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Hereditary neuropathies form a heterogeneous group of disorders for which over 40 causal genes have been identified to date.

Recently, dominant mutations in the transient receptor potential vanilloid 4 gene were found to be associated with three distinct

neuromuscular phenotypes: hereditary motor and sensory neuropathy 2C, scapuloperoneal spinal muscular atrophy and con-

genital distal spinal muscular atrophy. Transient receptor potential vanilloid 4 encodes a cation channel previously implicated in

several types of dominantly inherited bone dysplasia syndromes. We performed DNA sequencing of the coding regions of

transient receptor potential vanilloid 4 in a cohort of 145 patients with various types of hereditary neuropathy and identified five

different heterozygous missense mutations in eight unrelated families. One mutation arose de novo in an isolated patient, and

the remainder segregated in families. Two of the mutations were recurrent in unrelated families. Four mutations in transient

receptor potential vanilloid 4 targeted conserved arginine residues in the ankyrin repeat domain, which is believed to be

important in protein–protein interactions. Striking phenotypic variability between and within families was observed. The ma-

jority of patients displayed a predominantly, or pure, motor neuropathy with axonal characteristics observed on electrophysio-

logical testing. The age of onset varied widely, ranging from congenital to late adulthood onset. Various combinations of

additional features were present in most patients including vocal fold paralysis, scapular weakness, contractures and hearing

loss. We identified six asymptomatic mutation carriers, indicating reduced penetrance of the transient receptor potential vanil-

loid 4 defects. This finding is relatively unusual in the context of hereditary neuropathies and has important implications for

diagnostic testing and genetic counselling.

Keywords: transient receptor potential vanilloid 4 gene; hereditary motor and sensory neuropathy type 2C; scapuloperoneal spinal
muscular atrophy; congenital distal spinal muscular atrophy; skeletal dysplasia

Abbreviations: ARD = ankyrin repeat domain; HMN = hereditary motor neuropathy; HMSN = hereditary motor and sensory
neuropathy; PCR = polymerase chain reaction; SMA = spinal muscular atrophy; TRPV4 = transient receptor potential vanilloid 4 gene

Introduction
The long arm of human chromosome 12 harbours a region

(12q21–q24) that is rich in disease-causing loci for neurological

disorders (Klein et al., 2003). It contains the heat shock 22kDa

protein 8 (HSPB8) gene linked to distal hereditary motor

neuropathy type II (distal HMN II) (Irobi et al., 2004), the

Ataxin 2 gene associated with spinocerebellar ataxia type 2

(Pulst et al., 1996), and loci for scapuloperoneal muscular dystro-

phy (Wilhelmsen et al., 1996) and hereditary spastic paraplegia

(Schule et al., 2009). In addition, loci for three other dominantly

inherited peripheral neuropathies have been reported in this

region, namely hereditary motor and sensory neuropathy type

2C (HMSN2C), scapuloperoneal spinal muscular atrophy (SMA)

and congenital distal SMA (Isozumi et al., 1996; van der

Vleuten et al., 1998; Klein et al., 2003).

Patients with HMSN2C or Charcot–Marie–Tooth type 2C are

clinically characterized by distal muscle weakness and wasting in

the limbs, distal sensory loss, vocal fold paralysis and weakness of

the diaphragm and intercostal muscles. The age of onset varies

widely from early childhood to the third decade. Lifespan may be

decreased due to respiratory complications (Dyck et al., 1994;

Donaghy and Kennett, 1999; Santoro et al., 2002; McEntagart

et al., 2005). Scapuloperoneal SMA was originally described in a

large New England family (DeLong and Siddique, 1992). As the

name implies, patients with scapuloperoneal SMA have no

detectable involvement of sensory nerves. The distribution of sca-

puloperoneal muscle atrophy and weakness in patients with scapu-

loperoneal SMA is highly unusual within the disease spectrum of

hereditary neuropathies. As in HMSN2C, patients affected with

scapuloperoneal SMA often have vocal fold paralysis. Congenital

distal SMA is a neurological condition with prenatal onset affecting

the lower motor neurons. In a four-generation Dutch pedigree

linked to the 12q23–q24 chromosomal region, the disease severity

varied from congenital muscle weakness restricted to the distal

lower limbs, to more severe phenotypes with weakness of pelvic

girdle and trunk muscles with associated scoliosis; 15 affected mem-

bers presented with arthrogryposis (Fleury and Hageman, 1985;

van der Vleuten et al., 1998).

Three recent studies showed that mutations in the transient

receptor potential vanilloid 4 gene (TRPV4) underlie these three

clinically diverse hereditary neuropathies (HMSN2C, scapulopero-

neal SMA and congenital distal SMA) (Auer-Grumbach et al.,

2010; Deng et al., 2010; Landoure et al., 2010). Four different

mutations in eight unrelated families were reported in these stu-

dies: Arg269His, Arg269Cys, Arg315Trp and Arg316Cys. All mu-

tations except Arg269Cys were found to be recurrent in at least

two unrelated families.

