
Proceedings of the Royal Society of Edinburgh, 124A, 371-388,1994

Global branches of positive weak solutions of semilinear
elliptic problems over nonsmooth domains

Timothy J. Healey
Department of Theoretical & Applied Mechanics and Center for Applied
Mathematics, Cornell University, Ithaca, NY 14853, U.S.A.

Hansjorg Kielhofer
Institut fur Mathematik, Universitat Augsburg, UniversitatsstraBe 8,
D-8900 Augsburg, Germany

Charles A. Stuart
Department de Mathematiques, Ecole Polytechnique Federale de
Lausanne, CH-1015 Lausanne, Switzerland

(MS received 5 February 1992. Revised MS received 10 June 1993)

We consider the nonlinear eigenvalue problem posed by a parameter-dependent semilinear
second-order elliptic equation on a bounded domain with the Dirichlet boundary condition.
The coefficients of the elliptic operator are bounded measurable functions and the boundary
of the domain is only required to be regular in the sense of Wiener. The main results establish
the existence of an unbounded branch of positive weak solutions.

1. Introduction

Let Q be a bounded domain (nonempty open connected subset) in R". We consider
weak (or generalised) solutions of the semilinear boundary-value problem

Lu(x) + f(x, u(x), X) = 0 for x e Q,

u(x) = 0 for x e dQ,

where L is a second-order elliptic operator with bounded measurable coefficients
and, for each X e K, / is a function of Caratheodory type. Concerning the boundary
dQ, we assume just enough regularity to ensure that weak solutions of (1.1) belong
to Wo'2(Cl)nC(Q) and fulfill the Dirichlet boundary condition pointwise. (For
example, the requirement that every point of 80. satisfies an exterior cone condition
is sufficient.) In this setting we discuss the global behaviour of the principal compo-
nent C of weak solution pairs (X, u) of (1.1).

We treat two common situations:
(i) (Bifurcation) We assume that f(x, 0, X) = 0 for all X e R, in which case C denotes

the branch of solutions bifurcating from the line of trivial solutions, IK x {0}, at a
principal eigenvalue of the linearisation of (1.1).
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372 T. J. Healey et al.

(ii) (Continuation) We take f(x, 0,0) = 0 and then C is the solution branch
containing (0,0) e IR x C(Q).
In both cases our main result is that for non-trivial elements (X, u)eC the solution
u must be of one sign on Q.

In the pioneering work of Rabinowitz [9,10], a similar result was obtained for
regular problems (1.1) on regular domains via the Hopf maximum principle.
Specifically, for nontrivial elements of C, it is shown that u e K (or — u e K), where
K is the open cone

K= \ueC1(&)-u>0inQ., -^ < 0 and w = 0 on dQ.
{ dn

(Here du/dn denotes the outer normal derivative of w.) Clearly, in our situation,
solutions of (1.1) need not have C^Q) regularity, and the cone of positive functions
in pyJ>2(Q)nC(Q) is not open. Consequently, the arguments employed in [9,10] are
not readily generalised to the problem at hand. We overcome this difficulty via
another refinement of the maximum principle that was first introduced in the context
of regular versions of (1.1) on polygonal domains with corners in the presence of
symmetries [6].

The plan of the paper is as follows. In Section 2 we state our basic assumptions
on L and/in (1.1), and then recall a few well-known consequences. We then establish
a refinement of the maximum principle in Section 3. In Section 4 we reformulate
our generalised problem as an operator equation in the form of a compact pertur-
bation of the identity; this is crucial to the global bifurcation and global continuation
analyses presented in Sections 5 and 6, respectively. In Section 7 we indicate the
applicability of the results from Section 6 to the anti-plane-shear problem of nonlinear
elasticity.

The main results of the paper are presented in Sections 5 and 6: we establish the
positivity (negativity) of generalised solutions along global solution branches. A
novel feature of our treatment of the bifurcation case in Section 5, is that our results
hold with a weak odd-crossing hypothesis that ensures the existence of global
continua of nontrivial solutions. Moreover, in the continuation case, presented in
Section 6, we separate the zero-order perturbation into the sum of a nonlinear part
and an inhomogeneous "forcing" term. In this way, we are able to place separate
hypotheses upon each term. In particular, our results hold for each of two distinct
hypotheses concerning the (local) sign of the nonlinear term (cf. (6.6) and (6.7)).

NOTATION 1.1. For 1 ^p ^ oo and Q a bounded open subset of R", the usual norm
on the space LP(Q) will be denoted by || • Ĥ  or || ||tP(fl), as the context requires.
Similarly, the usual norm on C(Cl) will be expressed as IHIoo.

2. Preliminaries

In this section we define the linear operator L and the nonlinearity /. Let Q be a
bounded domain in IR". Using the summation convention, we define a differential
operator L on Q by

Lu(x) = D,{aiJ(x)Dju(x) + b'(x)u(x)} + ci(x)Diu(x) + d(x)u(x), (2.1)
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Positive weak solutions of semilinear elliptic problems

where the coefficients satisfy the following conditions:

(i) aiJ = aji, b\ c\ d e L°°(ft) for i, j e { 1 , . . . , n};

(ii) there is an a > 0 such that

a°'(x)&£j ^ «I £l2 for almost all x e ft, £ e R";

(iii) (dv — b'DiV)dxf^O for all non-negative ve Wljl(Q).
Jn

373

(2.2)

REMARK 2.1. By (2.2(ii)), L is uniformly elliptic on ft. We can extend L to an operator
L having the same properties on all W by setting a'J(x) = a5^, fr'(x) = c'(x) = d(x) =
0 for x e [R"\ft, 1 ̂  i, j £ n. Then inequality (2.2(iii)) holds for all non-negative
c e Wlil(IR'1). It is for this reason that we have replaced the usual condition ([5,
(8.8)] by the stronger form (2.2(iii)).

