS, (2.12)
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with probability close to one. We recall from (1.3) that the multilevel estimator is de�ned by

AML(g(X(T));M0) = A(g(X0(T));M0) +
L
∑
ℓ=1

A(g(Xℓ(T)) − g(Xℓ−1(T));Mℓ), (2.13)

where the realization pairsXℓ(T; øi,ℓ) andXℓ−1(T; øi,ℓ) that are used in g(Xℓ(T; øi,ℓ)) − g(Xℓ−1(T; øi,ℓ)) for each
level ℓ > 0 are generated by the Euler–Maruyamamethod (1.5) using the same Brownian pathW(t; øi,ℓ) on the

respective di�erent temporal meshes Ät{ℓ} and Ät{ℓ−1} that were computed by Algorithm 1, which is presented

in Section 2.3. Furthermore, all Brownian paths {W(t; øi,ℓ)}i,ℓ are independent, and the number of samples

at the coarsest level is set to M0 = 2L+⌈CMLL⌉+1
for a suitable constant CML ∈ (0, 1), cf. Remark 4.11, and the

number of samples on higher levels is expressed in terms ofM0 by the ratio

Mℓ =
M0
2L

⌈2L
ñlow(TOLT, 0)TOLT, ℓ
ñlow(TOLT, ℓ)TOLT, 0

⌉, ℓ = 1, . . . , L, (2.14)

where ñlow is the lower bound for the error density introduced in (1.23) and ⌈ ⋅ ⌉ denotes rounding upwards to

the nearest integer. The enforced lower bound for the sample sets {Mℓ}
L
ℓ=0 implies thatML → ∞ as TOL ↓ 0,

and this motivates the approximation of

AML(g(X(T));M0) − E[g(XL(T))]

√Var(AML(g(X(T));M0))

by a normal distributed random variable; see Lemma 4.13 in Section 4 for a justi�cation of this approximation

for the stochastic time stepping algorithm. Relying on this approximation, the statistical error (2.12) will be

controlled by bounding the multilevel estimator variance

√Var(AML(g(X(T));M0)) ≤
TOLS
CC

,

for a given positive con�dence parameter CC. The variance Var(AML(g(X(T));M0)) is however unknown,

so we introduce the following approximation:

Var(AML(g(X(T));M0)) ≈
V(g(X0(T));M0)

M0
+

L
∑
ℓ=1

V(g(Xℓ(T)) − g(Xℓ−1(T));Mℓ)
Mℓ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=: ò2

. (2.15)

Our stopping criterion for the Monte Carlo simulations then becomes

ò <
TOLS
C

C

. (2.16)

Until this condition is ful�lled, the number of samples is iteratively doubled (M0 = 2M0) and the num-

ber of samples at the levels {Mℓ}
L
ℓ=1 are updated according the ratio (2.14), and a new sample estimate

AML(g(X(T));M0) is generated using the multilevel estimator (2.13). Having determined M0, we lastly gen-

erate and return the output estimateAML(g(X(T));M0).
The probability of controlling the statistical error, i.e., ful�lling the event (2.12) depends on the chosen

value for the con�dence parameter C
C
. For example, with C

C
= 1.65 the event

|AML(g(X(T));M0) − E[g(XL(T))]| < C
C
ò

occurs with probability greater than 0.9, asymptotically as TOL ↓ 0. See Algorithm 3–5 in Section 2.3 for more

details on the MLMC algorithms approximating E[g(XL(T))] with the deterministic time stepping algorithm.

We refer to [2] for a performance study of this type of Monte Carlo sequential stopping rules.

2.2 Stochastic time stepping

In this subsection we describe the stochastic time stepping MLMC algorithm for approximating the expecta-

tion E[g(X(T))]. Quite similar to the setting of path independent time steps, the error control of the MLMC es-

timate |AML(g(X(T));M0) − E[g(X(T))]| is in this setting based on constructing numerical realizationsXℓ(t)
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on stochastic adaptively re�ned meshes Ät{ℓ} so that the time discretization errors

|E[g(Xℓ(T)) − g(X(T))]| ≤ TOLT, ℓ for ℓ = 0, 1, . . . , L (2.17)

are asymptotically ful�lled, and by determining the number of samplesM0 to ensure that the statistical error

|AML(g(X(T));M0) − E[g(XL(T))]| ≤ TOLS (2.18)

is ful�lled with a given con�dence.

The control of the statistical error (2.18) is very similar to that in the setting of path independent time

steps:

(1) Set the initial number of samplesused in theMLMCestimator (2.13) toM0 = 2L+⌈CMLL⌉+1
withCML ∈ (0, 1),

cf. Remark 4.11.

(2) Con�gure the number of samplesMℓ on higher levels in terms ofM0 by the ratio (2.14).

(3) Generate realizations {Xℓ(T)} for the multilevel estimator AML(g(X(T));M0) and compute the sample

variance ò2
as de�ned in (2.15).

(4) If the stopping condition (2.16) is ful�lled, generate a last output estimateAML(g(X(T));M0) and break.

Otherwise, setM0 = 2M0, update the algorithm parameter estimating the mean number of time steps on

each grid level,⁵ and return to step (2).

For the ℓ-th sample average summand of the multilevel estimator AML(g(X(T));M0), i.e., A(g(X0(T);M0)
if ℓ = 0 and A(g(Xℓ(T) − g(Xℓ−1(T));Mℓ) if ℓ > 0, the algorithm generates Mℓ Euler–Maruyama realization

pairs,⁶ (Xℓ−1(T), Xℓ(T)) according to (1.5) with the time discretization errors respectively bounded byTOLT, ℓ−1
and TOLT, ℓ in the sense (2.17). The realization pairs are constructed by stochastic adaptive re�nements of

a given initial mesh Ät{−1}. The realizations in a realization pair (Xℓ−1(T), Xℓ(T)) are respectively generated on

the adaptively re�ned meshes Ät{ℓ−1} and Ät{ℓ}. These meshes are determined by iteratively re�ning an initial

mesh Ät{−1}. First, Ät{−1} is adaptively re�ned to a mesh Ät{0} on which |E[g(X0(T)) − g(X(T))]| ≲ TOLT, 0 is

ful�lled. Thereafter, Ät{0} is adaptively re�ned to a mesh Ät{1} on which |E[g(X1(T)) − g(X(T))]| ≲ TOLT, 1 is

ful�lled. This iterative re�nement procedure continues until themesh Ät{ℓ−2} is adaptively re�ned to generate

the �rst output mesh Ät{ℓ−1} and, lastly, Ät{ℓ−1} is adaptively re�ned to generate the second output mesh Ät{ℓ}.
The iterative adaptive mesh re�nement procedure in Algorithm 7, Section 2.3, ensures that a mesh Ät{ℓ}

for the �ne realization in a pair (Xℓ−1(T), Xℓ(T)) is determined in the same way as a mesh Ät{ℓ} for the coarse

realization in pair (Xℓ(T), Xℓ+1(T)), and consequently that E[g(Xℓ(T))] when computed from the �ner re-

alization in a pair (Xℓ−1(T), Xℓ(T)) is equal to E[g(Xℓ(T))] when computed from the coarse realization in

a pair (Xℓ(T), Xℓ+1(T)). This construction is one way to guarantee that the consistency condition

E[AML(g(X(T));M0)] = E[g(XL(T))]

for the multilevel estimator is ful�lled.

Let us next take a closer look at the mesh re�nement. Due to the stochastic nature of SDEs, each real-

ization pair (Xℓ−1(T), Xℓ(T))may re�ne the initial mesh Ät−1 di�erently. In particular, meshes corresponding

to di�erent realizations on a given level ℓ may di�er. To describe the mesh re�nement, taking this feature

into account, we introduce some notation. Since statistics on the number time steps in a mesh is important

for the mesh re�nement algorithm, we introduce the following notation the number of time steps in a mesh

realization Ät{ℓ}(ø):

Nℓ(ø) :=
T

∫
0

1
Ät{ℓ}(ó; ø)

dó.

Furthermore, write Nℓ := E[Nℓ] for the mean number of time steps on mesh level ℓ and let Nℓ represent the

algorithm parameter approximatingNℓ. See Algorithm 8 in Section 2.3 for details on the approximation tech-

nique and the update ofNℓ through the iterations.

5 See Algorithm 8 for details on the parameter update.

6 Observe that for the level ℓ = 0 only the realizations ofX0(T) are generated.
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The mesh re�nement condition (1.25) is based on the error indicator r[ℓ] and works in a similar fashion

as for the single level method: Re�nement of a mesh Ät{ℓ} is stopped when

max
1≤n≤Nℓ

r[ℓ](n) < C
S

TOLT, ℓ
Nℓ

, (2.19)

but as long as inequality (2.19) is violated, the nth time step of Ät{ℓ} is re�ned if

r[ℓ](n) ≥ C
R

TOLT, ℓ
Nℓ

. (2.20)

Normally, the value for C
R
would be around 2, and C

S
> C

R
following the theory developed in [25, 26].

A detailed description of the adaptive MLMC algorithm is given in Algorithm 6 with subroutines Algo-

rithm 7–9 in Section 2.3.

The inputs in Algorithm 6 are: TOLS, TOLT, an initial number of sample realizationsM0, L, Ät
{−1}

, initial

guesses for themeannumber of time steps {Nℓ}
L
ℓ=0 in the hierarchy of accepted adaptively re�nedmeshes, and

the three parameters C
R
, C

C
, and C

S
used in the re�nement condition (2.20) and stopping conditions (2.16)

and (2.19), respectively. In this algorithm the initial estimate of the mean number of time steps are chosen

asNℓ = cTOLT, ℓ
−1
, for ℓ = 0, . . . , L and a constant c such thatN0 is a small integer; in the numerical examples

in Section 3, the constant was chosen so thatN0 ≈ 10 as input.

2.3 Algorithm listings

Algorithm 1: Adaptive generation of a mesh hierarchy.

Input : TOLT,M−1, Ät
{−1}

, L,N0, CR
, C

S
, R

Output: {Ät{ℓ}}Lℓ=0,ML

for ℓ = 0, 1, . . . , L do
Set keep_sampling = TRUE, keep_re�ning = TRUE,
Ät{ℓ} = Ät{ℓ−1},Mℓ = Mℓ−1, and TOLT, ℓ = 2L−ℓTOLT.
while keep_sampling or keep_re�ning do

Set keep_sampling = FALSE, keep_re�ning = FALSE
Compute r[ℓ], EÄt{ℓ} , and V(∑Nℓ

n=1 r[ℓ](n);Mℓ) by calling Algorithm 2: Euler(Mℓ, Ät
{ℓ}
)

if V(∑Nℓ
n=1 r[ℓ](n);Mℓ) and EÄt{} violate (2.10) then

Set keep_sampling = TRUE
Update the number of samples by

Mℓ = 2Mℓ
else

if r[ℓ] violates (2.6) then
Set keep_re�ning = TRUE
Re�ne Ät{ℓ} by
forall intervals n = 1, 2, . . . , Nℓ do

if r[ℓ](n) satis�es (2.7) then
divide the interval n into two equal parts

end
end
UpdateNℓ and setNℓ = max {Nℓ, Nℓ}.

end
end

end
SetNℓ+1 = 2 Nℓ

end
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Algorithm 2: Euler.
Input :Mℓ, Ät

{ℓ}

Output: r[ℓ], EÄt{ℓ} , V(∑
Nℓ
n=1 r[ℓ](n);Mℓ)

ComputeMℓ new realizations ofXℓ on Ät{ℓ} by Euler–Maruyama method (1.5) and use them to

compute the error indicators r[ℓ](n) on Ät{ℓ} by equation (1.25), EÄt{ℓ} by equation (2.8), and

V(∑Nℓ
n=1 r[ℓ](n);Mℓ) by equation (2.5).