Mutations were found in previously reported families including

an HMSN2C family of New Zealand descent (McEntagart et al.,

2005) that carries the Arg315Trp mutation (Auer-Grumbach et al.,

2010); a HMSN2C family from the USA (Dyck et al., 1994) that

carries the Arg269Cys mutation as was independently shown by

two studies (Deng et al., 2010; Landoure et al., 2010); a scapu-

loperoneal SMA family from the USA (DeLong and Siddique,

1992) that carries the Arg316Cys mutation (DeLong and

Siddique, 1992; Deng et al., 2010); and the Dutch family with

congenital distal SMA (van der Vleuten et al., 1998) that carries

the Arg269His mutation (Auer-Grumbach et al., 2010).

TRPV4 contains 15 exons and encodes a non-selective cation

channel modestly permeable to Ca2+ (Liedtke et al., 2000; Plant

and Strotmann, 2007). TRPV4 was initially identified as a
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vertebrate osmosensor but can in fact be activated by a wide var-

iety of stimuli including cell shearing, heat, endogenous agonists

(e.g. endocannabinoid anandamide, arachidonic acid) and synthetic

agonists like 4�-phorbol-12,13-didecanoate (4�PDD) (Liedtke

et al., 2000; Nilius et al., 2003; Watanabe et al., 2003; Plant

and Strotmann, 2007; Everaerts et al., 2009). TRPV4 shares struc-

tural features with other TRPV family members, including six pu-

tative transmembrane �-helices (TM) with a channel pore between

TM5 and TM6 and intracellular domains at the N- and C- termini

(Everaerts et al., 2009). Based on the recently determined crystal

structure of the corresponding domain from the chicken orthologue

(Landoure et al., 2010), TRPV4 contains an N-terminal ankyrin

repeat domain (ARD) with six repeats. Such repeats have been

found to be important for oligomerization, proper trafficking to

the plasma membrane and interaction with other proteins (Erler

et al., 2004; Hellwig et al., 2005; Arniges et al., 2006; Everaerts

et al., 2009; Phelps et al., 2009). A proline-rich domain is located

upstream of the ARD and has been shown to be involved in mechan-

osensation and interaction with protein kinase C and casein kinase

substrate in neurons, proteins implicated in synaptic vesicular traf-

ficking and regulation of endocytotic processes (Cuajungco et al.,

2006; D’Hoedt et al., 2008). A putative calmodulin-binding domain

at the C-terminus is involved in Ca2+-dependent activation of the

channel. A DAPL motif formed by four amino acids at the C-terminal

end of the sequence is similar to a PDZ-binding motif (PSD95/Dlg/

ZO-1), and might be responsible for interaction with proteins

containing PDZ-like domains (Everaerts et al., 2009).

Interestingly, TRPV4 was previously shown to be involved in

human disease, as dominant mutations were reported to cause vari-

ous skeletal dysplasia syndromes including brachyolmia (Rock et al.,

2008), spondylometaphyseal dysplasia Kozlowski type and meta-

tropic dysplasia (Krakow et al., 2009). The mutations causing these

different skeletal dysplasia syndromes were shown to result in a

gain of channel function (Rock et al., 2008; Krakow et al., 2009).

For the neuropathy-associated TRPV4 mutations there is less

consensus regarding the underlying disease mechanism. Four mu-

tations (Arg269Cys, Arg269His, Arg315Trp and Arg316Cys) were

studied functionally in different cell systems (Auer-Grumbach

et al., 2010; Deng et al., 2010; Landoure et al., 2010). Two

studies showed that mutant TRPV4 causes a gain of channel func-

tion with increased calcium influx compared to wild-type protein,

both under basal conditions and after stimulation (Deng et al.,

2010; Landoure et al., 2010). In contrast, the third study postu-

lated a loss-of-function mechanism (Auer-Grumbach et al., 2010).

In the current study we report one new and four previously

known TRPV4 mutations. The associated phenotypic spectrum is

described in eight families presenting with various forms of heredi-

tary neuropathy. Detailed genotype–phenotype correlations giving

insight into the complexity of TRPV4 neuropathies are presented.

Patients and methods

Patient cohort
To ascertain the phenotypic variability of TRPV4-related neuropathies

a heterogeneous cohort was selected consisting of 145 unrelated index

patients with various types of hereditary neuropathies. For a subgroup

of 83 patients, criteria for inclusion were based on the unusual clinical

characteristics of the phenotypes recently described in families with

TRPV4 mutations (Auer-Grumbach et al., 2010; Deng et al., 2010;

Landoure et al., 2010). Patients in this subgroup of 83 individuals were

included if they were diagnosed with either hereditary motor sensory

neuropathy (HMSN) or HMN with at least one of the following add-

itional features: congenital onset (in the case of HMN diagnosis),

scapular or other proximal weakness, contractures, vocal fold paralysis,

diaphragmatic weakness, respiratory difficulty or pronounced scoliosis.

In addition to the above-mentioned cohort of 83 patients, a second

group of 62 patients with axonal forms of HMSN without specific

additional features were also included.

