
MonteCarloMethods andAppl., Vol. 12, No. 5-6, pp. 385 – 393 (2006)
c© VSP 2006

A Repetition Test for Pseudo-Random Number
Generators

Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen

SAM, Mathematik, ETHZ, HG G-52.1
Zurich, CH8092

Abstract — A new statistical test for uniform pseudo-random number generators (PRNGs)

is presented. The idea is that a sequence of pseudo-random numbers should have numbers

reappear with a certain probability. The expectation time that a repetition occurs provides the

metric for the test. For linear congruential generators (LCGs) failure can be shown theoretically.

Empirical test results for a number of commonly used PRNGs are reported, showing that some

PRNGs considered to have good statistical properties fail. A sample implementation of the test

is provided over the Internet.

Introduction

Empirical statistical tests are an important tool when the decision has to be made whether

a sequence generated by a PRNG is sufficiently random and useful for a certain appli-

cation. A large number of tests like the ones described in Knuth’s book [4], Marsaglia’s

Diehard battery [10], L’Ecuyer’s TestU01 suite [8] or the NIST battery [12] are available.

Even if a generator behaves randomly with respect to a number of tests, one can not be

sure that it will not fail in a further test. Each test therefore increases the confidence

in the randomness of the produced sequence. The Repetition Test described here tests

a PRNG to see if the produced numbers reappear at the expected time distribution. It

has some similarity to the birthday problem. It should be noticed that a repetition does

not necessarily coincide with the period of the sequence (unless the PRNG is a one-step

recurrence like for example an LCG).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/85216742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

386 Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen

Repetition Time: Expected Value and Variance

In this section the mathematical background of the Repetition Test is introduced in terms

of a ball and urn experiment. Let an urn contain n differently numbered balls and consider

a sampling with replacement experiment, where each ball is equally likely to appear. Balls

are sampled from and returned to the urn until a ball is picked up that already appeared.

This event will be called first repetition, and the trial r at which it happens is the repetition

time.

The probability Pi that no repetitions happen when the first i balls are picked up is

Pi =
n∑

j=i+1

pj =
n(n− 1)(n− 2) · · · (n− i + 1)

ni
=

n!

ni(n− i)!
, (1)

where pi is the probability of a repetition at time i. The expected repetition time E[r]

can be expressed as a summation of the Pi

E[r] =
n∑

i=0

ipi =
n∑

i=0

n∑
j=i+1

pj =
n∑

i=0

Pi .

This leads to the following expression

E[r] =
n∑

i=0

n!

ni(n− i)!
. (2)

The second moment of r is

E[r2] =
n∑

i=0

i2pi =
n∑

i=0

(
(i + 1)2 − i2

) n∑
j=i+1

pj =
n∑

i=0

(2i + 1)Pi ,

which simplifies to

E[r2] = 2n + E[r] ,

hence the variance is given by

Var(r) = 2n + E[r]− E[r]2 . (3)

Knuth [4] (section 1.2.11.3) provides an asymptotic expression for the function Q(n) =

E[r]− 1 and we get

E[r] =

√
πn

2
+

2

3
+

1

12

√
π

2n
− 4

135n
+

1

288

√
π

2n3
+ O(n−2) . (4)

A Repetition Test for Pseudo-Random Number Generators 387

Var(r) =
(
2− π

2

)
n +

√
πn

2
+ O(1) (5)

Since in the Repetition Test n is usually very large the asymptotic approximations are

very accurate and useful.

The quantities derived above are related to the birthday paradox. Assuming a uniform

distribution of birthdays over a year of 365 days, the birthday paradox states that in a

room of 23 randomly chosen people the probability p that at least two of them share

a birthday is greater than 50%. We can compute this probability by noting that it is

complementary to the one given in (1) for n = 365 and i = 23, i.e.

p = 1− P23 =
365!

36523(365− 32)!
≈ 0.507 .

In the context of the birthday problem (2) denotes the expected number of people that

have to come into a room so that a repeated birthday first appears, i.e.

E[r] =
365∑
i=0

365!

365i(365− i)!
≈ 24.62 ,

V [r] = 2 · 365 + E[r]− E[r]2 ≈ 148.64 .

Determining the Repetition Time of PRNGs

This section describes the Repetition Test for PRNGs. It is an adaptation of the urn

experiment described in the previous section.

For w-bit integer PRNGs that produce numbers between 0 and 2w − 1 the adapta-

tion is straightforward. Under the hypothesis that the generated numbers are uniformly

distributed and, according to (4), the first repetition should happen after the generation

of O(
√

n) = O(2w/2) integers. For floating point generators on the other hand some care

has to be taken as the floating point numbers are not uniformly dense on the real line.

An equal number of them fall between successive negative powers of 2. Uniformity can

be assumed by sieving the generated numbers for a range with fixed mantissa
[
2k, 2k+1

)
.