For the nonlinearity we consider a function

/ : ft x R2 -»• R of the form f(x, s, X) = g{x, X) + h{x, s, X)s, where
(i) / ( • , s, A): ft -»R is measurable for all (s, X) e R2;

(ii) for almost all x e Q , g(x, -)-M^R and h(x, •, -)-M2->R
are continuous;

(iii) there is a 8 > 0 such that for almost all x 6 Q the partial derivative \- (2.3)
of / (x, •, •) with respect to s exists and is continuous on V where
V={-d,d)xR;

(iv) the functions g, h, fs are bounded on bounded subsets of their
domains of definition, respectively.

For (X, u) e IR x C(Q), we introduce

F(X,u)(x)=f(x,u(x),X),
(2.4)

A(X)u(x) = h(x, 0, X)u(x).

By standard arguments we then obtain the following results:

PROPOSITION 2.2. Let Q be a bounded domain in W and let p e [ l , oo). Suppose that
f satisfies all of(23).Then the mapping F as defined in (2.4) has the following properties:

(i) f : R x C(Q)^LP(n) is bounded and continuous;
(ii) ^4:R-»J?(C(fi), LP(Q)) is continuous, where i f denotes the space of linear and

bounded operators;
(iii) F'M x C(Q)->Lp(fi) is continuously Frechet differentiable with respect to u at

all (X, u) 6 R x C(Q) such that \\u\\x<5, and DUF(X, 0) = A{X).

By imposing further restrictions on / we can also ensure that F is twice continuously
differentiable with respect to X and u near {X, 0).

PROPOSITION 2.3. Let Q be a bounded domain in R" and let p e [1 , oo). In addition to
the hypotheses (2.3), suppose that f satisfies:

there is a d > 0 such that f(x, •, •) e C2(V)for almost all x e Q, where
F = (— (5, d) x R, and D m / is bounded on bounded subsets ofClxV, .- ,-
where Dmf denotes any partial derivative of order ^ 2 wit/i respect to
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374 T. J. Healey et al.

X and s.
Then F :RxC( f i )^L p ( f l ) is twice continuously Frechet differ entiable on
{(X, u) e R x C(Q): || u || x < S}. In particular,

dh
DXDUF(X, O)v(x) = — (x, 0, X)v(x) (2.6)

for (X, v)eUx C(Q) and xeQ.

3. A maximum principle

In this section we formulate a version of the maximum principle for L. In connection
with components of solutions of (1.1), it was first introduced in [6] to deal with
regular problems on polygonal domains in the presence of the symmetry of a lattice
in W. We first need the following well-known result (cf. [3 ] . Theorem IX.17] or [6,
Appendix]):

LEMMA 3.1. Let Q be a bounded open subset ofW. Suppose that ue W/1'2(Q)nC(Q)
and that u(x) = Ofor all x e dQ. Then u e Wl

0'
2(£i).

Proof. This is the implication (i)=>(ii) of [3, Theorem IX.17]. We note that the
proof of this assertion does not require any restriction on the boundary of Q. D

THEOREM 3.2. Let Qbe a bounded domain in R" and let L satisfy the conditions (2.2).
Suppose that r e L°°(Q) and that v e IfJ'2(a)nC(fi)\{0} satisfies

Lv + rv ^ 0 in Q

in the generalised sense (cf. [5, equation (8.2)]. Let s+ = max {s, 0} for s e IR. Then
there exists a number y > 0, depending only upon max; || b' — c' || ̂ , || (d + r)+ \\ x, a., and
n, such that

meas {xeQ: v(x) < 0} < y

implies v(x) > 0 for all x e Q.

Proof. Let v~ =min {v, 0}. Then by [5, Lemma 7.6] v~eWU2(Q). Setting 3> =
{xeQ,t i (x)<0}, we suppose that ^ # 0 . Then v~ e W^2(S>)nC(S) since v~ = 0
on d@> (see Lemma 3.1). By Poincare's inequality (cf. [5, equation (7.44)]).

f\S>\\1/n

II v~ HL2(S>) ^ I I II Vt;~ ||L2(®) (con = volume of unit ball). (3.1)

Since v~ = 0 and Vv=0 almost everywhere on Q\@, this yields

lk~llL2(fi)^(— J IIVp-H^o,. (3.2)

Since v~ € Wl>2(Q) and v~ ^ 0 in Q, it follows from the hypothesis Lv + rv ^ 0 in Q
(in the generalised sense), that

{aiJDjV + biv}Div' - (c'D;V + (d + r)v)v~ dx ^ 0. (3.3)
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Positive weak solutions of semilinear elliptic problems 375