Patients were referred from various European countries and the USA

by neurologists who are well acquainted with rare neuromuscular dis-

orders. All patients or their legal representatives signed an informed

consent form prior to enrolment. The local Institutional Review Board

approved this study.

Molecular genetic analysis
Genomic DNA from total blood samples obtained from patients with

hereditary neuropathy and control persons was isolated using standard

extraction protocols. The coding regions and exon–intron boundaries

of TRPV4 were amplified by polymerase chain reaction (PCR) using

primer oligonucleotides designed with Primer3 (Rozen and Skaletsky,

2000) (Supplementary Table 1, PCR conditions are available upon re-

quest). PCR products were purified with the exonuclease I-shrimp al-

kaline phosphatase enzyme (USB, Cleveland, USA). Mutation

screening was performed by bidirectional sequencing using the

BigDye� Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,

Foster City, USA). Fragments were electrophoretically separated on an

ABI3730xl DNA Analyser (Applied Biosystems, Foster City, USA).

Sequence analysis was performed with the SeqManTMII (DNASTAR

Inc., Madison, USA) program. The nucleotide numbering was based

on the published online protein (NP_067638) and mRNA

(NM_021625) sequence of TRPV4 (http://www.ncbi.nlm.nih.gov).

For the description of the mutations we used the latest conventions

of the Human Genome Variation Society nomenclature (http://

www.hgvs.org/mutnomen). Sequence variants were confirmed by an

independent PCR and sequencing of the original or new stock DNA

samples. Segregation of the mutations with the disease phenotype was

analysed in all families. For the Arg232Cys and Val620Ile mutations,

280 controls of European descent were screened.

Haplotype sharing and paternity testing
In order to investigate haplotype-sharing among the families carrying

the Arg232Cys or Arg269Cys mutation and confirm the de novo char-

acter of the Val620Ile mutation, genotyping was performed using five

highly informative short tandem repeat markers surrounding the

TRPV4 gene (D12S105, D12S1583, D12S1645, D12S1343 and

D12S1344). Short tandem repeats were PCR-amplified with fluores-

cently labelled primer pairs; sequences are available at http://

www.ncbi.nlm.nih.gov. The PCR fragments were mixed with forma-

mide and the GeneScanTM 500 Liz� Size Standard (Applied

Biosystems, Foster City, USA) and subsequently size-separated on an

ABI3730xl DNA Analyser. Genotypes were analysed using Local

Genotype Viewer, an in-house developed software program (http://

www.vibgeneticservicefacility.be/).

Paternity was tested using 15 highly informative short tandem re-

peats distributed throughout the genome (ATA38A05, D1S1646,
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D1S1653, D1S1360, D2S2256, D3S3037, D4S2382, D4S3240,

D7S509, D8S1759, D9S1118, D12S1056, D12S2082, D16S2619

and GATA152H04). The short tandem repeat fragment analysis was

processed with the same equipment and software.

Results

Genetic findings
Mutation screening in a large cohort of 145 unrelated patients

with various types of hereditary neuropathies revealed eight

families with five different heterozygous missense mutations in

TRPV4 (Table 1 and Fig. 1) including the American ‘Family 1’

(F1) (Landoure et al., 2010). The other seven families were not

previously reported to carry a TRPV4 mutation. Autosomal dom-

inant segregation of the mutations was found in seven families;

the remaining index patient (PN-1394.1) was sporadic and carried

a de novo mutation (Fig. 2). Affected members in a UK family

(CMT-455), a Swiss family (CMT-456) and one patient from a UK

pedigree (CMT-1100) carried a novel sequence variation in exon 4

(c.694C4T) resulting in an Arg232Cys transition in the TRPV4

protein. The Arg269Cys (c.805C4T) mutation in exon 5 was pre-

sent in the previously reported American family (F1) (Landoure

et al., 2010) and in a new Spanish family (CMT-858). Three

other previously identified mutations were found: Arg269His

(exon 5) in an Italian kindred (CMT-165) and Arg315Trp (exon

6) in a third UK family (CMT-149) (Auer-Grumbach et al., 2010;

Deng et al., 2010; Landoure et al., 2010). Finally the Val620Ile

(c.1958G4A) mutation in exon 12, which was previously reported

to cause autosomal dominant brachyolmia (Rock et al., 2008),

was identified in an isolated Croatian patient (PN-1394.1). The

Arg232Cys and Val620Ile mutations were absent from 280 control

individuals of European descent.

Segregation analysis was performed in all families and TRPV4

mutations were present in all available affected individuals (Fig. 2).

Genetic testing revealed three asymptomatic carriers of the

Arg269Cys mutation in pedigree CMT-858. These individuals

(CMT-858.02, CMT-858.07 and CMT-858.08) were clinically un-

affected at the age of 79, 36 and 6 years, respectively.

Furthermore, two unaffected members from the F1 family (II.4

and IV.6 in the original paper) also carried the Arg269Cys muta-

tion (Landoure et al., 2010). In family CMT-455 one individual

(CMT-455.04) carrying the Arg232Cys mutation was clinically un-

affected at the age of 69 years.