In the following this range is denoted by [L, 2L). The number of possible values 1 for

a w-bit mantissa is then n = 2w. For example, a PRNG producing U(0, 1) distributed

IEEE doubles can be sieved for the interval [0.5, 1), in which case n is set to 253. Below an

1It can also be calculated by n = 1
εM

, where εM is the smallest floating point value such that 1+εM > 1.

388 Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen

algorithm to obtain empirically an estimate r̂ of the expected repetition time of an PRNG

is given. It determines N times the first repetition on disjoint subsequences and compares

r̂ to the expectation (4) for some confidence level c. Since O(2w/2) numbers have to be

stored in main memory to detect a repetition a hash table H of size M is used. M is set to

the expected repetition time plus ten standard deviations. An overflow of the hash table

then implies failure of the PRNG in the Repetition Test. Note that in an implementation

of this algorithm one has to make sure that the generated numbers s are stored in main

memory and not kept in registers with extra bits as this would alter equality comparisons.

”Seed the PRNG”

r̂ ← 0; M ← E[r] + 10
√

Var[r]

for k ← 1 to N do

for i← 1 to M do H[i]← −1 end

t← 0; repetition ← false

while not repetition do

repeat s← ”Get random number from PRNG” until s ∈ [L, 2L)

t← t + 1

if t > M then ”Test failed”; abort

hashFound ← false; i← (s/L mod M) + 1

while not repetition and not hashFound do

if H[i] = s then repetition ← true

if H[i] = −1 then H[i] ← s; hashFound ← true

i← i + 1

end

end

r̂ ← r̂ + t

end

r̂ ← r̂/N

if |r̂ − E[r]| ≤ c
√

Var[r]/n then ”Test passed” else ”Test failed”

The following two propositions concern the repetition times of LCGs and MRGs.

A Repetition Test for Pseudo-Random Number Generators 389

Proposition 1. As LCGs are one-step generators, their repetition time always coincides

with their period, usually O(2w), so they fail the Repetition Test.

Proof. An LCG generates numbers according to the recursion formula

sn = asn−1 + b mod m.

where sn, a, b and m are integers. Obviously it can generate no more than m different

numbers. As soon as a number si is repeated for the first time, there is a p > 0 such

that si = si−p. The same period (of length p) which has been generated is started again

such that for all j > 0 si+j = si−p+j. Therefore the repetition time coincides with p. The

period depends on the choice of s0, a, b and m. Usually these parameters are chosen such

that the maximal period length is obtained. For example if the multiplier a is a primitive

root modulo m (for prime m) then p = m − 1. For certain odd multipliers for m = 2w

the period is 2w−1. These and further results can be found in [4]. In any case an LCG

is not going to pass the Repetition Test unless it was designed to have a short period of

O(2w/2) which is in itself an undesirable property.

Lemma 1. The repetition times of a multiple recursive generator (MRG) of the form

xn =
∑l

i=1 aixn−i that is initialized with a pure multiplicative LCG sn = bsn−1 and where

all the arithmetic is performed modulo m are equal for all seeds.

Proof. Initializing the MRG with an LCG means that xi = si for 1 ≤ i ≤ l, where s0

is the seed. Since sn = bns0, every number x generated by the MRG can be written as

x = s0f(b, a1, a2, . . . , al), where f is a linear combination of the ai and of powers of b.

Consequently, whether two numbers in the pseudo-random sequence are equal or not does

not depend on s0.

Note that the repetition time of PRNGs having a state vector of dimension greater

than one (e.g. MRGs) does not coincide with the PRNG’s period length. In that case a

repetition of a number in the sequence does not imply a repetition of the entire sequence.

In practical applications only a small part of the period of a PRNG is used. These samples

should have numbers re-appear in sequences of length O(2w/2).

390 Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen

Empirical Tests

The mean repetition time has been determined empirically for a number of commonly

used PRNGs using an implementation of the algorithm described in the previous section.

The program is coded in the C language and available from [2]. The variance (5) of the

first repetition is quite large, so small samples are not very revealing. A sample size of

N = 100 has been chosen and the mean repetition time has been evaluated for a 95%

confidence level.

What follows is a very short description of the generators:

• ran3 is a subtractive lagged-fibonacci generator from the Numerical Recipes [13].

• rcarry is a subtract-with-borrow generator [3].

• ranlux improves rcarry by throwing away a fraction of the generated numbers [9].

Only the highest luxury level version results are reported here.

• ziff98 denotes a four-tap generalized feedback shift-register (GFSR) [14].

• mt19937 is the Mersenne Twister, a 32-bit twisted GFSR from [11]. A double

generator, obtained by dividing the integers by 232−1, has also been tested. Another

double variant with 53-bit resolution, obtained by shifting and concatenation of two

32-bit integers from mt19937, is denoted by mt1993753.

• ecuyer93 denotes the sample C-implementation of a fifth-order MRG presented in

[5].

• ecuyer96 denotes the sample C-implementation of a combined MRG presented

in[6].

• taus88 denotes the sample C-implementation of a tausworthe PRNG presented in

[7].

• ghg [1] is a double PRNG of the form

xn = 32 · xn−19 +
1

128
· xn−67 + xn−128 mod 1.0.