Consequently,

r
(c' — bl)v Dtv +(d + r)(v )2 dx

n

^ II b' - c< | | t - ( Q ) I ^ || D ^ " ||£2(n) + — || iT ||£2(O) + || (d

\\b(a) (3.4)

where M = max,-1| b' — cl |[L°°(n)-
Using uniform ellipticity (2.2(ii)), we then obtain

Me (Mn \
— ||Vi;-||£2(O)+^— + ll(d + r)+l|t«(n)Jll^ll^(a), (3.5)

and choosing e = cc/M this yields

" ||£2(O) ^ ( ^ +W + r)+ ||L-(O)J || v- ||£2(n). (3.6)

Recalling (3.2), we have

Hence, since ^ # 0 implies || t>~ ||L2(n) # 0, it follows that
2n -2 \"" / 2

J||( ) | | I . ( n ) J y (3.8)

With that definition of y, it follows that either \@\^y or @> = 0. Hence, if \@\ < y,
then p ^ O o n f l . But then

0 ^ Lv + rv = Lv + r~ v + r+ v ^ Lv + r~ v on D, (3.9)

in the generalised sense. Since L + r~ satisfies all three conditions in (2.2), it follows
from [5, Theorem 8.19] and the connectedness of Q that either v = 0 on Q or v(x) > 0
for all x e Q. •

REMARK 3.3. We emphasise that Theorem 3.2 holds without imposing any sign
condition on the function r. This follows immediately from inequality (3.9), which
was first observed by Serrin [12].

4. Problem formulation

Let L be an elliptic operator satisfying conditions (2.2) and let / be a function having
the properties (2.3).

DEFINITION 4.1. By a generalised (or weak) solution of the nonlinear problem

Lu(x) + fix, u(x), X) = 0 for x e Q,
(4.1)

u(x) = 0 for x e dQ,
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376 T. J. Healey et al.

we mean a pair (X, u) e R x (W£-2(Q)nC(Q)) such that

{aiJDjU + b'ujDtV -(c'DiU + du+f(-, u, X))v dx = O for all v e C?(Q). (4.2)
Jn

This definition is apparently not adequate for a global bifurcation continuation
analysis. To this end, we now pursue a more convenient formulation of our problem.
As a first step we consider the following linear problem:

DEFINITION 4.2. For g e L2(fl), by a weak or generalised solution of the linear
Dirichlet problem

Lu(x) + g{x) = 0 for x e Q,
(4.3)

u(x) = 0 for x e 3Q,

we mean a function u e Wo'2(^) such that

fV - (c'DiU + du + g)v dx = 0 for all v e C?(Q). (4.4)I
PROPOSITION 4.3. Let g e L2(fi). Then there exists a unique generalised solution u of
the Dirichlet problem (4.3). (See [5, Theorem 8.3])

DEFINITION 4.4. For g e L2(Q), we denote the unique solution u of (4.4) by Tg. Hence
T is a linear operator from L2(Q) into Wla(Q).

The crucial step in our reformulation of the nonlinear problem is based on the
following properties of T. To obtain them, we impose a well-known restriction on
the boundary of Q.

Q is a bounded domain in IR" such that every point xedQ .. ,.
is regular in the sense of Wiener for Laplace's equation.

(For a definition, see [5, Chapter 2.8]). A necessary and sufficient condition for (4.5)
is the so-called Wiener criterion which states that the series (2.37) of [5] diverges.
A sufficient condition for (4.5) is that

Q satisfies an exterior cone condition (4.6)

(see [5, Problem 2.12]). In two dimensions (n = 2), the conditions on 5Q can
be considerably generalised (see [5, Chapter 2.8]). The subsequent discussion is
throughout based on assumption (4.5).

THEOREM 4.5. Let p e [2, oo)n(n/2, oo).
(i) For g e L"(O), Tg e C(Q) with Tg(x) = Ofor all x e dQ.

(ii) The linear operator T:L"(Q)^C(Cl) is compact.

Proof. Let Lx be the operator defined by Lxu = Lu — £u, where £, = \\d+ | | t»( n ) + 1.
Clearly Lt satisfies (2.2) and d^x) = d(x) - £ ^ -1 on Q. For geL2(Q), let
Tig e Wl-2(Q) denote the unique generalised solution of that Dirichlet problem
LtM(x) + ^(x) = 0 in Q, u(x) = 0 on d£l, that is given by Proposition 4.3. Suppose
now that geL"{Q) and let us consider Tg and Ttg. Clearly g + £Tge L2(Q), and a
simple calculation shows that Tg = Tt(g +
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Positive weak solutions of semilinear elliptic problems 377

Furthermore, by [5, Theorem 8.16], TgeU°(Q) and

T: If ((!)-+If0 (Q) is a bounded linear operator. (4.7)

Now let B be an open ball in R" such that Cl c B. We define a bounded linear
operator

£:Z/(Q)->L%B) by Eg(x) = g(x) f o r x e Q , Eg(x) = 0 f o r x e B \ Q .

(4.8)

Let L1 be defined by Ltu = Lu — £u, where L is the extension of L to B discussed in
Remark 2.1. For heLF(B), let t^hs W\;2{B) be the unique generalised solution of
the Dirichlet problem

Lx w(x) + h(x) = 0 for x e B,
(4.9)

u(x) = 0 for x e dB.