Additional short tandem repeat marker and single nucleotide

polymorphism analysis for the recurrent Arg232Cys mutation

(families CMT-455, CMT-456 and CMT-1100) and Arg269Cys

mutation (CMT-858 and F1) showed that the Arg232Cys muta-

tion in families CMT-455 and CMT-1100 resides on a common

haplotype. The other families do not share haplotypes (Table 2).

Four of the five mutations identified in this study target con-

served residues in the ARD of TRPV4 based on the crystal struc-

ture of ARD of the TRPV4 chicken orthologue (Landoure et al.,

2010). The mutant residues Arg232, Arg269 and Arg315, and

previously identified Arg316 (Auer-Grumbach et al., 2010; Deng

et al., 2010) are situated on the convex surface of ARD in the

loops of finger 2, 3 and 4, respectively (Fig. 3A). Mapping of the

sequence conservation among 27 TRPV4 orthologues on the mo-

lecular surface demonstrate that the convex face of the ARD is

very highly conserved (Fig. 3B). The solvent-accessible electrostatic

surface properties show that the convex surface is also highly

positively charged (Fig. 3C).

Clinical findings
The first subgroup of the screening cohort consisted of 83 patients

presenting with various hereditary neuropathies with at least one

of the additional features as described above. For 15 patients of

Table 1 Families with TRPV4 mutations identified in this study

Mutation Amino
acid
change

Exon Known phenotypes Familya Country
of
origin

Familial
history

Number
affected

Additional
remarks

c.694C4T Arg232Cys 4 HMN with vocal
fold paralysis,
SPSMA, HMSN2

CMT-455 UK AD 3 One unaffected mutation
carrier (CMT-455), new
mutation. CMT-455 and
CMT-1100 share the
same haplotype
(Table 2)

CMT-456 Switzerland AD 4

CMT-1100 UK AD 2

c.805C4T Arg269Cys 5 HMSN2C, SPSMA,
congenital distal SMA

CMT-858 Spain AD 2 Three unaffected
mutation carriers.

F1 USA AD 7 Two unaffected mutations
carriers.

c.806G4A Arg269His 5 HMSN2C, SPSMA,
congenital distal SMA

CMT-165 Italy AD 3

c.943C4T Arg315Trp 6 HMSN2C, SPSMA,
congenital distal SMA

CMT-149 UK AD 5

c.1858G4A Val620Ile 12 HMSN2, autosomal
dominant brachyolmia

PN-1394 Croatia IC 1

AD = autosomal dominant; IC = isolated case; SPSMA = scapuloperoneal spinal muscular atrophy.
a: This study.
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Figure 2 Pedigrees of families with TRPV4 mutations. Segregation analysis and sequence trace files is shown for seven families, the

pedigree of family F1 is shown elsewhere (Landoure et al., 2010). (A) Families CMT-455, CMT-456 and CMT-1100 carrying the

Arg232Cys mutation. (B) Family CMT-858 with the Arg269Cys mutation. (C) Family CMT-165 with the Arg269His mutation. (D) Family

CMT-149 with the Arg315Trp mutation. (E) Family PN-1394 with the Val620Ile mutation. Square = male; circle = female; black filled

symbol = affected; empty symbol = unaffected; empty symbol with black dot = unaffected mutation carrier. Genotype is indicated under

each individual from whom the DNA was available for testing.

Figure 1 Location of mutations in the different domains of TRPV4 protein. Neuropathy causing mutations are indicated as well as

previously described mutations for autosomal-dominant brachyolmia, spondylometaphyseal dysplasia (SMDK), Kozlowski type and

metatropic dysplasia. Mutations identified in this study are in bold. The new neuropathy associated mutations are indicated by asterisks.

1802 | Brain 2010: 133; 1798–1809 M. Zimoń et al.



this subgroup, a formal diagnosis of HMN was made; HMSN1 for

26 and HMSN2 for 16. For the remaining 26 patients of the first

group of 83, no detailed electrophysiological information was

available so no clear distinction between HMN, HMSN1 and

HMSN2 could be made. Disease onset ranged widely from child-

hood through adulthood; nine HMN patients had a congenital

onset. Scapular or other proximal upper limb weakness was en-

countered in eight patients and contractures were present in 17

patients. In this cohort 14 patients were diagnosed with vocal fold

paralysis, five with diaphragmatic paralysis and 36 with scoliosis.

The second subgroup of the screening cohort consisted of 62

patients with a diagnosis of HMSN2 without additional features.

The detailed clinical and electrophysiological findings in the

eight families are shown in Tables 3 and 4. Data from 27 patients

were included; 23 had genetically confirmed TRPV4 mutations,

the remaining 4 were affected by history but DNA for molecular

testing was not available. Clinical findings and linkage data in

family CMT-456 were reported earlier (Boltshauser et al., 1989;

McEntagart et al., 2002).

Detailed laryngoscopy assessment of vocal fold function was

performed in the F1 family showing that the vocal fold involve-

ment was often asymmetric (Table 5). A video fragment from the

laryngoscopic evaluation of vocal fold dysfunction in patient F1

III.2 is provided in the Supplementary material.