Algorithm 3: Multilevel Monte Carlo on a mesh hierarchy.

Input : TOLS,M0, L, {Ät
{ℓ}}Lℓ=0, CC

Output: ì = AML(g(X(T));M0)

Compute ò2
by Algorithm 4: MLMC Estimator(M0, L, {Ät

{ℓ}}Lℓ=0).
while ò2

violates (2.16) do
Update the number of samples byM0 = 2M0.

Update ò2
by Algorithm 4: MLMC Estimator(M0, L, {Ät

{ℓ}}Lℓ=0).
end
Generate the output ì = AML(g(X(T));M0) by calling Algorithm 4: MLMC Estimator(M0, L, {Ät

{ℓ}}Lℓ=0).

Algorithm 4: MLMC estimator.

Input :M0, L, {Ät
{ℓ}}Lℓ=0

Output: ì = AML(g(X(T));M0), ò
2 ≈ Var(AML(g(X(T));M0))

for ℓ = 0, 1, . . . , L do
SetMℓ as in (2.14)

if ℓ = 0 then
Call Algorithm 5: Euler(M0, {Ät

{0}}).
Set ì = A(g(X0(T));Mℓ) and ò2 = V(g(X0(T));M0)

M0
.

else
Call Algorithm 5: Euler(Mℓ, {Ät

{ℓ}, Ät{ℓ−1}}).

Set ì = ì + A(g(Xℓ(T)) − g(Xℓ−1(T));Mℓ) and ò2 = ò2 + V(g(Xℓ(T))−g(Xℓ−1(T));Mℓ)
Mℓ

.

end
end

Algorithm 5: Euler.
Input :M, {Ät{ℓ}}ℓ=l0 ,l1
Output: V(g(X0(T));M),A(g(X0(T));M) if l0 = l1 = 0 or
V(g(Xℓ1 (T)) − g(Xℓ0 (T));M),A(g(Xℓ1 (T)) − g(Xℓ0 (T);M) if l0 ̸= l1

SimulateM new outcomes of the Wiener processW on Ät{ℓ1} ⊇ Ät{ℓ0}.
if l0 = l1 = 0 then

Compute the corresponding realizations ofX0 on Ät{0} and use them to computeA(g(X0(T));M)
and V(g(X0(T));M) by (2.5).

else
Compute the corresponding realizations ofXℓ1 andXℓ0 on Ät{ℓ1} and Ät{ℓ0} and use them to

computeA(g(Xℓ1 (T)) − g(Xℓ0 (T));M) and V(g(Xℓ1 (T)) − g(Xℓ0 (T));M) by (2.5).

end
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Algorithm 6: Multilevel Monte Carlo with stochastic time stepping.

Input : TOLS, TOLT,M0, Ät
{−1}

, L, {Nℓ}
L
ℓ=0, CR

, C
S
, C

C

Output: ì = AML(g(X(T));M0)

Compute ò2
and {Nℓ}

L
ℓ=0 by calling Algorithm 7: PMLMC (TOLT,M0, Ät

{−1}, L, {Nℓ}
L
ℓ=0, CR

, C
S
).

while ò2
violates (2.16) do

Update the number of samples byM0 = 2M0.
Update ò2

and {Nℓ}
L
ℓ=0 by Algorithm 7: PMLMC(TOLT,M0, Ät

{−1}, L, {Nℓ}
L
ℓ=0, CR

, C
S
).

end
Generate the output ì = AML(g(X(T));M0) by calling

Algorithm 7: PMLMC(TOLT,M0, Ät
{−1}, L, {Nℓ}

L
ℓ=0, CR

, C
S
).

Algorithm 7: Pathwise multilevel Monte Carlo estimator (PMLMC).
Input : TOLT,M0, Ät

{−1}
, L, {Nℓ}

L
ℓ=0, CR

, C
S

Output: ì = AML(g(X(T));M0), ò
2 ≈ Var(AML(g(X(T));M0)), {Nℓ}

L
ℓ=0

ComputeM0 samples of g(X0(T)) and the number of time steps used, {N0,m}
M0
m=1, by generating Wiener

increments {ÄW−1,m}
M0
m=1 on the mesh Ät{−1} (independently for each realizationm) and calling

Algorithm 9: ATSSE(Ät{−1}, ÄW−1,m, TOLT2
L,N0, CR

, C
S
).

Set ì = A(g(X0(T));M0) and ò2 = V(g(X0(T));M0)
M0

.

Compute the average number of time stepsA(N0;M0).
for ℓ = 1, . . . , L do

SetMℓ as in (2.14) and computeMℓ new realizations of g(Xℓ−1(T)),
their corresponding number of time steps, {Nℓ−1,m}

Mℓ
m=1, and Wiener increments, {ÄWℓ−1,m}

Mℓ
m=1, by

generating Wiener steps {ÄW−1,m}
M0
m=1 on the mesh Ät{−1} (independently for each realizationm)

and using the loop

for ̂ℓ = 0, . . . , ℓ − 1 do
compute Ät{

̂ℓ,m}
, ÄW ̂ℓ,m by calling Algorithm 9: ATSSE(Ät{ ̂ℓ−1,m}, ÄW ̂ℓ−1,m, TOLT2

L− ̂ℓ,N ̂ℓ, CR
, C

S
).

end
Compute the correspondingMℓ realizations of g(Xℓ(T)) and their number of time steps, {Nℓ,m}

Mℓ
m=1,

by calling Algorithm 9: ATSSE(Ät{ℓ−1,m}, ÄWℓ−1,m, TOLT2
L−ℓ,Nℓ, CR

, C
S
).

Set ì = ì + A(g(Xℓ(T)) − g(Xℓ−1(T));Mℓ) and ò2 = ò2 + V(g(Xℓ(T))−g(Xℓ−1(T));Mℓ)
Mℓ

.

Compute average number of time stepsA(Nℓ−1;Mℓ) andA(Nℓ;Mℓ).
end
Update the values of {Nℓ}

L
ℓ=0 by calling Algorithm 8:

UMNT ({Mℓ}
L
ℓ=0, {A(Nℓ;Mℓ)}

L
ℓ=0, {A(Nℓ−1;Mℓ)}

L
ℓ=1).

Algorithm 8: Update for the mean number of time steps (UMNT).
Input : {Mℓ}

L
ℓ=0, {A(Nℓ;Mℓ)}

L
ℓ=0, {A(Nℓ−1;Mℓ)}

L
ℓ=1

Output: {Nℓ}
L
ℓ=0

for ℓ = 0, 1, . . . , L do
if ℓ < L then

SetNℓ =
MℓA(Nℓ ;Mℓ)+Mℓ+1A(Nℓ ;Mℓ+1)

Mℓ+Mℓ+1
.

else
SetNL = A(NL;ML).

end
end
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Algorithm 9: Adaptive time step stochastic Euler (ATSSE).
Input : Ät{in}, ÄWin, TOL,Nin, CR

, C
S

Output: Ät{out}, ÄWout,Nout, gout
Set k = 0, Ät{[0]} = Ät{in}, ÄW[0] = ÄWin,N[0] = number of steps in Ät{in}

while k < 1 or (r[k−1]; TOL,Nin, CS
) violates (2.19) do

Compute the Euler approximationX[k] and the error indicators r[k] on Ät{[k]} with the known

Wiener increments ÄW[k].
if (r[k]; TOL,Nin, CS

) violates (2.19) then
Re�ne the grid Ät{[k]} by
forall intervals n = 1, 2, . . . , N[k] do

if (r[[k]](n); TOL,Nin, CR
) satis�es (2.20) then

divide the interval n into two equal parts

end
end
and store the re�ned grid in Ät{[k+1]}.
Compute ÄW[k+1] from ÄW[k] using Brownian bridges on Ät{[k+1]}.
SetN[k+1] = number of steps in Ät{[k+1]}.

end
Increase k by 1.

end
Set Ät{out} = Ät{[k−1]}, ÄWout = ÄW[k−1],Nout = N[k−1], gout = g(X[k−1]).

3 Numerical experiments
This section presents numerical results from implementations⁷ of the algorithms introduced in Section 2.

We have selected problems to indicate the use of the adaptive methods. Speci�cally, uniform time steps are

suitable for Problem 3.1, adaptively re�ned deterministic time steps are suitable for Problem 3.2, and fully

stochastic time steps are suitable for Problem 3.4. In both Problems 3.2 and 3.4 the use of the multilevel adap-

tive algorithms is much more e�cient than the use of the corresponding single level versions of the algo-

rithms, which is in turn much more e�cient than using a single level uniform time stepping method. For

those problems the complexity is close to that of uniform MLMC, since the observed order of strong conver-

gence remains close to 1/2 even though the order of weak convergence is reduced using uniform time steps.

As it is described in this work, the adaptive algorithm is optimized with respect to the weak error, but an ex-

tension of the adaptive algorithm which is instead optimized with respect to the strong error is the subject of

ongoing research.

The main complexity results in Theorem 4.2 and Remark 4.3 of Section 4 are asymtotic results for TOL
approaching 0, excluding asymptotically negligible terms. The approximate upper bound

cost ≤ C(TOL−1(1 + log2 (TOLT, 0/TOLT))
2

(3.1)

for the computational complexity captures the essence of Remark 4.3 while keeping the logarithmic factor in

a form that is also consistent with large tolerances where L = 0. For the numerical tests in this section we �t

7 The implementations di�er from the listed algorithms and the theoretical analysis in that the computed answer

ì = AML(g(X(T));M0)

was taken from the same batch that satis�ed the stopping criterion (2.16) without generating a �nal batch of independent samples

after accepting M0. Note that while the extra batch simpli�es the theoretical analysis the experimental errors in Figure 2 still

satisfy the accuracy requirements, and the repetition of the �nal batch would increase the total work with a factor approximately

between 3/2 and 2.
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the parameters c1 and c2 in the model

log2 (cost) = c1 + log2(TOL
−c2 (1 + log2(TOLT, 0/TOLT))

2) (3.2)

to the observed computational costs, where by (3.1) we expect c2 ≈ 2.
The computations were performed in Matlab 7 using the built in pseudo-random number generator

randn for simulating sampling from the normal distribution. In all examples the error tolerance was split

equally,

TOLS = TOLT =
TOL
2

,

even though the proof of Theorem 4.2 indicates that this is not optimal; see Remark 4.17. The bounds on the

computed error density in (1.10)were ñlow = TOL
1/9

and ñup = TOL
−4
. The con�dence parameterwasCC = 1.65

corresponding to a 90% con�dence interval of the standard normal random variable. For the parameter in

the stopping criteria (2.6) and (2.19) we used C
S
= 5 in Problems 3.2 and 3.4, and C

S
= 3 in Problem 3.1 where

we expect uniform re�nements and all error indicators of the same size. The values of the other parameters

are listed in Table 1. The particular values of are not necessarily optimized for the problems at hand, but we

include them for the purpose of reproducibility.