Then, by [5, Theorem 8.22], fifce C(B) and by [5, Theorem 8.24], %h is in some
Holder space C(Q) for \i e (0, 1) and there is some constant Cx > 0 such that

II 7^11^,0, ^ ( 1 1 7 ^ 1 1 ^ , + ||fc||LP(B)). (4.10)

By [5, Corollary 8.7], there is some C2 > 0 such that

\\?ihh2m£C2\\h\\L2iB), (4.11)

and hence there exists C3 > 0 such that

II %h IÎ (fl) ^ C3||fc ||tP(B)- (4.12)

Next we consider the Dirichlet problem

L, w(x) = 0 for x e Q,
(4.13)

w(x) = (p(x) for x e dQ,,

where peWj'2(B)nC(B). Using [5, Theorem 8.3], there is a unique generalised
solution w e Wia(Q) of (4.13) satisfying the boundary condition in the sense that
w — <pe W\;2(QL). We denote this solution by Sep. By the assumed regularity of the
boundary data <p, the uniqueness implies that this solution w coincides with a
(generalised) solution w = Bq>eH1{Q) of (4.13) in the sense of [13, Chapter 10].
(Observe that the hypotheses (1.2), (9.1), (9.2) of [13] are satisfied by Lx.) By [13,
Theorem 7.1] (or [5, Theorem 8.22]) w = Scp e C(Q) and, by [13, (10.1)] (or by [5,
Theorem 8.1]), we also have that

sup|Sp(x)|^max|?>(x)|. (4.14)
x s n x e ea

Finally, since by (4.5) every point x0 e dil is regular (in the sense of Wiener) for
Laplace's equation on Q, [13, Theorem 10.2] yields

lim Sq>(x) = (p{x0) for all x0 e d£l. (4.15)
x->x0

In other words: Scp e C(Cl) and (Sq> — (p)(x) = 0 for all x e dQ. Now for g e LP(Q) we
set

w = Rg-SRg where Rg = T^g + £Tg). (4.16)
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378 T. J. Healey et al.

From the preceding observations, Rge f 1 | 2 ( f i ) n C ' P and SRg e WU2(Q)nC(Cl).
Hence, by (4.15), Lemma 3.1 and (4.7),

w e Wl'2(Q)nC(S), w(x) = 0 for all x e dQ, and w=T1(g+£Tg)= Tg.

(4.17)

This proves the first part of Theorem 4.5.
To prove the compactness of T, consider a sequence (gn) that is bounded in LP(il).

By (4.7) (gn + £Tgn) is a bounded sequence in Z/(Q) as well. By (4.12) (Rgn) is a
bounded sequence in C(Q) and so, by the Theorem of Ascoli and Arzela, there is a
subsequence such that (Rgnk) also converges in C(Q). Then (4.14) implies that
(SRgnJ converges in C(Q). Since TgKk = Rgnk — SRgnk, we have established the
compactness of T: LP(Q) -> C(Q). D

We can now restate the nonlinear problem (4.1) in a form amenable to a global
analysis (for the operator F see Proposition 2.2).

PROPOSITION 4.6. 4̂ pair (A, u) is a generalised solution of the nonlinear problem (4.1)
if and only if (A, u) e M. x C(Q) solves u = TF(X, u). This, in turn, is equivalent to the
equation

G(X,u) = Q, (4.18)

where G:Rx C(Q)->C(O) is defined by G(X, u) = u-K(l, u) with K{k, u) = TF(X, u).
Moreover, K:R x C(Q)->C(Q) is continuous, bounded and compact. Finally, any fixed
point u = TF(X, u) in C(Q) satisfies u(x) = 0 for all x e dQ.

5. Bifurcation

In this section we study problem (4.18) under the assumptions of Sections 2 and 4,
and, in addition, we suppose that

g(x,X) = f(x,0,l) = 0 for all x e Q, A e IR. (5.1)

This implies G{X, 0) = 0 for all 2 e R , where {(A, 0),A e R} is commonly called the
line of trivial solutions. By Proposition 2.2, the map G is continuously Frechet
differentiable with respect to u near the trivial solution line and DUG(X, 0) = / — TA(X),
which is a compact perturbation of the identity. A necessary condition for bifurcation
from {(A, 0)} at some Ao is that DUG(XO, 0) has a nontrivial kernel: DUG(XO, 0)v = 0
for some ueC(Q)\{0}. In other words, DuG(Ao,0) has eigenvalue zero, which is
isolated, by virtue of Riesz-Schauder theory. The relationship of this problem to the
linearised differential equation is given below.

LEMMA 5.1. The following statements are equivalent:
(a) (A, v) £ R x C(O) satisfies DUG(X, 0)v = 0.

(b) (A, C J G R X WQ'2(Q) is a generalised solution of

Lv(x) + h(x, 0, X)v(x) = 0 in Q,

v(x) = 0 on dQ.

Proof For (b)=>(a) recall, by [5, Theorem 8.15], that (b) implies ueL°°(Q). Hence
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Positive weak solutions of semilinear elliptic problems 379

h( •, 0, X)v is essentially bounded on Q and the continuity of v on Q follows from
Theorem 4.5 since v = Th( •, 0, X)v.