The clinical phenotype of the patients described in the current

study is highly variable both between and within families. The

majority of patients seem to fall in the category of pure or pre-

dominantly motor nerve disorders. Nerve conduction studies

Figure 3 The four mutations at arginine residues in the TRPV4 ARD localize to the same conserved, positively charged protein surface.

(A) A ribbon representation of the structure of the TRPV4 ARD from chicken (Landoure et al., 2010), with a transparent molecular surface.

The side chains of Arg232, Arg269 and Arg315 (Arg218, Arg255 and Arg301, respectively, in chicken) are shown in green ‘van der Waals’

sphere representation, and the previously identified Arg316 (Arg302 in chicken) (Deng et al., 2010) is shown in light green. The backbone

positions of the skeletal dysplasia mutations at Ile331 and Asp333 (Krakow et al., 2009) are shown as yellow spheres for reference. (B) The

sequence conservation in TRPV4, using an alignment of 27 TRPV4 orthologues, is mapped onto the surface of the structure. Note that

Arg232, Arg269, Arg315 and Arg316 are strictly conserved as arginine residues in available TRPV4 orthologues. (C) The solvent-accessible

electrostatic properties of the protein are mapped onto the molecular surface, with blue representing positively charged surfaces (+5 kT)

and red, negatively charged surfaces (–5 kT). In (B) and (C) the surface regions corresponding to Arg232, Arg269, Arg315 and Arg316 are

outlined in black.

Table 2 Haplotype analysis of 12q markers in patients with Arg232Cys and Arg269Cys mutations in TRPV4

Arg232Cys Arg269Cys

Patient Marker CMT-455.01 CMT-456.01 CMT-1100.01 CMT-858.09 F1.IV.4

D12S105 143 147 145 145 143

D12S1583 237 225 237 221 239

D121645 212 216 212 218 212

rs3742032 (T/C) C T C C T

rs3825394 (A/C) C A C C A

D12S1343 206 206 206 206 208

D12S1344 239 235 239 239 227

The alleles of the short tandem repeats are sized in base pairs. The position of the markers is according to the reference assembly of NCBI genome build 36.3.
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showed an axonal neuropathy with preserved or only slightly atte-

nuated nerve conduction velocities in all studied patients (Table 4).

Of special interest is the isolated Croatian patient PN-1394.1

who developed symptoms of a predominantly motor neuropathy

in early childhood. Nerve conduction studies were compatible with

an axonal neuropathy and concentric needle EMG showed chronic

neurogenic changes in distal muscles (Tables 3 and 4). Because

scoliosis and short stature in this patient might resemble a bra-

chyolmia phenotype, additional radiographic studies were per-

formed. A right convex kyphoscoliosis with flattened vertebrae

in the mid-thoracic segment was found and the necks of both

femurs were shortened, wide and slightly irregular. There was

no brachydactyly or delay of the carpal bone ossification.

Genetic testing for other more common causes of hereditary neur-

opathy (CMT1A duplication and point mutations in PMP22, MPZ,

GJB1 and SH3TC2) was unremarkable in this patient.

Discussion
In this study we report clinical and genetic findings in eight unre-

lated families with hereditary neuropathies caused by TRPV4 mu-

tations identified during mutation screening of a heterogeneous

cohort of 145 unrelated index patients. The F1 family was already

reported to carry a mutation in TRPV4 but is described in detail

here (Landoure et al., 2010). In the current literature there are at

least two more families that may link to the 12q-locus, however

they were not yet reported to carry a TRPV4 mutation. One is of

UK origin (Donaghy and Kennett, 1999; McEntagart et al., 2005);

the second is of Italian descent (Santoro et al., 2002). Five differ-

ent heterozygous mutations were identified in the current study,

of which four (Arg269Cys, Arg269His, Arg315Trp and Val620Ile)

were previously reported in other families (Rock et al., 2008;

Auer-Grumbach et al., 2010; Deng et al., 2010; Landoure et al.,

2010) (Table 1). The novel Arg232Cys mutation was found in

three families who were unrelated by history. Two of these

(CMT-455 and CMT-1100) are probably distantly related since

they share the same disease haplotype. The third family with

the Arg232Cys mutation does not share this haplotype. No

common haplotype could be found in pedigrees CMT-858 and

F1, both carrying the Arg269Cys mutation (Table 2). Thus, all

mutations in this study are recurrent in at least two families point-

ing to the presence of mutation hotspots in exons 4, 5, 6 and 12

of TRPV4 (Rock et al., 2008; Auer-Grumbach et al., 2010; Deng

et al., 2010; Landoure et al., 2010). In addition, the recurrent

Arg594His mutation was described in spondylometaphyseal dys-

plasia Kozlowski type. This points to another mutational hotspot in

exon 11 (Krakow et al., 2009).