Algorithm 1 and 3

GBM, Section 3.1 Singularity, Section 3.2

Ät{−1} 1/2 1/4

N0 ⌈ 6
TOLT, 0

⌉ ⌈ 2
TOLT, 0

⌉

TOLT,Max 0.6 0.32

M−1 ⌈5 ⋅ 0.25
TOL ⌉, TOL ≤ 0.25 ⌈5 ⋅ 0.16

TOL ⌉, TOL ≤ 0.16

CR 2 2

CS 3 5

R 0.2 0.2

CC 1.65 1.65

Algorithm 6

GBM, Section 3.1 Barrier, Section 3.3

Ät{−1} 1/2 1/5

N0 ⌈ 6
TOLT, 0

⌉ ⌈ 10
TOLT, 0

⌉

TOLT,Max 0.6 2

M0 ⌈5 ⋅ 0.25
TOL 2

L(1−ã)⌉, TOL ≤ 0.25 ⌈5 ⋅ 0.2
TOL 2

L(1−ã)⌉, TOL ≤ 0.8

CR 2 2

CS 3 5

CC 1.65 1.65

Table 1. List of parameter values used in the computations in Section 3.1–3.3. Here L and TOLT, 0 are functions of TOLT,Max and
TOLT by (2.2) and (2.3). Further, ã = 1/9 is the parameter in ñlow = TOL

ã.

3.1 A linear SDE

Problem 3.1. Consider �rst the standard geometric Brownian motion

dX(t) = rX(t)dt + òX(t)dW(t), t ∈ (0, T),

X(0) = 1,

using r = 1 and ò = 0.5 with a �nal time T = 1 and g(x) = x.
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Figure 1. Experimental complexity for both versions of the algorithm applied to the geometrical Brownian motion example of
Section 3.1; to the left the version of mesh creation followed by sampling on �xed meshes, in Section 2.1, and to the right the
path dependent sampling version in Section 2.2. The computational cost is measured as the total number of Euler time steps
taken in all re�nement iterations on all levels for all realizations. The graphs show three independent realizations of the under-
lying Wiener processes for each prescribed tolerance. A least squares �t of the model (3.2) gives c2 = 1.8 and c2 = 1.9 in the two
cases respectively; this is slightly better than the prediction of Theorem 4.2 of Section 4.

In this simple example adaptive time stepping is not expected to improve the time discretization error. In fact,

the path independent adaptive algorithm produces a hierarchy of uniform grids, and when the fully stochas-

tic adaptive algorithm is applied to this problem all generated meshes are uniform but di�erent realizations

of the drivingWiener processmay result in di�erent step sizes. The computational cost, measured as the total

number of time steps, in all stages in the adaptive re�nements, for all realizations of the Euler approxima-

tion X, is shown in Figure 1. For both versions of the algorithm, the computational cost is consistent with

the approximate upper bound (3.1) derived from the analyis in Section 4. The work measured this way is very

similar in the two versions of the algorithm. However, the version in Section 2.1 is more e�cient in this case

since it only computes dual solutions in the construction of the mesh hierarchy which is of negligible cost,⁸

while the version in Section 2.2 computes both primal and dual for every realization. Since the cost of con-

structing themesh hierarchies is asymptotically negligible, and the constructed hierarchies are uniformwith

geometrically decreasing mesh sizes, the complexity of the adaptive algorithm in Section 2.1 applied to this

8 See Figure 3 for Problem 3.2.
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problem is essentially the same as that of a uniformMLMC algorithm using the same control of the statistical

error. The accuracy of both versions of the algorithm is shown in Figure 2.
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Figure 2. These accuracy tests show the error versus the prescribed tolerance when the adaptive MLMC algorithm is applied
to the test examples of Section 3; to the left the version of Section 2.1 applied to the geometric Brownian motion in Section 3.1
(top) and the singularity problem in Section 3.2 (bottom), and to the right the version of Section 2.2 applied to the geometric
Brownian motion in Section 3.1 (top) and the stopped di�usion problem in Section 3.3 (bottom).
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The work we measure in Figure 1 is greater than the work (4.2) analyzed in Section 4, which is approxi-

mately the number of sampled random variables. The comparison made in Table 2 shows the same growth

rate as TOL ↓ 0 when the fully stochastic adaptive algorithm is applied to Problem 3.1.

sampled random variables all Euler steps

Problem Version c1 c2 c1 c2

GBM Section 2.1 5.7 1.8 5.8 1.8
GBM Section 2.2 4.9 1.9 5.8 1.9
Singularity Section 2.1 10.4 1.9 10.6 1.9
Barrier Section 2.2 7.3 2.0 8.5 2.2

Table 2. Complexity estimates for the three di�erent problems: the geometric Brownian motion of Section 3.1, the deterministic
singularity problem of Section 3.2, and the stopped di�usion problem of Section 3.3. The tabulated values are least square �ts
of the parameters c1 and c2 in the model (3.2) which is approximated by the work estimate de�ned in (4.2), and by counting the
total number of Euler steps performed when solving the primal problem in all re�nement stages for all levels in the multilevel
algorithms.

3.2 Drift singularity, linear SDE

Problem 3.2. Consider for a real constant á ∈ (0, T) the linear stochastic di�erential equation

dX(t) =
{
{
{

X(t)dW(t), t ∈ [0, á],
X(t)
2√t−ádt + X(t)dW(t), t ∈ (á, T],

(3.3)

X(0) = 1,

with the unique solution

X(t) =
{
{
{

exp(W(t) − t/2), t ∈ [0, á],

exp(W(t) − t/2) exp(√t − á), t ∈ (á, T].

The goal is to approximate the expected value E[X(T)] = exp(√T − á).

Here we choose T = 1 and á = T/3. To avoid evaluating arbitrarily large values of the drift in (3.3) we modify

the drift to be

a(t, x) =
{
{
{

0, t ∈ [0, á],
x

2√t−á+TOL4
, t ∈ (á, T],

(3.4)

yielding a higher order perturbationO(TOL2) in the computed result and in the size of the optimal time steps.

This regularization was applied to maintain consistency with the numerical tests in [25], but it is not strictly

necessary given the upper bound, ñ ≤ ñup(TOL), on the error density in (1.23). Due to the time discontinuity of

the drift function and to ensure optimal convergence of the adaptive algorithms, wemodify the Euler method

to

Xn+1 − Xn = a( ̂t, Xn) Ätn + Xn ÄWn, n = 0, 1, 2, . . . , (3.5)

where we choose the stochastic evaluation time
̂t ∈ {tn, tn+1} so that

|a( ̂t, Xn)| = max(|a(tn, Xn)|, |a(tn+1, Xn)|).

Observe that the use of
̂t does not change the adapted nature of the Euler method.

Since we now have a singularity in the drift at a deterministic time, the path independent adaptive algo-

rithm described in Section 2.1 is the most suitable, and it is used in this example. The goal here is to verify

that the adaptivemultilevel algorithms of Section 2 give the same improvement from the single level adaptive

algorithm as multilevel Monte Carlo does in the uniform case for regular problems.
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The accuracy test in Figure 2 shows good agreement between observed error and prescribed tolerance.

As shown in the complexity study in Table 2 and Figure 3 the computational costs grow like

TOL−1.9(1 + log (TOLT, 0/TOLT))
2

which is very close to the predicted complexity. The cost of the mesh construction phase of the algorithm is

seen to be negligible compared to the total work.
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Figure 3. Experimental complexity when the algorithm in Section 2.1 is applied to the drift singularity problem in Section 3.2.
To the left is shown the cost of both phases of the algorithm, and to the right the contribution from the generation of the mesh
hierarchy and the subsequent sampling to reduce the statistical error; it is clear that the cost of the �rst phase is negligible
compared to the second for small tolerances. The computational cost is measured as the total number of Euler time steps taken
in all re�nement iterations on all levels for all realizations. The graphs show three independent realizations of the underlying
Wiener processes for each prescribed tolerance. A least squares �t of the model (3.2) gives c2 = 1.9.

In this example the weak rate of convergence for the Euler–Maruyama method with uniform time steps

is only 1/2, so the total cost for a single level uniform time stepping algorithm is proportional to TOL−4. The
left part of Figure 4 shows that the single level version of the adaptive algorithm improves that complexity

to approximately TOL−3, while the multilevel version improves the complexity by nearly one order more.

With the regularization (3.4) the observed order of strong convergence of the Euler–Maruyama method with

uniform time steps is still 1/2, so the complexity estimate in [11, Theorem 1] for uniformmultilevel simulations

applies, and we should get the ideal complexity (TOL−1 log (TOL−1))2 for a mean square error of size TOL2.
The right part of Figure 4 shows that this is approximately true for the cost as a function of the maximal

observed error over eleven independent realizations of the adaptive runs.
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Figure 4. The computational cost of the path independent adaptive algorithm of Section 2.1, applied to the deterministic sin-
gularity Problem 3.2, is compared to several alternatives. Left: the multilevel version improves the computational complexity
of the single level version of the same adaptive algorithm from approximately proportional to TOL−3 to approximately propor-
tional to TOL−2(1 + log (TOLT, 0/TOLT))

2. The cost of a standard, uniform time step, Monte Carlo method would be proportional
to TOL−4; here the work was estimated from a Central Limit Theorem type con�dence interval based on the time discretiza-
tion errors and sample variances. Right: The cost of the uniform MLMC method is shown as a function of the maximal error, å,
over 11 realizations. The observed cost oscillates around a complexity curve that is possibly slightly worse than, but close to,
(å−1 log (å−1))2, which is expected since the observed strong order of convergence is still 1/2. For the adaptive algorithm the
cost is estimated by the total number of Euler steps taken on all levels in all stages of the adaptive re�nement process.

Remark 3.3. In case the location, á, of the singularity in the drift is stochastic, the stochastic time step-

ping version of the adaptive algorithm in Section 2.2 is the appropriate choice. If we for example consider

á ∼ U(0, T), independent of the underlying Wiener process, then the stochastic adaptive multilevel Monte

Carlo algorithm is applicable even without the a priori TOL-regularization of the drift in (3.4). In this case

the uniform multilevel Monte Carlo algorithm cannot be applied without regularization of the drift, since

the expected value that is computed by the discrete algorithm is not well de�ned due to the small probabil-

ity events of the singularity being arbitrarily close to a grid point from below. In practice when computing

with the uniform meshes we may fail to notice that the computation is unreliable since the failures are low

probability events.
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3.3 Stopped di�usion

Here we compute the solution to a more challenging problem that motivates the use of stochastic time steps

that are adaptively re�ned for each sample path.

The additional di�culty of the problem is that we now wish to compute approximations of an expected

value

E[g(X(ó), ó)], (3.6)

where X(t) solves the SDE (1.1) as before, but where the function g : D × [0, T] → ℝ is evaluated at the �rst

exit time

ó := inf{t > 0 : (X(t), t) ̸∈ D × (0, T)}

from a given open domain D × (0, T) ⊂ ℝd × (0, T). This kind of stopped (or killed) di�usion problems arises

for example frombarrier optionpricingproblems inmathematical �nance and fromboundary valueproblems

in physics.

The main di�culty in the approximation of the stopped di�usion on the boundary àD is that a contin-

uous sample path may exit the given domain D even though a discrete approximate solution does not cross

the boundary ofD. Due to this hitting of the boundary the order of weak convergence of the Euler–Maruyama

method is reduced from 1 to 1/2, in terms of the step size of uniform meshes; see [14]. The problem of simu-

lating stopped di�usion has also been studied in, e.g., [3, 4, 24]. In this subsection we combine the adaptive

multilevel algorithm of Section 2.2 with an error estimate derived in [8] that also takes into account the hitting

error. This error estimate, and the adaptive algorithm, can be used also whenD is multi-dimensional even if

the boundary àD has corners for example.