We denote the differential operator in (5.2) by L + A(X), cf. (2.4). Since we are
interested in positive solutions, we now give the following definition:

DEFINITION 5.2. A number nt = ^i(A) is called a principal eigenvalue for L+ A{X) if
there is a v e WQ'2(Q) such that

v(x) > 0 for all x e Q and

Lv(x) + h(x, 0, X)v(x) = jitj v(x) in Q,

v(x) = 0 on 3Q,

(5.3)

in the generalised sense. (As shown in Lemma 5.1 such a weak eigenfunction is
automatically in C(Q).)

The existence of a principle eigenvalue for L + A(X) for all A e IS can be established
under either one of the following sets of conditions:

L is symmetric, i.e. bl — —c' for all i = 1 , . . . , n. (5.4)

aij, b\ c> e C^Q) and D^, Dtb
l, DiC> e L°°(Q) for \%i,j^n. (5.5)

For proofs, we refer to [5, Chapter 8.12] in the case of (5.4), and to the recent paper
[2] for the conditions (5.5).

REMARK 5.3. Using the Z/-theory, in particular [5, Theorem 9.30], conditions (5.5)
on the coefficients of L and (2.3) on h imply that the positive eigenfunction v
associated with the principal eigenvalue fiy has the regularity required in [2] :
v belongs to Wf^(Q) for all finite p > n.

Additional properties of a principal eigenvalue ^ are the following:

fit is algebraically simple; and

Re \i ^ yUx(A) for any other eigenvalue \i of L + A(X).

Furthermore, if ^ is a principal eigenvalue of L + A(X), then fit is also a principal
eigenvalue of the adjoint operator L* + A(l), where L* is obtained by replacing the
coefficients bl in the definition of L by — c' and vice versa. We shall denote by q>x

and \j/k eigenfunctions of L + A(X) and of L* + A(X) associated with the principal
eigenvalue

REMARK 5.4. For regular problems (i.e. sufficiently smooth boundary dQ and
coefficients of L) the existence of a principal eigenvalue having the properties listed
above is a classical result due to Courant and Hilbert in the symmetric case, and to
Krein and Rutman in the non-symmetric case.

Henceforth we assume that either set of conditions (5.4) or (5.5) are fulfilled.
Accordingly, a necessary condition for bifurcation of positive solutions is:

there is some Xo e IR such that the principal eigenvalue of

L + A{X0) vanishes, i.e. ^i(/l0) = 0.
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380 T. J. Healey et al.

By virtue of Lemma 5.1, condition (5.6) implies that DUG(XO, 0) has a one-dimensional
kernel spanned by <pXo:N(DuG(X0, 0)) = span {<pXo}.

We now take up sufficient conditions for local bifurcation of nontrivial solutions
of (4.18) at (Ao, 0). We provide two alternative routes—the well-known transversality
condition of Crandall and Rabinowitz [4 ] , and the more general odd-crossing
condition introduced in [7] . We begin with the former. In this case we require the
additional differentiability assumption (2.5), which, together with Proposition 2.3,
ensures that DXDUG(X, 0)v exists and is given by — T(dh/dX(-, 0, X)v).

For convenience, we define the nontrivial solution set

NS = {(A, u) e R x C(ft), G(X, u) = 0 and u * 0}. (5.8)

PROPOSITION 5.5. Assume (5.7) and that

dh
— (x, 0, Ao) ̂  0 and > 0 in a subset of positive measure in Q. (5.9)
OX

Then there is an open neighbourhood W of (Ao, 0) in U x C(Q), and there exist
continuous functions X: J —• K and z:J-+ C(Q), where J is an open interval in R
containing 0, such that X(0) = Xo, z(0) = 0 and locally the unique nontrivial solution
set is given by

N S n W = {(X(s),s(^0 + z ( s ) ) ) , s e J and s i - 0 } . (5.10)

Proof. Following the development in [4] , it is enough to show that

DxDuG(*o, O K # R{DUG{XO, 0)). (5.11)

Now for u e C(Q),

o there is some v e C(Q) such that DUG(XO, 0)v = DkDuG{X0, 0)M
o there is some v e C(Cl) such that v - TA(X0)v = - T(8h/dX( •, 0, X0)u)
o there is some v e Wl'2(Q) such that v is a generalised solution of

Lv + A(X0)v = dh/dX( •, 0, X0)u
o Jn dh/dX(x, 0, X0)u(x)ilyXo(x) dx = 0,
by [5, Theorem 8.6], where i/^0 is a positive principal eigenfunction of L* + A(X0).
However, by virtue of (5.9) and the positivity of <pXo and i//Xo, we find that

dh
— (x, 0, X0)<pXo(x)ij,Xo(x) dx > 0, (5.12)

and thus (5.11) follows. •

Using the results of [7 ] , we can eliminate the differentiability condition (2.5), and
generalise condition (5.9) to a monotonicity property of Ai—>/i(x, 0, X) (see (5.13)
below). However, in this case we generally have nonuniqueness of local nontrivial
solution branches.

To formulate a weaker version of (5.10), let

KE
+ = {sv, s > 0 and ve B£(<pXo)} and K; = - K£

+,

where 0 < e < | | ^ A o | | o o and (5.13)
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Positive weak solutions of semilinear elliptic problems 381

PROPOSITION 5.6. Assume (5.7) and that

h(x, 0, •): (Xo — S, Xo + d) -»IR is monotone for some <5 > 0

and for all x e Q and strictly monotone for all x in a subset of (5.14)

positive measure in Q.