Reduced penetrance was observed in six asymptomatic mutation

carriers, for the Arg232Cys mutation in family CMT-455 and for the

Arg269Cys mutation in families CMT-858 and F1 (Landoure et al.,

2010) (Fig. 2). It was also reported previously for the Arg315Trp

mutation (Auer-Grumbach et al., 2010). Incomplete penetrance is

a relatively uncommon event in the context of hereditary peripheral

neuropathies, although it has been observed before for glycyl-

tRNA synthetase (GARS) (Sivakumar et al., 2005), myelin protein

zero (MPZ) (De Jonghe et al., 1999) and Berardinelli-Seip
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congenital lipodystrophy 2 (BSCL2) (Auer-Grumbach et al., 2005).

In TRPV4-associated neuropathy, however, reduced penetrance

seems to be a relatively common feature that is not mutation-

specific.

In accordance with previous descriptions, further phenotypic

subdivision could be made: congenital distal SMA with contrac-

tures, scapuloperoneal SMA, HMSN2C (Auer-Grumbach et al.,

2010; Deng et al., 2010; Landoure et al., 2010), but also HMN

with vocal fold paralysis and ‘generic’ HMSN2 (Table 3). Taking

the previously described mutations and phenotypes into account

and the fact that different phenotypes can arise even within one

family, no clear correlations can be made between the various

TRPV4 mutations and the associated phenotypes (Table 1).

Although the separate disease entities of TRPV4-associated neu-

ropathies could still serve a purpose from a semiological point of

view, they are actually elements of a neuropathy disease spectrum

that is exceptionally broad.

Mutations in TRPV4 were mainly identified in complex pheno-

types. Index patients from seven out of our eight families

presented with neuropathies with additional features, as opposed

to one index (family CMT-1100), who was diagnosed with

HMSN2 without clear additional features. The mutation frequency

can therefore be estimated at 8.4% in the subgroup of the com-

plex neuropathies (7 out of 83) and only 1.6% in the subgroup of

the HMSN2 neuropathies without additional features (1 out of

62). The unifying feature however of all identified neuropathy

patients with TRPV4 mutations is the axonal electrophysiology.

This is further underscored by the fact that our screening cohort

also contained 26 index patients with an electrophysiological diag-

nosis of demyelinating neuropathy (HMSN1), none of which was

found to have a TRPV4 mutation.

Of special importance for the prognosis of patients is the fre-

quently observed vocal fold involvement. Nearly all families that

have been reported to date with TRPV4 mutations contained pa-

tients with vocal fold dysfunction (Auer-Grumbach et al., 2010;

Deng et al., 2010; Landoure et al., 2010). In five out of eight

families in our series, vocal fold dysfunction was observed, often

unilateral or asymmetric with the left more affected than the right

Table 4 Nerve conduction studies in patients with proven TRPV4 mutation

Patient Age (years) Median motor Ulnar motor Peroneal motor Tibial motor Median sensory Ulnar sensory Sural sensory

Normal values Amp CV Amp CV Amp CV Amp CV Amp CV Amp CV Amp CV
4.0 49.0 4.0 49.0 3.0 41.0 3.0 41.0 7.0 46.0 2.0 47.0 1.0 44.0

CMT-455.01 33 � � 7.6 55.0 � � 4.2 49.0 9.4 N 10.3 N 11.0 N

CMT-455.08 10 � � � � � � 0.9 39.7 � � � � 12.8 N

CMT-456.01 13 7.0 50.0 � � � � 12.0 45.0 10.0 55.0 � � � �

CMT-456.03 35 13.0 61.0 � � � 52.0 10.0 49.0 10.0 52.0 10.0 49.0 8.0 54.0

CMT-456.05 33 5.3 54.0 � � 1.6 49.0 � � � � � � 1.6 45.0

CMT-1100.01 23 7.2 57.0 4.2 65.0 1.6 55.0 3.9 � 7.0 54.0 5.0 58.5 5.0 50.0

CMT-1100.03 42 – 60.0 – 66.0 0.4 � – � A � � � A –

CMT-858.05 40 3.8 52.9 3.6 51.4 0.9 53.7 0.5 52.3 8.4 56.9 � � 18.1 56.3

CMT-858.09 4 4.6 49.1 1.6 52.4 0.4 48.8 0.4 44.7 9.0 47.8 � � 6.5 48.1

F1 III2 71 4.9 57.0 7.0 51 2.1 46.0 4.5 41.0 13.0 36.0 18.0 46.0 � –

F1 IV3 45 0.4 50.0 A A A A 1.4 40.0 5.0 56.0 3.0 52.0 9.0 41.0

27 3.4 53.6 1.8 62.5 0.3 51.6 � � 10.0 60.0 5.0 52.3 9.0 46.1

F1 IV8 19 12.4 56.0 � � 4.1 40.0 6.5 45.0 20.0 50.0 � � 13.0 41.0

CMT-165.03 22 � � � � 0.6 45.0 � � � � � � 23.0 47.0

CMT-165.04 8 1.7 52.0 � � � � � � � � � � � –

CMT-149.01 47 3.0 59.0 � � � � 5.2 50.7 N N N N N N

CMT-149.02 29 7.0 51.0 � � � � � � 4.5 N 3.2 N

CMT-149.03 1 � 53.3 � � � � � � � � � � � –

CMT-149.04 12 � � � � � � 11.9 � � � � � 6.9 N

PN-1394.1 16 8.0 55.7 N N 0.05 33.3 � � 10.0 50.0 N N A A

A = absent response; Age = age at examination; Amp = amplitude (motor: in mV; sensory: in mV); CV = conduction velocity (in m/s); - = not measured; N = normal.
Bold indicates abnormal values.