The hitting error is accounted for by an extra contribution to the error density in (1.22); this contribution

can be expressed in terms of exit probabilities for individual time steps, conditioned on the computed path

at the beginning and the end of the time steps, and of the change in the goal function, g, when evaluated at

a possible exit point within the time step instead of the actually computed exit (X( ̄ó), ̄ó). The full expression

of the resulting error indicators is given in [8, equation (50)]. Since the di�erential àig(X(T), T) in the discrete

dual backward problem (1.16) does not exist if T is replaced by ̄ó < T, this initial value must be alternatively

de�ned; this can be done using di�erence quotients with restarted computed trajectories as described, both

for the discrete dual and for its �rst and second variations, in [8, equations (20)–(25)]. Note that for this

modi�ed error density the proof in [26] of almost sure convergence to a limit density does not apply.

In addition to the modi�cation of the error density a lower bound is introduced on the step size to avoid

excessive re�nements near the barrier,

Ätn ≥ min{TOLT, ℓ
1.5,

distndistn+1/b(X(tn; ø), tn)
2

−3 log (TOLT, ℓ)
}, (3.7)

where distj denotes the distance fromX(tj; ø) to the barrier.

Problem 3.4. For the numerical example we consider the stopped di�usion problem

dX(t) =
11
36

X(t)dt +
1
6
X(t)dW(t) for t ∈ [0, 2] andX(t) ∈ (−∞, 2), (3.8)

X(0) = 1.6.

For g(x, t) = x3e−t with x ∈ ℝ, this problem has the exact solution E[g(Xó, ó)] = u(X(0), 0) = X(0)3, where the

solution, u, of the Kolmogorov backward equation is u(x, t) = x3e−t.

We chose an example in one space dimension for simplicity, although it is only in high dimension that

Monte Carlo methods are more e�cient than deterministic �nite di�erence or �nite element methods to

solve stopped di�usion problems. The comparison here between the standard Monte Carlo and the multi-

level Monte Carlo methods in the simple one-dimensional example indicates that the Multilevel Monte Carlo

method will also be more e�cient in high-dimensional stopped di�usion problems, where a Monte Carlo

method is a good choice. In the case of a scalar SDE, whereD is an interval on the real line, the strong order

of convergence of the Euler–Maruyama scheme for barrier problems can be close to 1/2. In fact, it is shown
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in [12] that Var(g(Xℓ) − g(Xℓ−1)) = O(Ät1−ä), for any ä > 0, using the Euler–Maruyama method with uniform

step size Ät on a class of options including some barrier options. In this case [11, Theorem 3.1] tells us that, for

any choice of ä > 0, uniformMLMC simulations can be performed at a costO(TOL−2(1+ä)), where the constant

may depend on ä, for a mean square error of order TOL2.
In the remainder of this section we present numerical results on the accuracy and cost of the adaptive

multilevel algorithm of Section 2.2, applied to (3.8), with the error estimate modi�ed for the barrier problem,

andwith the lower bound (3.7) on the step size. The algorithmwas appliedwith a sequence of tolerances with

three simulations for each tolerance using di�erent initial states in the pseudo-random number generator.

The observed errors are scattered below the corresponding tolerances in Figure 2, showing that the algorithm

achieves the prescribed accuracy.

The experimental complexity is illustrated in Figure 5 and Table 2. A least squares �t of themodel (3.2) us-

ing equal weights on all data points gives c2 = 2.0when the work is measured by the total number of sampled

random variables; this is the measure of work that is estimated by (4.2) in Section 4. When all Euler steps in

all re�nement stages are included, the least squares �t gives c2 = 2.2. However, the corresponding cost using

the single level adaptive algorithmwith just one data point per tolerance used grows faster thanTOL−3 in this

example; see Figure 6.
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Figure 5. Experimental complexity for the barrier example in Section 3.3. The computational cost of the multilevel adaptive al-
gorithm is shown for varying tolerances using three di�erent initial states in the pseudo-random number algorithm. To the left
is shown the work estimate based on the number of sampled random variables, which is the work measure closest to (4.2) used
in Section 4; to the right is shown the estimate based on all Euler steps taken in all stages in the adaptive mesh re�nement
process. A least squares �t of the model (3.2) with equal weight on all observations results in c2 = 2.0 and c2 = 2.2 in the two
cases.
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Figure 6. Left: The multilevel version of the path dependent adaptive algorithm of Section 2.2 applied to the barrier Problem 3.4
improves the computational complexity of the single level version of the same adaptive algorithm; a single level method based
on uniform time steps has even worse complexity with the computational cost growing like å−4. Right: The cost of the uniform
MLMC method is shown as a function of the maximal error, å, over 16 realizations. The observed cost is close to that of adap-
tive multilevel Monte Carlo, which is expected since the observed observed strong order of convergence is 1/2, but oscillates
around a slightly worse �tted complexity å−2.5(1 + log (å−1))2. The cost is estimated by the total number of Euler steps taken on
all levels in all stages of the adaptive re�nement process.

In conclusion, the barrier problem (3.8) is not within the scope of Theorem 4.2 since almost sure conver-

gence of themodi�ed error density to a limit density has not been proven yet. Still, the observed convergence

of the adaptive MLMCmethod applied to this problem agrees with the rate in Theorem 4.2. This shows an im-

proved convergence compared to the single level version of the adaptiveMonte Carlo algorithmwhere the cost

grows approximately like TOL−3, which in itself is a better order of weak convergence than the one obtained

using a single level Monte Carlo method with constant time steps where the cost grows like TOL−4.
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4 Theoretical results
In this section we study the asymptotic accuracy and complexity of the stochastic time stepping adaptive

MLMC algorithm introduced in Section 2.2.We recall that for a sought accuracyTOL > 0, the goal of the adap-
tive MLMC algorithm is to construct a Monte Carlo approximation of E[g(X(T))] that with probability close to

one ful�lls

|E[g(X(T))] − AML(g(X(T));M0)| ≤ TOL.

Our main result on asymptotic accuracy for the adaptive MLMC algorithm, which is proved in Section 4.2, is

Theorem 4.1 (Multilevel accuracy). Suppose the assumptions of Lemma 1.3 and (4.4)–(4.6) hold and that

TOLT ≤ TOLS. Then the adaptive MLMC algorithm with con�dence parameter CC > 0 and stochastic time

steps (2.19) and (2.20) satis�es

lim inf
TOL↓0

P(|E[g(X(T))] − AML(g(X(T));M0)| ≤ TOL) ≥

CC

∫
−CC

e−x
2/2

√2ð
dx. (4.1)

Themotivation for introducingmultiple levels in theMC algorithm is to reduce the computational complexity.

To study the asymptotic complexity of the adaptive MLMC algorithm we de�ne its work by

WORK(TOL) =
L
∑
ℓ=0
E[Mℓ]E[Nℓ], (4.2)

recalling that Mℓ denotes the number of realization samples g(Xℓ(T; ø)) at level ℓ required to control the

statistical error, and Nℓ denotes the number of adaptive time steps required in the construction of a nu-

merical realization g(Xℓ(T; ø)) to control the time discretization error at level ℓ. The functionWORK(TOL)
is an approximation of the average number of arithmetic operations required in the generation and sam-

pling of {g(Xℓ(T))}
L
ℓ=0 to approximate E[g(X(T))] for the prescribed con�dence CC and accuracy TOL. The

adaptive MLMC algorithm’s realwork, however, is a very complicated expression where products of expecta-

tions E[Mℓ]E[Nℓ] should be replaced by expectations of products E[MℓNℓ] and the full cost of the re�nement

process for each realization should be included. To simplify the analysis here, we have decided to study the

asymptotics of the work de�ned in (4.2), instead of the algorithm’s real work. Our main complexity theorem

follows, but �rst we recall from [25] that the error density ñ has an almost sure asymptotic limit whichwe here

denote by ̂ñ, i.e., ñ → ̂ñ as TOLT ↓ 0.

Theorem 4.2 (Multilevel computational complexity). Suppose the assumptions of Lemma 1.3 and (4.4)–(4.6)

hold and that the lower bound for the error density is on the form ñlow(TOLT) = TOL
̄ã
T, cf. (1.23), with ̄ã → 0 and

L ̄ã → ∞asTOL ↓ 0. Then thework for the adaptiveMLMCalgorithmde�ned in (4.2) ful�lls the following bound:

lim sup
TOL↓0

WORK(TOL)TOL2 ̄ã
L 2 ̄ãL ≤

8C2
C CG

log(2) TOLT,Max
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

. (4.3)

Here, the number of levels L = O(log(TOL−1)), CC is the con�dence parameter, CR and CS are re�nement pa-

rameters described by (2.19) and (2.20), CG is the constant in the second moment bound (4.39), where TOLT,Max

is the upper bound of the time discretization tolerance at level ℓ = 0, and ̄ã is the lower bound error density

exponent; ñlow(TOLT) = TOL
̄ã
T, cf. (1.23).

Remark 4.3 (Complexity example). Theorem 4.2 implies that if the exponent of the lower error density ñlow is
given by ̄ã(TOL) = log2(log2(L))/L, then the following complexity bound, notably close to the standard com-

plexity of the uniform time stepping MLMC method, is achieved:

lim sup
TOL↓0

WORK(TOL) TOL2 log2(log2(L))
L2 log2(L)

≤
8 C2

C CG

log(2) TOLT,Max
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

.
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To present the proofs of Theorems 4.1 and 4.2 in a gentle fashion, we �rst prove analogous results for the

adaptive SLMC algorithm in Section 4.1. With single level proofs fresh in mind, we move on to the more

daunting task of proving Theorems 4.1 and 4.2 in Section 4.2. As already noted, we restrict ourselves here

to proving Theorems 4.1 and 4.2 for the stochastic time stepping setting. Stochastic time stepping is however

the most general setting, so one can easily prove corresponding results for the deterministic time stepping

setting as well.

In addition to Lemma 1.3, the analysis in this section will be derived relying on the following three as-

sumptions.

∙ Strong approximation convergence rate:⁹ For p = 2 and 4, we have that

E[|g(X(T)) − g(X(T))|
p
] = O(

TOLT
ñlow(TOLT)

)
p/2

,

E[|g(X(T))|
p
] = O(1).

(4.4)

∙ That adaptivity is relevant for the weak approximation problem considered in the sense that the asymp-

totic error density is nontrivial and we have that

E[
T

∫
0

√| ̂ñ(ó)|dó] > 0. (4.5)

∙ For all s, t ∈ [0, T] the sensitivity of the error density to values of the Wiener process can be bounded as

follows:

|àW(t)ñ(s, ø)| ≤ Dñup(TOLT), (4.6)

for some positive functionDñup such thatDñup(TOLT) → +∞ as TOLT ↓ 0.

4.1 Single level results

The adaptive SLMC algorithm considered in this subsection was �rst described and analyzed in [29]. The

purpose of giving a new analysis here is to construct proofs for the asymptotic accuracy and complexity of the

adaptive SLMC algorithm that subsequently are easily extended to proofs for the adaptive MLMC algorithm.

In this section’s �rst lemma we show that the adaptive re�nement Algorithm 9 stops after a �nite number

of iterations. This property allows us to later bound the amount of computational work in the single level

adaptive algorithm. It also has another important implication: the imposed lower bound on the error density,

ñlow(TOLT) in (1.10), ensures that themaximummesh size of themesh generated by Algorithm 9, Ätsup(TOLT)
introduced in Lemma 1.4, tends to zero asTOLT tends to zero. This in turn implies the almost sure convergence

of the error density, which is crucial in the proofs of themain results of this section. A similar result also holds

for the multilevel case but will not be stated here for the sake of brevity.