The computation is done entirely in floating point arithmetic.

A Repetition Test for Pseudo-Random Number Generators 391

Table 1 summarizes the results. The values are averages of 100 runs. The float and

double generators have been tested for the [0.5, 1) interval. There are 232 32-bit integers

and for a fixed mantissa 223 floats or 253 doubles, so using (4) the expected repetition

times for float [f], double [d] and integer [i] generators are 3.6307 ·103, 8.4108 ·107 and

8.2138 · 104. Failures with a 95% confidence are underlined.

Table 1: Results of repetition tests for three seeds.

seed: 331 717 1236

ran3 [f] 3.56 · 103 3.72 · 103 3.52 · 103

rcarry [f] 3.40 · 103 3.60 · 103 3.53 · 103

ranlux [f] 3.41 · 103 3.91 · 103 3.74 · 103

mt19937 [d] 5.86 · 104 5.73 · 104 6.06 · 104

mt19937 [i] 8.68 · 104 8.58 · 104 8.67 · 104

mt1993753 [d] 9.02 · 107 8.66 · 107 8.69 · 107

ziff98 [i] 6.12 · 104 6.26 · 104 6.07 · 104

ecuyer93 [i] 5.91 · 104 5.58 · 104 5.65 · 104

ecuyer96 [i] 5.75 · 104 5.30 · 104 5.78 · 104

taus88 [i] 8.00 · 104 8.42 · 104 8.34 · 104

ghg [d] 8.46 · 107 8.79 · 107 8.96 · 107

All the failing generators repeat too early. Note that mt19937 as an integer generator

passes the test, while as a double generator the repetitions happen too early. This is not

much of a surprise as mt19937 has been designed to be a 32-bit PRNG. The mt1993753

variant which possesses a 53-bit resolution passes. One should be aware that good prop-

erties of a PRNG can be destroyed by simple transformations. Care has to be taken

whenever an integer generator is converted to a float or double generator as the ex-

pected repetition time is different for different number systems. Furthermore there are

several ways to perform the mapping and for a particular mapping the repetition prop-

erties are not necessarily propagated. In this case conclusions drawn from the integer

sequence can not be applied to the float or double sequence.

392 Manuel Gil, Gaston H. Gonnet, Wesley P. Petersen

Conclusion

An empirical statistical test called the Repetition Test has been proposed. It is based

on a ball and urn model. One may judge whether repetitions happen to soon or to late

by knowing the expected repetition time as well as its variance. Exact forms as well as

an asymptotic expression were given. They are a function of the number of elements of

the generators number system. Repetitions which always appear too soon are bad, but

repetitions which are consistently too large are also undesirable. The latter is the case for

LCGs, because they repeat only at their period. Sophisticated generators, for example

combined MRGs, failed in empirical test by repeating too soon.

References

[1] Gonnet, G., Gil, M, Petersen, W.P.: Multiple Recursive Generators & The Repeti-

tion Test. Technical Report #476, Department of Computer Science, ETH Zürich

(2005)

[2] Gonnet, G.: Repeating Time Test for U(0,1) Random Number Generators. http:

//www.inf.ethz.ch/~gonnet/RepetitionTest.html, ETH Zürich (2003)

[3] James, C.F.: A review of pseudorandom number generators. Computer Physics

Communications, 60, 329–344 (1990)

[4] Knuth, D.: The Art of Computer Programming, Addison Wesley, New York (1968)

[5] L’Ecuyer, P., Blouin, F., Coutre, R.: A search for good multiple recursive random

number generators. ACM Transactions on Modeling and Computer Simulation, 3,

87–98 (1993)

[6] L’Ecuyer, P.: Combined multiple recursive random number generators. Operations

Research, 44(5), 816–822 (1996)

[7] L’Ecuyer, P.: Maximally Equidistributed Combined Tausworthe Generators. Math-

ematics of Computation, 65(213), 203–213 (1996)

A Repetition Test for Pseudo-Random Number Generators 393

[8] L’Ecuyer, P., Simard, R.: TestU01: A Software Library in ANSI C for Em-

pirical Testing of Random Number Generators. http://www.iro.umontreal.ca/

~simardr/indexe.html (2005)

[9] Lüscher, M.: A portable high-quality random number generator for lattice field

theory simulations. Computer Physics Communications, 79, 100–110 (1994)

[10] Marsaglia, G.: The Diehard Battery of Tests of Randomness.

http://www.stat.fsu.edu/pub/diehard, Florida State University (1985)

[11] Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.

Simul., 8(1), 3–30 (1998)

[12] National Institute of Standards and Technology: A Statistical Test Suite for the

Validation of Random Number Generators and Pseudo Random Number Generators

for Cryptographic Applications.

http://csrc.nist.gov/rng (2001)

[13] Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, Cambridge (UK)

and New York (1992)

[14] Ziff, R.M.: Four-tap shift-register-sequence random-number generators. Computers

in Physics, 12(4), 385–392 (1998)