Table 5 Laryngoscopic findings in family F1

Patient Dyspnoea Aspiration Dysphonia Vocal fold adduction Vocal fold abduction Comments

Left Right Left Right

F1 III2 � + � 1 1 1 1 Raspy voice

F1 IV3 + + + 2 1 2 1 High-pitched voice

F1 V8 + � + 2 2 2 1 Husky voice, arytenoidectomy at age 2 years

+ = present; – = absent. Vocal fold movement: 0 = normal; 1 = impaired mobility; 2 = immobile.
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vocal fold (families F1, CMT-456 and CMT-858) and ranging in

severity from asymptomatic in patients CMT-456.03 and

CMT-858.05 to clear respiratory insufficiency requiring tracheos-

tomy in patient CMT-858.09 (Tables 3 and 5 and Supplementary

video fragment). Some patients underwent surgical procedures of

the vocal folds (families F1 and CMT-456). Vocal fold involvement

is not a typical feature of hereditary neuropathy in general, but it

has occasionally been associated with recessive ganglioside-

induced differentiation-associated protein 1 (GDAP1) mutations

(Sevilla et al., 2003; Stojkovic et al., 2004), dominant early

growth response 2 (EGR2) mutation (Pareyson et al., 2000),

dynactin 1 (DCTN1) mutation (Puls et al., 2003, 2005), distal

HMN type VII linked to chromosome 2q14 (McEntagart et al.,

2001) and a few patients with CMT1A duplication (Thomas

et al., 1997). In our screening cohort, 5 out of the 14 patients

who initially presented with vocal fold paralysis were shown to

have a TRPV4 mutation (36%). This indicates that TRPV4 is

likely to be a major gene for hereditary neuropathies with vocal

fold paralysis. Why the recurrent laryngeal nerve innervating the

vocal folds is so vulnerable for the effects of TRPV4 mutations

remains unclear at this point. However, the predominant involve-

ment of the left vocal fold could result from length dependency

since the left recurrent laryngeal nerve descends around the aortic

arch before turning to go up to the larynx, making it much longer

than its counterpart on the right.

The additional feature of bladder urgency and urinary incontin-

ence was observed in members of family F1 and in patient

CMT-858.09. This finding is more commonly seen in the context

of spinal cord disorders and autonomic neuropathies, but is highly

unusual in the context of hereditary (non-autonomic) neuropa-

thies. Therefore, more patient observations and systematic bladder

function studies are needed in order to attribute this feature to the

TRPV4 disease spectrum. No other autonomic disturbances were

noted in any of the patients.

In the context of the broad phenotypic variability of TRPV4

mutations, special interest goes to patient PN-1394.1 carrying

the de novo Val620Ile mutation, which was previously shown to

cause autosomal dominant brachyolmia (Rock et al., 2008). None

of the TRPV4-associated skeletal dysplasia syndromes are known

to feature peripheral neuropathy or other neurological involve-

ment. The skeletal abnormalities in patient PN-1394.1 were obvi-

ous but too limited to make a formal diagnosis of a skeletal

dysplasia. Particularly the abnormalities of the spine could also

be secondary to the longstanding neuropathy as was previously

suggested (Auer-Grumbach et al., 2010). None of the more

common neuropathy genes were mutated in this individual,

making the incidental co-occurrence of a mutation in another

neuropathy-associated gene unlikely. Taking the overall variability

of TRPV4-associated disorders into account, patient PN-1394.1

may represent an overlap syndrome between skeletal dysplasia

and neuropathy. Skeletal abnormalities such as congenital hip dys-

plasia, scoliosis, small hands and limb shortening have been

observed in the scapuloperoneal SMA family with the

Arg316Cys mutation (DeLong and Siddique, 1992; Deng et al.,

2010). The authors already suggested a TRPV4 disease spectrum

encompassing both peripheral neuropathy and skeletal dysplasia

(Deng et al., 2010). Our patient PN-1394.1 might be a first

confirmation of this intriguing hypothesis.

All known neuropathy-causing TRPV4 mutations (except

Val620Ile) are surface mutations not expected to affect protein

folding. They cluster on the highly positively charged convex sur-

face of the ARD and target arginine residues that are strictly con-

served throughout 27 available TRPV4 orthologues, suggesting

their importance in TRPV4 function (Auer-Grumbach et al.,

2010; Deng et al., 2010; Landoure et al., 2010) (Table 1 and

Fig. 3B). These mutations are located in three consecutive finger

loops of the protein, Arg232Cys in finger 2, Arg269Cys/

Arg269His in finger 3 and Arg315Trp/Arg316Cys in finger 4

(Fig. 3A–C). In contrast, the bone dysplasia mutations

(Ile331Phe and Asp333Gly) (Krakow et al., 2009) are situated

on the opposing concave side (Fig. 3A). This concave surface of

ankyrin repeats is commonly used in protein–protein interactions,

whereas few ankyrin-repeat-containing proteins have ligands

known to bind to the convex surface (Gaudet, 2008).