Lemma 4.4 (Stopping). Suppose the adaptive Algorithm 9 applies the mesh re�nement strategy (2.19)–(2.20)

on a set of realizations having the same uniform initial mesh with step size Ät0. Assume further that the initial

estimated average number of time steps,Nin, satis�es

Nin < Nup :=
T2ñup(TOLT)

C
R
TOLT

, (4.7)

and that a prescribed accuracy parameter TOLT > 0 is given. Then the adaptive re�nement in Algorithm 9 stops

after a �nite number of iterations.

9 The work [29] gives conditions under which (4.4) is ful�lled.
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Proof. First recall that by (1.10), the error density is bounded from above by ñ ≤ ñup(TOLT). So given an initial

uniform mesh with size Ät0 and containingN0 intervals, the uniform mesh size

̃Ät(TOLT) =
Ät0
max{1, 2k}

with k = ⌈log2(
ñup(TOLT) T Ät0

C
R
TOLT

)⌉ (4.8)

satis�es both the stopping condition (2.19) and the non-re�nement condition (2.20) for Algorithm 9. When

a time step reaches themesh size
̃Ät(TOLT), itwill consequently not be further re�ned. Thenumber of possible

re�nements from the initial mesh size Ät0 to a uniformmesh with step size
̃Ät(TOLT) is bounded by the �nite

number N0max{1, 2
k}. The proof is concluded by observing that Algorithm 9 either stops or makes at least

one re�nement during each iteration.

The work [26] also proves a similar stopping result, cf. [26, Theorem 3.2], based on the assumption that the

initial mesh is su�ciently re�ned so that the error density does not vary too much between re�nement lev-

els. Then, when the single level adaptive algorithm stops, one can prove asymptotic accuracy and e�ciency

estimates for the resulting weak approximation. In contrast, here we make essentially no assumption on the

initial mesh size Ät0: although the quality of the resulting approximation for the lower levels of themultilevel

estimator may be poor, they have no in�uence in the bias of the multilevel approximation, which is only de-

termined by the �nest level, L. Since L → ∞ asTOL ↓ 0, we can still prove asymptotic accuracy and e�ciency

estimates. Finally, we observe that assumption (4.7) is ful�lled in all practical cases since one should start

the adaptive algorithm withNin of the order of TOL−1T , which is much smaller thanNup.
The following proofs are inspired by the treatment by Chow and Robbins [6] on the accuracy and com-

plexity of sequential stopping rules for sampling i.i.d. random variables.

We denote the SLMC sample average estimator of E[g(X(T))] by

A(g(X(T));M) =
M
∑
i=1

g(X(T; øi))
M

,

where the realizations ofX(T) are generated on adaptive meshes and ful�ll the weak error bound

|E[g(X(T)) − g(X(T))]| ≲ TOLT.

Here the total tolerance TOL is split into a time discretization error tolerance and a statistical error tolerance,

TOL = CSTOLT + TOLS. Remark 4.10 discusses the optimal splitting of TOL further. Let 2ℕ denote the set

{2n | n ∈ ℕ}. For the SLMC estimator, the number of samples used in the sample average estimator to control

the statistical error |A(g(X(T));M) − E[g(X(T))]| ≤ TOLS is a stochastic processM : ℝ+ → 2ℕ de�ned by

M(TOLS) := the smallest k ∈ 2ℕ+⌈log2(TOL
−1)⌉

such that V(g(X(T)); k) <
kTOLS

2

C2
C

, (4.9)

where the sample variance is de�ned by

V(g(X(T)); k) =
k
∑
i=1

(g(X(T; øi)) − A(g(X(T)); k))2

k − 1
. (4.10)

Restricting the initial value of M to the set 2ℕ+⌈log2(TOL
−1)⌉

implies that limTOL↓0 M = ∞. The asymptotic be-

havior of M as TOL ↓ 0 is crucial in our proofs of the asymptotic accuracy and complexity. When proving

the asymptotically accuracy result of Proposition 4.6,M should increase su�ciently fast to obtain the sought

con�dence. For the complexity result of Proposition 4.9, it is on the other hand useful to boundM from above

and ensure that it does not grow too fast.

Lemma 4.5. Suppose the assumptions (4.4)–(4.6) hold. Then

lim inf
TOL↓0

MTOL2S
Var(g(X(T)))C2

C
= 1 a.s. and lim sup

TOL↓0

MTOL2S
Var(g(X(T)))C2

C
= 2 a.s. (4.11)
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Proof. The strong convergence (4.4) forp = 2, gives limTOL↓0 Var(g(X(T))) = Var(g(X(T))), which in particular

means that there exists a constant T̃OL > 0 such that

Var(g(X(T)))
2

< Var(g(X(T))) < 2Var(g(X(T))) for all TOL ∈ (0, T̃OL]. (4.12)

The Strong Law of Large Numbers then implies that

lim
k→∞

V(g(X(T)); k) = Var(g(X(T))) a.s. for all TOL ∈ (0, T̃OL]. (4.13)

In order to prove results (4.11), introduce the sequence of stochastic processes yk : ℝ+ → ℝ+ sub-indexed

by k ∈ 2ℕ+⌈log2(TOL
−1)⌉

and de�ned by

yk(TOL) =
V(g(X(T)); k)

Var(g(X(T)))
. (4.14)

Using yk, de�nition (4.9) ofM(TOLS) is equivalent to

M(TOLS) := the smallest k ∈ 2ℕ+⌈log2(TOL
−1)⌉

such that yk(TOLS) <
kTOL2S

Var(g(X(T)))C2
C
.

This stopping condition gives rise to the bounds

yM(TOLS) <
MTOL2S

Var(g(X(T)))C2
C
≤ 2yM/2(TOLS). (4.15)

Combining (4.13) with de�nition (4.9), which ensures thatM(TOLS) → ∞ as TOL ↓ 0, we conclude that

lim
TOL↓0

V(g(X(T));M(TOLS)) = Var(g(X(T))) > 0 a.s.,

which implies that also limTOL↓0 yM(TOLS) = 1 a.s. Statement (4.11) then follows by taking limits in (4.15).

Having obtained asymptotic bounds for M, we are ready to prove the main accuracy result for the adaptive

SLMC algorithm.

Proposition 4.6 (Single level accuracy). Suppose the assumptions of Lemma 1.3 and (4.4)–(4.6) hold and that

TOLT ≤ TOLS. Then, the adaptive SLMC algorithm with con�dence re�nement parameter CC > 0, and time

steps (2.19) and (2.20), satis�es

lim inf
TOL↓0

P(|E[g(X(T))] − A(g(X(T));M)| ≤ TOL) ≥

CC

∫
−CC

e−x
2/2

√2ð
dx. (4.16)

Proof. For a given ä > 0, we �rst bound the probability in (4.16) from below as follows:

lim inf
TOL↓0

P(|E[g(X(T))] − A(g(X(T));M)| ≤ TOL)

≥ lim inf
TOL↓0

P(|E[g(X(T)) − g(X(T))]| + |E[g(X(T))] − A(g(X(T));M)| ≤ CSTOLT + TOLS)

≥ lim inf
TOL↓0

P(|E[g(X(T)) − g(X(T))]| ≤ (CS + ä)TOLT and |E[g(X(T))] − A(g(X(T));M)| ≤ (1 − ä)TOLS)

= lim inf
TOL↓0

P(|E[g(X(T)) − g(X(T))]| ≤ (CS + ä)TOLT) × P(|E[g(X(T))] − A(g(X(T));M)| ≤ (1 − ä)TOLS).

(4.17)

The proof is continued by analyzing the two product terms of the last line of the inequality above separately.

The time discretization error. The assumption that Lemma 1.3 and (4.4) hold implies that

lim sup
TOL↓0

|E[g(X(T)) − g(X(T))]|
TOLT

≤ CS,

cf. the proof of [25, Theorem 3.4]. Thereby,

lim inf
TOL↓0

P(|E[g(X(T)) − g(X(T))]| ≤ (CS + ä)TOLT) = 1.
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The statistical error. For the above introduced ä > 0+, de�ne the family of sets

Øä(TOLS) = {k ∈ 2ℕ+⌈log2(TOL
−1)⌉ !!!!!!!

1 − ä <
kTOL2S

Var(g(X(T)))C2
C
≤ 2 + ä}. (4.18)

By the convergence (4.11), we conclude that

lim
TOL↓0

P(M ∈ Øä) = 1.

Recall that for the adaptive SLMC algorithm, the number of samples M is determined in the step prior to

generating the outputA(g(X(T));M), so thatM is independent fromA(g(X(T));M). Using this independence

property, Fatou’s lemma, andLindeberg–Feller’s version of the Central Limit Theorem, cf. TheoremA.1, yields

that

lim inf
TOL↓0

P(|E[g(X(T))] − A(g(X(T));M)| ≤ (1 − ä)TOLS)

= lim inf
TOL↓0

∑
k∈2ℕ+⌈log2(TOL−1)⌉

P(|E[g(X(T))] − A(g(X(T)); k)| ≤ (1 − ä)TOLS)P(M = k)

≥ lim inf
TOL↓0

∑
k∈Øä

P(|E[g(X(T))] − A(g(X(T)); k)| ≤ (1 − ä)TOLS)P(M = k)

+ ∑
k∈2ℕ+⌈log2(TOL−1)⌉\Øä

lim inf
TOL↓0

P(|E[g(X(T))] − A(g(X(T)); k)| ≤ (1 − ä)TOLS)P(M = k)

≥ lim inf
TOL↓0

∑
k∈Øä

P(√k
|E[g(X(T))] − A(g(X(T)); k)|

√Var(g(X(T)))
≤ (1 − ä)3/2CC)P(M = k)

≥

(1−ä)3/2CC

∫

−(1−ä)3/2CC

e−x
2/2

√2ð
dx.

(4.19)

The proof is �nished by noting that the argument leading to inequality (4.19) is valid for all ä > 0.

We conclude this subsection with a complexity analysis of the adaptive SLMC algorithm. Similar to the de�-

nition of the work for the MLMC algorithm given in (4.2), we de�ne the SLMC work by

WORK(TOL) = E[M]E[N], (4.20)

where we recall thatM denotes the number of samples of g(X(T)) required to control the statistical error and

Ndenotes thenumber of adaptive time steps required in the constructionof anumerical realizationg(X(T; ø))
to control the time discretization error |E[g(X(T)) − g(X(T))]| ≤ TOLT. We start by bounding E[M].

Lemma 4.7. Suppose the assumptions (4.4)–(4.6) hold. Then the expected value of the number of samples used

in the approximation of E[g(X(T))] is bounded by

lim sup
TOL↓0

E[M]TOL2S
Var(g(X(T)))C2

C
≤ 2. (4.21)

Proof. For a given ä > 0, de�ne the deterministic function

M̃(TOLS) = min{k ∈ 2ℕ+⌈log2(TOL
−1)⌉ !!!!!!!

kTOL2S
Var(g(X(T)))C2

C
> 1 + ä}.

AssumingTOL is su�ciently small so that (4.12) holds, the relation (4.15), the fourthmoment bound (4.4) and

k-Statistics bounds on the variance of the sample variance, cf. [22], yield

P(M = 2M̃) ≤ P(
V(g(X(T)); M̃)

Var(g(X(T)))
> M̃

TOL2S
Var(g(X(T)))C2

C
) ≤ P(

V(g(X(T)); M̃)

Var(g(X(T)))
> 1 + ä)

≤ P(|V(g(X(T)); M̃) − Var(g(X(T)))| > äVar(g(X(T))))

≤ 2E[
|V(g(X(T)); M̃) − Var(g(X(T)))|

2

ä2Var(g(X(T)))
2 ] <

C
ä2M̃

.
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Furthermore, for ℓ = 1, 2, . . . we get that

P(M = 2ℓ+1M̃) ≤ P(|V(g(X(T)); 2ℓM̃) − Var(g(X(T)))| > 2ℓ−1Var(g(X(T))))

≤ 2E[
|V(g(X(T)); 2ℓM̃) − Var(g(X(T)))|

2

22(ℓ−1)Var(g(X(T)))
2 ] <

C
22ℓM̃

.