Then there exist e e (0, J ||^A0 lloo] and cm open neighbourhood W(£) of (Xo,0) in
IR x C(Q) such that \X0 - X\ + \\u \\x < efor all (X, u) e W(e) and (JVSu {(Xo, 0)})nW(e)
is a connected subset ofNS<u{(X0, 0)} for the R x C(Q) topology. Furthermore, setting
NSr = (NSn W(e))n((Xo -£,X0 + e)x K±) we have NSn W(E) = NS+ uNS^ and
NS± # 0 .

Proof. Assumption (5.13) implies that the function (h( •, 0, 20) — h( •, 0, l))q>Xo is non-
negative (or nonpositive) and for X e (Xo — 5, Xo + S)\{2.0} it is positive (or negative)
in a subset of Q of positive measure. The same arguments as in the proof of
Proposition 5.5 then yield that

T(A(Xo)-A(X))<pxJR(DuGtto,0)) for X e (l0 - 6, l0 + S)\{XO}, (5.15)

where we used again Definition (5.2). In the sequel, we denote the function
T(A(X0) - A{X))cpko by B{X)(p0. By the Definition 4.4 of T this function solves

L{B{X)<pXo) + (h( •, 0, Ao) - h( •, 0, X))q>ko = 0 in O,
(5.16)

0 ao

in the generalised sense. Recall, in particular, that by Theorem 4.5 the homogeneous
Dirichlet boundary conditions are satisfied pointwise in the classical sense. By the
strong maximum principle ([5, Theorem 8.19]), it then follows that

B(X)<pXo is non-zero in Q for X e (Xo — <5, Xo + d)\{X0}

and changes sign when X passes Xo.

Local bifurcation of a continuum is established when we have shown that the family
DUG(X, 0) = / — TA(X) has an odd crossing number at X = Xo, cf. [7] , This, in turn,
is equivalent to a change of sign of the derivative, denoted Q>V(X, 0), of a scalar
bifurcation function <D(A, v) with respect to the real variable v that parametrises the
kernel N(DUG(XO, 0)) = span \_<pXo] (see [7, Theorem 3.1]). Furthermore, such a
change of sign is independent of the choice of O, i.e. independent of the choice of a
complementary space for R(DUG(XO, 0)), provided that the orientation is preserved,
cf. [7, Theorem 3.1]. For fixed X e (Xo — S, Xo + 6)\{X0}, we choose the complementing
space E = spa.n{\B(X)<pXo\} (see (5.15)). The projection of C(Cl) onto E along
R(DUG{XO, 0)) is then given by

(5.18)

where the left-hand side of the equation coincides with that of [7] . Formula (1.14)
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382 T. J. Healey et al.

then shows that

sign ®V(A, 0) = sign B ( A ) ^ ^ d x , (5.19)
Jn

which, in view of (5.17), yields a change of sign of $„(!, 0) at X = Xo.
All solutions of G(X, u) = 0 in NSnW for some open neighbourhood W of (Ao, 0)

are obtained by the method of Lyapunov and Schmidt and they have the form

(X, sq>Xo + w(X, s)) where (X, s) is in a

neighbourhood W of (Xo, 0) e\R2,w: W^ C(Q), (5.20)

and <D(A, s) = 0

(cf. e.g. [7]). Since <DS(A, 0) changes sign at X = Xo, the intermediate value theorem
yields a continuum (NSKJ {(XO, 0)})nW. Finally, since w(X, 0) = 0 and since the con-
tinuous partial derivative ws satisfies ws(X0,0) = 0 (see [7, Chapter 1]), we get
(X, u) = (X, sq>Xo + w(X, s)) e (Xo — e, Xo + s) x K£

+ (K~) provided (X, u) is in some suitable
neighbourhood W(e) of (Xo, 0) e IR x C(Q) and s > 0(s < 0). D

REMARK 5.7. We emphasise that in spite of the algebraic simplicity of the principal
eigenvalue Hi = 0 of L + A(XO) (see (5.6) and (5.7), the eigenvalue 0 of DUG(XO, 0) is
not necessarily algebraically simple. Recall that the eigenvalue fix = 0 of L + A(X0) is
said to be algebraically simple if

Lv + h( •, 0, X0)v = <plo i n Q ,

v = 0 on dQ,

has no solution t; e WQ'2(Q) in the generalised sense. On the other hand, by the
definition of G, the eigenvalue 0 of DUG(XO, 0) is algebraically simple if

Lv + h(-,0,Xo)v=-h(-,0,Xo)(p^ inQ,

v = 0 on dQ,

has no solution ve Wl'2(Q) in the generalised sense (see also Lemma 5.1). Clearly
the solvability of problem (5.22) is not generally equivalent to that of (5.21).

REMARK 5.8. By a famous result of Rabinowitz [9] and its generalisations [7] , we
obtain a global conclusion concerning bifurcation at Xo provided that the Leray-
Schauder degree of w—>G(X, u) = u — K(X, u) (where K is compact) changes sign as X
crosses Xo along the branch of trivial solutions, {(A, 0)}. In Proposition 5.5 the
hypotheses (5.7) and (5.9) imply that the transversality condition (5.11) is satisfied,
and, as is well-known [7 ] , this ensures that the degree changes sign as X crosses Xo.
Referring to [7] , we see that this change of sign also occurs under the weaker
assumptions of Proposition 5.6. We stress that the above conditions imply global
bifurcation at Xo without invoking directly the algebraic multiplicity of the zero
eigenvalue of DUG(XO, 0).