TRPV4 mutations causing skeletal dysplasias probably act

through a gain of function mechanism (Rock et al., 2008;

Krakow et al., 2009). For the neuropathy-causing mutations how-

ever, discrepancies exist in the current reports. In one study, three

TRPV4 mutations (Arg269His, Arg315Trp and Arg316Cys) influ-

enced proper localization of the ion channel to the plasma mem-

brane (Auer-Grumbach et al., 2010) with the formation of

cytoplasmic aggregates. Mutant TRPV4 was shown to cause loss

of normal channel function (Auer-Grumbach et al., 2010). The

results from two other studies differed substantially (Deng et al.,

2010; Landoure et al., 2010); both showed increased intracellular

calcium levels caused by abnormal activity of the TRPV4 ion chan-

nel in the presence of either the Arg269His, Arg269Cys or

Arg316Cys mutation. The use of various cell systems in the

above-mentioned studies may underlie the differences in results

(Nilius and Owsianik, 2010). Nevertheless, it remains uncertain

whether changes in TRPV4 channel function alone are causing

the peripheral neuropathy. Further studies are definitely needed

to shed light on the disease mechanism.

Since the majority of neuropathy-causing TRPV4 mutations

cluster on one face of the ARD, disturbances in protein–protein

interactions specific to nervous system form an interesting patho-

physiological hypothesis; however, this has not been proven so far

(Landoure et al., 2010). The only mutation outside of the ARD in

this study is the de novo Val620Ile mutation in patient PN-1394.1,

which may argue against this hypothesis. Alternatively, it may only

imply that this mutation works through a different disease mech-

anism. Although the neuropathy-associated mutations seem to

cluster in well-defined residues of the ARD, the skeletal dysplasia

mutations are more spread out over the protein including two in

the ARD, Asp333Gly and Ile331Phe (Krakow et al., 2009). This

means that an absolute distinction between the two groups of

phenotypes cannot be made based on the position of the muta-

tion in the primary structure of the protein alone. The skeletal

abnormalities in the original scapuloperoneal SMA family (Deng

et al., 2010) with the Arg316Cys mutation and patient

PN-1394.1 with the Val620Ile mutation seem to strengthen this

point further.
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A parallel could be made with dominant mutations in dynamin 2

(DNM2) causing an intermediate form of HMSN and centronuc-

lear myopathy. Overall, mutations causing one of the two pheno-

types cluster in different domains of the protein but the distinction

is not absolute (Claeys et al., 2009). Likewise, the majority of

lamin A/C (LMNA) mutations causing one of the many lamino-

pathies cluster together in certain domains of the protein;

however, some mutations have been reported to cause distinct

phenotypes in different patients (Rankin and Ellard, 2006). Given

the substantial phenotypic variability of TRPV4-related disorders,

additional modulating factors, both genetic and environmental,

may be at play (Auer-Grumbach et al., 2010; Deng et al., 2010;

Landoure et al., 2010).

In addition to the substantial phenotypic heterogeneity of

TRPV4-associated neuropathy, genetic heterogeneity in pedigrees

with similar phenotypes has also been reported (Landoure et al.,

2010). In a second family with congenital distal SMA, linkage to

the 12q23–q24 locus was excluded (van der Vleuten et al., 1998).

A distal HMN type VII with vocal fold paresis was suggested to be

allelic with HMSN2C, however the disease-causing locus was

mapped to chromosome 2q14 (McEntagart et al., 2001).

In this study we enlarge the genetic spectrum of TRPV4-related

disorders and report considerable phenotypic variability of heredi-

tary neuropathies caused by TRPV4 mutations. Nearly all patients

in our series have one or more features that are rather unusual for

the most commonly encountered hereditary neuropathies.

Conversely, screening of 62 HMSN2 phenotypes revealed only

one family with a TRPV4 mutation (CMT-1100). Therefore we

propose to direct diagnostic screening of TRPV4 towards patients

presenting with either pure motor, or motor and sensory neuro-

pathies, with clear axonal electrophysiology and at least one of the

following additional clinical features: vocal fold paralysis, proximal

weakness in the upper limbs, pronounced scoliosis or contractures.

While performing mutation analysis of TRPV4, the extensive

phenotypic variability and reduced penetrance should be taken

into account, especially in the context of genetic counselling.

In order to shed more light on the underlying pathomechanism

through which TRPV4 mutations work, further research into the

extent of the associated disease spectrum is warranted. This could

include the study of the contribution of TRPV4 in patients with

distal HMN without additional features or patients with milder

skeletal abnormalities in the absence of neuropathy (e.g. idiopathic

scoliosis). Also the degree of phenotypic overlap between skeletal

dysplasia and peripheral neuropathy could be explored further by

means of systematic nerve conduction exams in TRPV4 skeletal

dysplasia patients, a study that has not yet been performed to our

knowledge.
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