Consequently,

E[M]TOL2S
Var(g(X(T)))C2

C
≤

[P(M ≤ M̃) + ∑∞
ℓ=1 2

ℓP(M = 2ℓM̃)]M̃TOL2S
Var(g(X(T)))C2

C

≤ 2(1 + ä)[P(M ≤ M̃) + P(M = 2M̃) +
∞
∑
ℓ=1

2ℓ+1P(M = 2ℓ+1M̃)]

≤ 2(1 + ä)[P(M ≤ M̃) +
C

ä2M̃
+

C
M̃

∞
∑
ℓ=1

2−ℓ].

(4.22)

By taking limits in the above inequality, we obtain

lim sup
TOL↓0

E[M]TOL2S
Var(g(X(T)))C2

C
≤ 2(1 + ä).

Finally, noting that this result holds for any ä > 0, the proof is �nished.

For an asymptotic bound on E[N], we recall [25, Theorem 3.5]. The bound given in this theorem is derived by

studying the asymptotic form of the error indicators obtained by the stopping condition (2.19). The theorem

further shows that up to amultiplicative constant, themesh re�nement scheme (2.19)–(2.20) yields stochastic

meshes which are optimal in mean sense. The theorem is here stated as a lemma.

Lemma 4.8 (Single level asymptotic average number of time steps). Suppose the assumptions of Lemma 1.3

and (4.4)–(4.6) hold. Then the �nal number of adaptive steps generated by the algorithm (2.19) and (2.20) sat-

is�es asymptotically

lim sup
TOL↓0
TOLT E[N] ≤

4
CR

(E[
T

∫
0

√| ̂ñ(t)|dt])
2

. (4.23)

The product of the asymptotic upper bounds for E[M] and E[N] and an optimization of the choice of TOLT
andTOLS gives the followingupper boundon the computational complexity for the adaptive SLMCalgorithm.

Proposition 4.9 (SLMC computational complexity). Suppose the assumptions of Lemma 1.3 and (4.4)–(4.6)

hold. Then the work for the adaptive SLMC algorithm satis�es

lim sup
TOL↓0
WORK(TOL)TOL3 ≤

2 ⋅ 33Var(g(X(T)))C2
CCS

CR
(E[

T

∫
0

√| ̂ñ(t)|dt])
2

, (4.24)

where CC is the con�dence parameter and CR and CS are re�nement parameters described by (2.19) and (2.20).

Proof. Lemma 4.7 and 4.8 straightforwardly yield the upper bound

lim sup
TOL↓0
WORK(TOL) TOL2STOLT ≤

23Var(g(X(T)))C2
C

CR
(E[

T

∫
0

√| ̂ñ(t)|dt])
2

.

SoWORK(TOL) = O(TOL−2S TOL
−1
T ). Minimizing TOL−2S TOL

−1
T subject to the restrictionCSTOLT +TOLS = TOL

yields

TOLT =
TOL
3CS

and TOLS =
2TOL
3

.

These values for TOLT and TOLS lead to the upper bound (4.24).
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Remark 4.10. The optimal choices of TOLT and TOLS for minimizingWORK(TOL) are derived in the proof of

Proposition 4.9 to be

TOLT =
TOL
3CS

and TOLS =
2TOL
3

.

4.2 Multilevel results

We recall from the description of the adaptive MLMC algorithm in Section 2.2 that given an accuracy

TOL = CSTOLT + TOLS, the adaptive MLMC algorithm generates realizations g(Xℓ(T)) ful�lling the weak

error bounds |E[g(Xℓ(T)) − g(X(T))]| ≲ TOLT, ℓ on the levels ℓ = 0, 1, . . . , L. The time discretization tolerance

levels are given by TOLT, ℓ = 2ℓTOLT, and the number of levels is set by L = ⌊log2(TOLT,Max
/TOLT)⌋, where

TOLT,Max
is a predeterminedmax time discretization tolerance value, cf. (2.3). Themultilevel sample average

estimator of E[g(X(T))] is denoted by

AML(g(X(T));M0) =
M0

∑
i=1

g(X0(T; ø0,i))
M0

+
L
∑
ℓ=1

Mℓ

∑
i=1

Äℓg(X(T; øℓ,i))
Mℓ

,

whereM0 ∈ 2L+⌈CMLL⌉2ℕ denotes the number of samples on the coarsest level with the constantCML ∈ (0, 1),
and the number of samples on higher levels is expressed in terms ofM0 by the ratio

Mℓ =
M0
2L

⌈2L
ñlow(TOLT, 0)TOLT, ℓ
ñlow(TOLT, ℓ)TOLT, 0

⌉

=
M0
2L

⌈2L+( ̄ã−1)ℓ⌉, ℓ = 1, 2, . . . , L.

(4.25)

The number of samples at the coarsest level is a stochastic processM0 : ℝ+ → 2ℕ+L+⌈CMLL⌉
de�ned by

M0(TOLS) = the smallest k0 ∈ 2ℕ+L+⌈CMLL⌉
such that VML(g(X(T)); k0) <

k0TOLS
2

C2
C

, (4.26)

where

VML(g(X(T)); k0) =
k0
∑
i=1

(g(X0(T; ø0,i)) − A(g(X0(T; ø0,⋅)); k0))
2

k0 − 1

+
L
∑
ℓ=1

k0
kℓ

kℓ
∑
i=1

(Äℓg(X(T; øℓ,i)) − A(Äℓg(X(T; øℓ,⋅)); kℓ))
2

kℓ − 1

= V(g(X0(T; ø0,⋅)); k0) + 2L
L
∑
ℓ=1

V(Äℓg(X0(T; øℓ,⋅)); kℓ)
⌈2L+ℓ( ̄ã−1)⌉

(4.27)

and, analogous to the de�nition ofMℓ,

kℓ :=
k0
2L

⌈2L+( ̄ã−1)ℓ⌉, ℓ = 1, 2, . . . , L. (4.28)

Remark 4.11. In the analysis of the adaptive SLMC algorithm, the requirement M0 ∈ 2ℕ+⌈log(1/TOL)⌉ ensured

that the number of samples used in the MC estimate ful�lled lim infTOL↓0 M = ∞. For the adaptive MLMC al-

gorithm, we analogously ensure that lim infTOL↓0 ML = ∞ by requiring thatM0 ∈ 2ℕ+L+⌈CMLL⌉
for any positive

constant CML.

The stochastic process M0 is de�ned in a similar way as the stochastic process M was de�ned for the SLMC

algorithm, cf. (4.9). For the adaptive SLMC algorithm, asymptotic accuracy and complexity results were easily

obtained by applying the asymptotic bounds ofM, cf. Lemma 4.5. Applying the same strategy for the adaptive

MLMC algorithm, we will derive asymptotic bounds for M0 and use these bounds to prove the accuracy and

complexity results of Theorem 4.1 and 4.2.
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Lemma 4.12 (Asymptotic bounds forM0). Let

VarML(g(X(T))) := Var(g(X0(T))) + 2L
L
∑
ℓ=1

Var(Äℓg(X(T)))
⌈2L+ℓ( ̄ã−1)⌉

, (4.29)

suppose that assumptions (4.4)–(4.6)hold, and thatVarML(g(X(T))) > 0 for all su�ciently smallTOL > 0. Then
M0(TOLS) de�ned according to (4.26) ful�lls

lim inf
TOL↓0

M0TOL
2
S

VarML(g(X(T)))C2
C
= 1 in probability,

lim sup
TOL↓0

M0TOL
2
S

VarML(g(X(T)))C2
C
= 2 in probability.

(4.30)

Proof. The de�nition ofM0 given in (4.26) implies that the following inequalities hold:

VML(g(X(T));M0)

VarML(g(X(T)))
≤

M0TOL
2
S

VarML(g(X(T)))C2
C
≤ 2

VML(g(X(T));M0/2)

VarML(g(X(T)))
.

So to conclude the proof, we will show that

lim
TOL↓0

VML(g(X(T));M0)

VarML(g(X(T)))
= 1 in probability. (4.31)

De�ne the deterministic function

k̃0(TOLT) = 2L(TOLT)+⌈CMLL(TOLT)⌉+1

and let {k̃ℓ}
L
ℓ=1 be the corresponding level functions de�ned according to (4.28). Then, for a given å > 0, let us

consider

P(
!!!!!!!!!

VML(g(X(T)); k̃0)

VarML(g(X(T)))
− 1

!!!!!!!!!
> å)

= P(|VML(g(X(T)); k̃0) − VarML(g(X(T)))| > VarML(g(X(T)))å)

≤ P(|V(g(X0(T)); k̃0) − Var(g(X0(T)))|

+
L
∑
ℓ=1

2L⌈2L+ℓ( ̄ã−1)⌉−1|V(Äℓg(X(T)); k̃ℓ) − Var(Äℓg(X(T)))| > VarML(g(X(T)))å)

≤ P(|V(g(X0(T)); k̃0) − Var(g(X0(T)))| >
VarML(g(X(T)))å

L + 1
)

+
L
∑
ℓ=1

P(2(1− ̄ã)ℓ|V(Äℓg(X(T)); k̃ℓ) − Var(Äℓg(X(T)))| >
VarML(g(X(T)))å

L + 1
).

From the fourth moment bound (4.4), Chebyche�’s inequality and k-Statistics bounds on the variance of the

sample variance, cf. [22], we get that

P(|V(g(X0(T)); k̃0) − Var(g(X0(T)))| >
VarML(g(X(T)))å

L + 1
) ≤

C(L + 1)2

VarML(g(X(T)))
2
å2k̃0

.

The equality 2(1− ̄ã)ℓ = ñlow(TOLT, ℓ)TOLT, 0
ñlow(TOLT, 0)TOLT, ℓ

combined with (4.4) further yields that

P(2(1− ̄ã)ℓ|V(Äℓg(X(T)); k̃ℓ) − Var(Äℓg(X(T)))| >
VarML(g(X(T)))å

L + 1
) ≤

C(L + 1)2

VarML(g(X(T)))
2
å2k̃ℓ

.

Since k̃0 = 2L+⌈CMLL⌉+1
, the de�nition of k̃ℓ in (4.28) implies that

k̃ℓ ≥ 2L+⌈CMLL⌉+1+( ̄ã−1)ℓ
for ℓ = 1, 2, . . . , L,



H. Hoel et al., Implementation and analysis of an adaptive MLMC algorithm | 33

with ̄ã ≥ 0 denoting the lower error density exponent in ñlow(TOLT) = TOL
̄ã
T, cf. (1.23). Consequently,

P(
!!!!!!!!!

VML(g(X(T)); k̃0)

VarML(g(X(T)))
− 1

!!!!!!!!!
> å) ≤

C(L + 1)2

VarML(g(X(T)))
2
å2k̃0

L
∑
ℓ=0

k̃0
k̃ℓ

≤
C(L + 1)2

VarML(g(X(T)))
2
å2k̃0

L
∑
ℓ=0

2(1− ̄ã)ℓ

<
C(L + 1)2

2⌈CMLL⌉+ ̄ãLVarML(g(X(T)))
2
å2

which implies that for any å > 0,

lim
TOL↓0

P(
!!!!!!!!!