Considering NS<u{(Xo,0)} as a subspace of the metric space R x C(Cl), let C
denote the component of NSu {(Xo, 0)} containing (Ao, 0).

PROPOSITION 5.9. Under the hypotheses of either Proposition 5.5 or Proposition 5.6, C
has at least one of the following properties:
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Positive weak solutions of semilinear elliptic problems 383

(i) C is unbounded with respect to the M. x C(0) topology.
(ii) C (the closure of C in M. x C(fi)) contains an element (X, 0) with X # Ao.

We now come to our main result in this section. Let C± denote the union of all
components of C\{(A0, 0)} that contain elements of NS* where s is sufficiently small
so that Proposition 5.6 holds. Under the hypotheses of Proposition 5.5, C+(C~)
contains all local solutions of the form {(X(s), s(fXo + z(s)), s e J and s > 0 (s < 0)}. In
general, C± are independent of the choice of e > 0.

THEOREM 5.10. Under the hypotheses of this section:
(i) C+ cz P+ = {(X, u) e m x C(Q), u(x) > 0 in Q};

(ii) C" <= P~ = {(X, u) e R x C(Q), u(x) < 0 in Q};
(iii) C = C + u C " u { ( l o , 0 ) } .

Moreover, if we assume that

the principal eigenvalue Hi(X) of L+ A(X) vanishes if and only if X = Xo, (5.23)

then
(iv) Cn(IR x {0}) = {(Xo, 0)} and C+ and C~ are each unbounded subsets of

M. x C(Q).

Proof. If we adopt the hypotheses of Proposition 5.5, then C+ is connected, and the
proof of (i) amounts to demonstrating that

( a ) C + n P + = 0 ,

(b) C+ nP+ is closed relative to C+,
Y (5.24)

and

(c) C+ nP+ is open relative to C+.

On the other hand, Proposition 5.6 does not necessarily imply that C+ is connected,
in which case (by an abuse of notation) C+ in (5.24) may actually represent a
component of C+ (a maximal connected subset of C + ).

Obviously once (5.24) is established, (i) then follows by taking the union of all
components of C + .

(a) Using our earlier notation, let (X, u) e NS+. Then there is some s(u) > 0 and
z(w)eBE(0) such that u = s(u)(<pXo + z(u)). Furthermore e > | |M|L ^ S ( M ) ( | | ^ J | 0 O -
||z(u)||oo)^s(u)(||cp,o|L-e)^_is(u)||(plo||ooandsos(M)^0and ||z(u)|L-*0 as e->0.
Also (p^ + z(u) e Wla(Q)nC(Q) is a generalised solution of

+ z(u)) = 0 infl, (5.25)

and there is an M > 0 such that \\h(-,u,X)\\x£M for all (X, u)e NS+. Hence, by
Theorem 3.2 there is some constant y > 0 such that for any (X,u)eNS*, either
<Pxo + Z(M)>0 in Q or measS"(u)2:y where 9(u)={xe£l:(f),o + z(u))(x)<0}. For
5 > 0, set M(S) = {xeQ, d(x, dQ) <d}. Since M(5) is an open set, its characteristic
function Xs is measurable and 0 ^ Xs = ^ o n ^- Furthermore, for all x e Q,
limd^oxd(x) = 0 and so by dominated convergence lima^o meas M(5) = 0. But for
each 5 > 0, Q\M(S) is compact and there is some fi(S) > 0 such that (f>xo(x) 5: n(5)
for all xeQ\M{8). Now for xe3i(u), y^{x) = q>Xo(x) + z(u)(x) - z(u)(x) <
-z(u)(x) ^ || z(u) ||„ < e. Hence for all 5 > 0, 0(u) c M((5) if 0 < e < n{5). Choosing 5
so small that measM(^)<y, we conclude that <pXo + z(u)>0 in Q whenever
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384 T. J. Healey et al.

(X, u) e NS + and 0 < e < fi(8). But NS? # 0 by Propositions 5.5 and 5.6 and we
have just shown that NSC

+ c C + n P + for 0 < s < n(5).
(b) Suppose there is some (X, u)e C+ and some sequence ((!„, un)) in C+ n P + such

that Xn -»• /I and || uB - u ||«, -> 0. Then u ^ 0 in Q. Since

Lu + fe(-,M,A)-«= -h(-,u,X)+u^0 inf i (5.26)

in the generalised sense, it follows from [5, Theorem 8.19] that either u > 0 in Q or
u = 0 in Q. However, by definition, C+ does not contain a trivial solution, and thus
(X,u)eC+nP + .