VML(g(X(T)); k̃0)

VarML(g(X(T)))
− 1

!!!!!!!!!
> å) < lim

TOL↓0

C(L + 1)2

2⌈CMLL⌉+ ̄ãLVarML(g(X(T)))
2
å2

= 0.

SinceM0 ≥ k̃0 by de�nition, we conclude that also (4.31) holds, i.e.,

lim
TOL↓0

P(
!!!!!!!!!

VML(g(X(T));M0)

VarML(g(X(T)))
− 1

!!!!!!!!!
> å) = 0,

for any å > 0.

Proof of Theorem 4.1

With the asymptotic bounds onM0 we are ready to prove themain asymptotic accuracy result for the adaptive

MLMC algorithm.

Proof. This proof is quite similar to the proof of Proposition 4.6 for the asymptotic accuracy in the single level

setting, but for the sake of the di�ering details, a full proof is included in this setting also. For a given ä > 0,
we start by bounding the left-hand side of (4.1) by a product of the statistical error and the time discretization

error

lim inf
TOL↓0

P(|E[g(X(T))] − AML(g(X(T));M0)| ≤ TOL)

≥ lim inf
TOL↓0

P(|E[g(X(T)) − g(XL(T))]| + |E[g(XL(T))] − AML(g(X(T));M0)| ≤ CSTOLT + TOLS)

≥ lim inf
TOL↓0

P(|E[g(X(T)) − g(XL(T))]| ≤ (CS + ä)TOLT and |E[g(XL(T))] − AML(g(X(T));M0)| ≤ (1 − ä)TOLS)

= lim inf
TOL↓0

P(|E[g(X(T)) − g(XL(T))]| ≤ (CS + ä)TOLT)

× P(|E[g(XL(T))] − AML(g(X(T));M0)| ≤ (1 − ä)TOLS).

The time discretization error. The assumption that Lemma 1.3 and (4.4) hold implies that

lim sup
TOL↓0

|E[g(X(T)) − g(X(T))]|
TOLT

≤ CS,

cf. the proof of [25, Theorem 3.4]. By construction TOLT, L = TOLT, and this implies by the above that

lim inf
TOL↓0

P(|E[g(X(T)) − g(XL(T))]| ≤ (1 + ä)CSTOLT) = 1.

The statistical error. From the above introduced ä > 0, de�ne the family of sets

Øä(TOLS) = {k ∈ 2ℕ+L+⌈CMLL⌉ !!!!!!!
1 − ä <

kTOLS
2

VarML(g(X(T)))C2
C
≤ 2 + ä}, (4.32)

indexed by TOLS > 0. Lemma 4.12 then implies that limTOL↓0 P(M0 ∈ Øä) = 1. Recall further that for the adap-

tive MLMC algorithm, the number of samples M0 is determined in the step prior to generating the output

AML(g(X(T));M0), so that M0 is independent from AML(g(X(T));M0). Using this independence property
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and Fatou’s lemma, the statistical error is bounded from below as follows:

lim inf
TOL↓0

P(|E[g(XL(T))] − AML(g(X(T));M0)| ≤ (1 − ä)TOLS)

= lim inf
TOL↓0

∑
k0∈2ℕ+L+⌈CMLL⌉

P(|E[g(XL(T))] − AML(g(X(T)); k0)| ≤ (1 − ä)TOLS)P(M0 = k0)

≥ lim inf
TOL↓0

∑
k0∈Øä

P(|E[g(XL(T))] − AML(g(X(T)); k0)| ≤ (1 − ä)TOLS)P(M0 = k0)

+ ∑
k0∈2ℕ+L+⌈CMLL⌉\Øä

lim inf
TOL↓0

P(|E[g(XL(T))] − AML(g(X(T)); k0)| ≤ (1 − ä)TOLS)P(M0 = k0)

≥ lim inf
TOL↓0

∑
k0∈Øä

P(√k0
|E[g(XL(T))] − AML(g(X(T)); k0)|

√VarML(g(X(T)))
≤ (1 − ä)3/2CC)P(M0 = k0)

≥

(1−ä)3/2CC

∫

−(1−ä)3/2CC

e−x
2/2

√2ð
dx.

(4.33)

The last inequality above follows from the application of Lindeberg–Feller’s Central Limit Theorem (CLT)

which is justi�ed by Lemma 4.13 and the observation that E[AML(g(X(T)); k0)] = E[g(XL(T))]. The reasoning
leading to inequality (4.33) is valid for any ä > 0, so the proof of Theorem 4.1 is �nished.

Next we derive the weak convergence CLT result for the multilevel estimator AML(g(X(T)); k0) which is

needed in the proof of Theorem 4.1.

Lemma 4.13 (A CLT result). Suppose the assumptions (4.4)–(4.6) hold and, in correspondence with the set de-

�ned in (4.32), let

k0(TOLS) := min{k ∈ 2ℕ+L+⌈CMLL⌉ !!!!!!!
kTOLS

2

VarML(g(X(T)))C2
C
> 1 − ä},

for a given ä > 0. Then for any z ∈ ℝ+, we have that

lim
TOL↓0

P(√k0
|E[AML(g(X(T)); k0)] − AML(g(X(T)); k0)|

√VarML(g(X(T)))
≤ z) =

z

∫
−z

e−x
2/2

√2ð
dx. (4.34)

Proof. This lemmawill be proved by verifying that the assumptions of the Lindeberg–Feller CLT are ful�lled,

cf. Theorem A.1. Let us write

√k0
E[AML(g(X(T)); k0)] − AML(g(X(T)); k0)

√VarML(g(X(T)))
=

K
∑
i=1

YK,i

whereK := ∑L
ℓ=0 kℓ and the elements of YK,i are independent and de�ned by

YK,i :=

{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{
{

E[g(X0(T))] − g(X0(T; øi))

√k0 √VarML(g(X(T)))
for i = 1, 2, . . . , k0,

√ k0
k1
(E[Ä1g(X(T))] − Ä1g(X(T; øi)))

√k1 √VarML(g(X(T)))
for i = k0 + 1, . . . , k0 + k1,

.

.

.

.

.

.

√ k0
kL
(E[ÄLg(X(T))] − ÄLg(X(T; øi)))

√kL √VarML(g(X(T)))
for i = kL−1 + 1, . . . , K.

Then it follows that

K
∑
i=1
E[Y2

K,i] =
VarML(g(X(T)))

VarML(g(X(T)))
= 1 for all TOL > 0,
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so condition (a) of Theorem A.1 is ful�lled. To verify that condition (b) of Theorem A.1 is ful�lled, one must

show that for any å > 0,

lim sup
TOL→0

K
∑
i=1
E[Y2

K,i1|YK,i|>å] = 0.

The de�nition of kℓ, cf. (4.28), combined with the moment bound (4.4) implies that there exists a C > 0 such

that

E[(
k0
kℓ

)
2
|Äℓg(X(T)) − E[Äℓg(X(T))]|4] ≤ C for all ℓ ∈ {1, 2, . . . , L}.

Using Chebyche�’s inequality and the fact that kL ≥ 2⌈CMLL⌉+ ̄ãL+1
, cf. (4.28), we derive that

K
∑
i=1
E[Y2

K,i1|YK,i|>å] ≤
K
∑
i=1

å−2E[Y4
K,i]

=
1

å2 VarML(g(X(T)))
2{

1
k0
E[|g(X0(T)) − E[g(X0(T))]|

4]

+
L
∑
ℓ=1

1
kℓ
E[(

k0
kℓ

)
2
|Äℓg(X(T)) − E[Äℓg(X(T))]|

4
]}

≤
C

å2 VarML(g(X(T)))
2

L
∑
ℓ=0

k−1ℓ ≤
CL

kL å2 VarML(g(X(T)))
2 → 0 as TOL ↓ 0.

This veri�es that condition (b) is ful�lled.

We conclude the analysis of the adaptive MLMC algorithm by estimating the work required to ful�ll the accu-

racy estimate (4.1). We recall thatWORK(TOL), de�ned in (4.2) by

WORK(TOL) =
L
∑
ℓ=0
E[Mℓ]E[Nℓ],

is an estimate of the average number of operations required in the generation of AML(g(X(T));M0) to ap-

proximate E[g(X(T))]with the prescribed con�denceCC and accuracy TOL. First, let us derive an asymptotic

bound for E[M0].

Lemma 4.14. Suppose the assumptions (4.4)–(4.6) hold. Then the number of samplesM0 used at the base level

of the MLMC algorithm approximation of E[g(X(T))] satis�es

lim sup
TOL↓0

E[M0]TOL
2
S

VarML(g(X(T)))C2
C
≤ 2. (4.35)

Proof. For given ä > 0, de�ne the deterministic function

M̃0(TOL) = min{k ∈ 2ℕ+L+⌈CMLL⌉ !!!!!!!
k0TOL

2

VarML(g(X(T)))C2
C
> 1 + ä}.

By the relation (4.15), the moment bound assumption (4.4), Hölder’s inequality, and k-Statistics bounds on

the variance of the sample variance, cf. [22], we derive that

P(M0 = 2M̃0) ≤ P(
VML(g(X(T)); M̃0)

VarML(g(X(T)))
> M̃0

TOL2

VarML(g(X(T)))C2
C
)

≤ P(
VML(g(X(T)); M̃0)

VarML(g(X(T)))
> 1 + ä)

≤ P(VML(g(X(T)); M̃0) − VarML(g(X(T))) > äVarML(g(X(T))))

≤ E[
|VML(g(X(T)); M̃0) − VarML(g(X(T)))|

2

ä2VarML(g(X(T)))
2 ]

≤
Var(V(g(X0(T)); M̃0)) + ∑L

ℓ=1 Var(V(Äℓg(X(T)); M̃ℓ))

ä2VarML(g(X(T)))
2 ≤

CL

ä2VarML(g(X(T)))
2
M̃L

,
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and for ℓ = 1, 2, . . . that

P(M0 = 2ℓ+1M̃0) ≤ P(VML(g(X(T)); 2ℓM̃0) − VarML(g(X(T))) > 2ℓ−1VarML(g(X(T))))

≤ E[
|VML(g(X(T)); 2ℓM̃0) − VarML(g(X(T)))|

2

22(ℓ−1)VarML(g(X(T)))
2 ]

<
CL

23ℓ VarML(g(X(T)))
2
M̃L

.

Consequently,

E[M0]TOL
2
S

Var(g(X(T)))C2
C
≤ [P(M0 ≤ M̃0) +

∞
∑
ℓ=1

2ℓP(M0 = 2ℓM̃0)]
M̃0TOL

2
S

Var(g(X(T)))C2
C

≤ 2(1 + ä)[P(M0 ≤ M̃0) + P(M0 = 2M̃0) +
∞
∑
ℓ=1

2ℓ+1P(M0 = 2ℓ+1M̃0)]

≤ 2(1 + ä)[P(M0 ≤ M̃0) +
CL

ä2M̃L
+

CL
M̃L

∞
∑
ℓ=1

2−2ℓ].

Taking limits in the above inequality leads to

lim sup
TOL↓0

E[M0]TOL
2
S

VarML(g(X(T)))C2
C
≤ 2(1 + ä).

Finally, observe that since the obtained inequality holds true for any ä > 0, the proof is �nished.

An asymptotic bound onE[Nℓ]maybe deduced from the single level result of Lemma4.8. For the convenience

of the reader we present the result of Lemma 4.8 in a way that is �tting for the multilevel setting.

Lemma 4.15 (Multilevel asymptotic average number of time steps). Suppose the assumptions of Lemma 1.3

and (4.4)–(4.6) hold. Then the �nal number of time steps generated by the adaptive MLMC algorithm with time

steps (2.19) and (2.20) and TOLT, ℓ = 2−ℓTOLT, 0 satis�es

lim sup
ℓ↑∞
TOLT, ℓE[Nℓ] ≤

4
CR

(E[
T

∫
0

√| ̂ñ(t)|dt])
2

. (4.36)

Proof of Theorem 4.2

With bounds forE[M0] andE[Nℓ] at hand,we are ready to prove themain complexity theorem for the adaptive

MLMC algorithm.

Proof. First,wenote that the conditions ̄ã → 0 andL ̄ã → ∞ asTOL ↓ 0 yields a consistent lower error density,

since it leads to

ñlow(TOLT) = TOL
̄ã
T = O(2−L ̄ã),

which implies that

ñlow(TOLT) → 0 as TOL ↓ 0.

Lemma 4.15 implies that for any given ä > 0, there exists an L̂(ä) not depending on TOL such that

TOLT, ℓE[Nℓ] ≤ (1 + ä)
4
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

for all ℓ ≥ L̂. (4.37)

Furthermore, recall thatMℓ as de�ned in (4.25) ful�lls

E[Mℓ] ≤ (2ℓ( ̄ã−1) + 2−L)E[M0] for all ℓ ∈ {0, 1, . . . , L}.
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By this property, intequality (4.37), the monotonic relation Nℓ ≤ Nℓ+1, and recalling that by construc-

tion TOLT, 0 > TOLT,Max
,

L
∑
ℓ=0
E[Mℓ]E[Nℓ] ≤ E[NL̂]TOLT, L̂

L̂
∑
ℓ=0

E[Mℓ]
TOLT, L̂

+
L
∑

ℓ=L̂+1

E[Mℓ]
TOLT, ℓ
E[Nℓ]TOLT, ℓ

≤
(1 + ä)4E[M0]
CR TOLT, 0

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

(2L̂
L̂−1
∑
ℓ=0

(2ℓ( ̄ã−1) + 2−L) +
L
∑
ℓ=L̂

(2ℓ ̄ã + 2−L+ℓ))

≤
(1 + ä)4E[M0]
CR TOLT,Max

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

(
2L̂

1 − 2 ̄ã−1 + L̂2L̂−L +
2(L+1) ̄ã

log(2 ̄ã)
+ 2).

The asymptotics of ̄ã imply that

lim
TOL↓0

̄ã
2 ̄ãL (

2L̂

1 − 2 ̄ã−1 + L̂2L̂−L +
2(L+1) ̄ã

log(2 ̄ã)
+ 2) =

1
log(2)

.

Lemma 4.14 and (4.40) then yield

lim sup
TOL↓0

WORK(TOL) TOL2S ̄ã

VarML(g(X(T))) 2 ̄ãL
≤ (1 + ä)

8 C2
C

log(2) TOLT,Max
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

. (4.38)

We observe that WORK(TOL) = O(TOL−2S VarML(g(X(T)))2 ̄ãL). To obtain a bound on more explicit form,

the assumption (4.4) on Lp
convergence implies there exists a CG > 0 such that¹⁰

lim sup
ℓ↑∞

ñlow(TOLT, ℓ)
TOLT, ℓ

E[|Äℓg(X(T))|
2
] ≤ CG. (4.39)

Inequality (4.39) further implies that

lim sup
TOL↓0

VarML(g(X(T)))
L

≤ CG, (4.40)

which in turn yields

lim sup
TOL↓0

WORK(TOL) TOL2S ̄ã

VarML(g(X(T))) 2 ̄ãL
≤ (1 + ä)

8 C2
C CG

log(2) TOLT,Max
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

. (4.41)

We approximately minimize the complexity by the splitting choice

TOLS =
2

2 + ̄ã(TOL)
TOL and TOLT =

̄ã(TOL)
(2 + ̄ã(TOL))CS

TOL,

which ful�lls the restrictionsCSTOLT + TOLS = TOLandTOLT ≤ TOLS. Applying this splitting choice in (4.41)

and noting that the proof argument is valid for all ä > 0 leads to (4.3).

For settings where ̂ñ is bounded from below by a positive real, adaptive MLMC has the same complexity as

uniform MLMC.

Corollary 4.16. Suppose that the assumptions of Lemma 1.3 and (4.4)–(4.6) hold, that ñlow(TOLT) = ñ
min

∈ ℝ+,
and

min
ó∈[0,T]

|ñ̂(ó)| ≥ ñ
min

a.s. (4.42)

Then

lim sup
TOL↓0

WORK(TOL)TOL2

L2 ≤
8C2

C CG

TOLT,Max
CR

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

. (4.43)

10 See Remark 4.18 for a discussion on how to estimate CG.
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Proof. For ñlow(TOLT) = ñ
min

,Mℓ as de�ned in (4.25) ful�lls

E[Mℓ] = 2−ℓE[M0] for all ℓ ∈ {0, 1, . . . , L}. (4.44)

By inequality (4.37), equation (4.44), and the monotonic relationNℓ ≤ Nℓ+1,

L
∑
ℓ=0
E[Mℓ]E[Nℓ] ≤ E[NL̂]TOLT, L̂

L̂
∑
ℓ=0

E[Mℓ]
TOLT, L̂

+
L
∑

ℓ=L̂+1

E[Mℓ]
TOLT, ℓ
E[Nℓ]TOLT, ℓ

≤
4(1 + ä)E[M0]
CR TOLT, 0

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

(2L̂
L̂−1
∑
ℓ=0

2−ℓ +
L
∑
ℓ=L̂

1)

≤
4(1 + ä)E[M0]
CR TOLT, 0

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

(2L̂+1 + (L − L̂)).

(4.45)

Recalling the de�nition L = ⌊log2(TOLT,Max
/TOLT)⌋ and that L̂ is �xed, it follows that

lim
TOL↓0

2L̂+1 + (L − L̂)
L

= 1.

Using (4.45) combined with Lemma 4.14 and recalling that TOLT, 0 > TOLT,Max
/2, we obtain the bound

lim sup
TOL↓0

WORK(TOL) TOL2S
VarML(g(X(T)))L

≤
16(1 + ä)E[M0]
CR TOLT,Max

(E[
T

∫
0

√|ñ̂(ó)|dó])
2

. (4.46)

To approximately minimize the complexity, we introduce the splitting choice

TOLS =
log(TOL−1)

log(TOL−1) + log(log(TOL−1))
TOL,

TOLT =
log(log(TOL−1))

(log(TOL−1) + log(log(TOL−1)))CS
TOL.

Combining (4.39) with the above splitting choice in inequality (4.46), and noting that this bound is valid for

any ä > 0 leads to (4.43).

Remark 4.17 (Splitting of the tolerance). The optimal choices of TOLS and TOLT given TOL obtained in the

proof allocates most of the tolerance to the statistical error when TOL is small. This di�ers from the equal

splitting between TOLS and TOLT used in the numerical experiments which were sub-optimal in that sense.

Remark 4.18 (Particular estimate for the constant CG). It is possible to estimate the asymptotic constant CG
given in inequality (4.39). For instance, when the exact error density is bounded away from zero so there

exists a constant ñmin such that ̂ñ > ñmin > 0 a.s. and the SDE is given by

dX(t) = b(X(t))dW(t), t > 0,

X(0) = X0,

then we have

CG ≤ CSE[
"""""""""

(b�b)2(X(t))(ÿ)2(t)
̂ñ(t)

"""""""""L∞([0,T])
].

Here ÿ(t) = g�(X(T))X
�(T)

X�(t) and the �rst variationX�(s) solves, for s > 0, the linear equation

dX�(s) = b�(X(s))X�(s)dW(s),

with initial conditionX�(0) = 1. The constant CS is the parameter in the stopping condition (2.19).

Remark 4.19 (Jump di�usions). It is possible to extend these results of adaptive multilevel weak approxima-

tion for di�usions to the case of jump di�usions with time dependent jump measure analyzed in [27].
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5 Conclusions
In this work we presented and analyzed an adaptive multilevel Monte Carlo algorithm, where the multi-

level simulations are performed on adaptively generated mesh hierarchies based on computable a posteriori

weak error estimates. The theoretical analysis of the adaptive algorithm showed that the algorithm stops after

a �nite number of steps, and proceeded to show accuracy and e�ciency results under natural assumptions

in Theorems 4.1 and 4.2. In particular, Theorem4.1 states that the probability of theweak error being bounded

by the speci�ed tolerance TOL is asymptotically bounded by any desired probability through the con�dence

parameter. Theorem 4.2 states computational complexity results where the involved constants are explicitly

given in terms of algorithm parameters and problem properties. It shows that the L1/2
-quasi norm of the error

density appears as a multiplicative constant in the complexity bounds, instead of the larger L1
-norm of the

same error density that would appear using a uniform time steppingMLMC algorithm; the di�erence between

these two factors can be arbitrarily large even in problems with smooth coe�cients where they are both �-

nite. Disregarding the constants the result shows that, depending on assumptions on the limit error density

and the lower bound on the computed error density used by the adaptive algorithm, the complexity can be

either the same as or nearly the same as the complexity uniformMLMC has in cases where the order of strong

convergence of the Euler–Maruyama method is 1/2.
Numerical results for scalar SDEs con�rmed the theoretical analysis. For the two problems with re-

duced weak convergence order a simple single level Monte Carlo method has complexity O(TOL−4) while

the adaptive MLMC method has the improved complexity O(TOL−2 log2(TOL0/TOL)
2). The use of advanced

Monte Carlo methods such as the adaptive MLMC algorithm presented in this paper is most attractive for

SDEs in higher dimension, where the corresponding standard PDE-based computational techniques are not

competitive. It would also be interesting to compare adaptive MLMC with uniform MLMC for Barrier prob-

lems in higher dimensions, since it is not clear that the order of strong convergence of the Euler–Maruyama

method will be (1 − ä)/2, for any positive ä, in that case. The fact that computational complexity of uniform

multilevel Monte Carlo, disregarding constants, depends on the strong convergence indicates that adaptive

mesh re�nements based on strong error estimates can also be used to improve the computational e�ciency;

such methods are also subjects of ongoing research and higher-dimensional examples will be treated in

that context.

In this paper the adaptive algorithms were presented with global error control in the quantity of interest,

starting from a given coarse mesh. Alternatively, local error estimates can be applied to control the adaptive

time stepping in the computation of the forward problem. This approach can be used on its own when global

error control is deemed unnecessary or too computationally expensive, but it can also be used together with

the global error control in situationswith sti� SDEswhere any given initial mesh can be too coarse depending

on the realization. This is particularly relevant for MLMC simulations where stability issues in the computa-

tions on the coarsest level can destroy the results of the whole multilevel simulation, as was pointed out by

Hutzenthaler, Jentzen, and Kloeden in [18].

A Theorem
Theorem A.1 (Lindeberg–Feller Theorem [7, p. 114]). For each n, let Xn,m, 1 ≤ m ≤ n, be independent random

variables with E[Xn,m] = 0. Suppose:
(a) we have

n
∑
m=1
E[X2

n,m] → ò2 > 0,

(b) for all ä > 0,

lim
n→∞

n
∑
m=1
E[X2

n,m1|Xn,m|>ä] = 0.
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Then the Central Limit Theorem holds, i.e., the random variable

Sn :=
n
∑
m=1

Xn,m ⇀ òÎ as n → ∞,

where Î is a standard normal distributed random variable.
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