(c) If C + n P + is not open relative to C + , then there is some point (X,u)eC+nP+

and a sequence ((&„, «„)) in C+\P+ such that AB->X and || uB — M IL ->0. The functions
un£ pro'2(Q)nC(Q) are generalised solutions of

Lun + h(-,un,Xn) = 0 i n Q (5.27)

and by the convergence of (Xn, un) in M. x C(Q) there is some constant M, such that
|| h( •, un, Xn) || ^ ^ M for all n e N. Then by Theorem 3.2, there is some constant y > 0
such that for any n e N, either un > 0 in Q or meas (^B) ^ y where ^ B =
{x e Q, un(x) < 0}. Since u > 0 in Q and || «„ — «|| „ -* 0, the arguments given in the
proof of (a), however, yield meas £^B->0 as n-> oo. Thus, there is some n o e N such
that un > 0 in O, i.e. (AB, uB) e C+ n P + for all n^n0, contradicting the assumption
on the sequence ((Xn, un)).

Obviously, the proof of (ii) is nearly identical to that of (i), and (iii) is a trivial
consequence of the definition: C\{(2.0, 0)} = C + u C ~ . Finally, to establish (iv), let
{{Xn, un)} be a sequence contained in C\{(X0,0)} such that Xn-+X and ||un||„ ->• 0. By
(iii) we may assume that {Xn, un) e P+ for all n. Setting vn = uB/|| un !!„, and employing
an argument identical to that in [10, Lemma 2.7], we find that vn-*v in C(Q),
|| i;|L = 1, and

v = Th(-,0, X)v = TA(X)v. (5.28)

Since vn > 0 in Q, it then follows from Lemma 5.1 that v ^ 0 in Q is a generalised
solution of (5.2). But by the same observation made in (3.9), we conclude that v > 0
in Q (|| v || oo = 1). Thus, L + 4̂(A) has principal eigenvalue 0, and the first part of (iv)
follows from (5.23). The unboundedness of C+(C~) is a consequence of [9,
Theorem 1.27] and C+ <= P+(C~ <= P~). •

6. Continuation

In this section we consider problem (4.18) assuming that

fix, 0, 0) = g(x, 0) = 0 for almost all x e Q, (6.1)

and also under the hypotheses of Sections 2 and 4 (except (2.5)). Thus, G(0, 0) = 0,
i.e. in contrast to Section 5, we have the a priori existence of merely one solution
point (0, 0) e R x C(Q). Now if

DuG(0,0) = I - TA(0): C(Cl)^ C(Cl) is invertible, (6.2)

then there is a local, unique curve of solutions of (4.18) containing (0,0), by virtue
of the implicit function theorem. From the Riesz-Schauder theory and Lemma 5.1,
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it follows that condition (6.2) is equivalent to:

v = 0 is the only solution of

Lv + h(-,0,0)v = 0 inQ, (6.3)

v = 0 on dQ.,

in the generalised sense. A sufficient condition for this is the following lemma:

LEMMA 6.1. If

h(x, 0,0)^0 for almost all x e Q, (6.4)

then (6.3) and hence, (6.2) hold.

Proof. The operator L + h( •, 0,0) satisfies all three conditions in (2.2). Hence, (6.3)
follows from a routine application of the maximum (and minimum) principle (cf. [5,
Corollary 8.2]). •

By virtue of the implicit function theorem, we now have

PROPOSITION 6.2. J/(6.4) holds, then there is a unique local branch of solution o/(4.18)
of the form

LS = {(X, u(X)l | 1 | <e} , (6.5)

where u : ( — e , e)—>C(£2) is c o n t i n u o u s , w (0 ) = 0 , and G(X, u(X)) = 0 for a l l \ X \ < s .

In order to establish the main results of this section, we require the following sign
conditions upon the functions g and h (the latter of which implies (6.4)):

(i) for each X ^ 0( ̂  0), g{x, X) ^ 0( ̂  0),

for almost all x e Q , and g(x, X) ^ 0 in a

subset of positive measure in Q if X # 0; (6.6)

(ii) h{x,s, 0 ) ^ 0

for all s e R and almost all x e Q.

Apart from these conditions on f(x, s, X) — g(x, X) + h(x, s, X)s along the axes of the
(s, /l)-plane, we also need one of the following conditions in a neighbourhood of (0,0):

There exists some 6 > 0 such that

either

(i) h(x,s,X)^0

or
(ii) h(x, s, X)s ^ 0,

for |s | <6, \X\ <S and for almost all xeQ.

(6.7)

By a now-standard application of the Leray-Schauder degree, the local solution
curve LS is part of a global branch of solutions of (4.18), denoted by C, subject to
an alternative described as follows (cf. [1,9]): Let

S = {{X,u)eRxC(n):G(X,u) = 0} (6.8)
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be the set of all solutions of (4.18). Define C+(C~) as the component of S\{(0,0)}
that contains LS+(LS~) = {(X, u(X)), 0 < X < s{-e < X < 0)}. Then either

(i) C+ and C~ are unbounded in U x C(Q)

or (6.9)

(ii) C

However, our assumptions (6.1) and (6.6) rule out (6.9(ii)). Indeed, (0, u)eS is
equivalent to the statement that u e WQ-2(Q) is a generalised solution of

Lu(x)+f(x,u(x),0) = 0 inQ. (6.10)

But by (6.1) and (6.6), f(x,u(x),0) = h(x,u(x),0)u{x) and h(x,u(x),O)^O almost
everywhere on n. It follows that the operator L + h(-,u, 0) satisfies the conditions
(2.2) and consequently that Sn({0} x C(Q))= {(0, 0)}. Therefore the components
C+ and C~ are separated by the hyperplane {0} x C(Cl) in R x C(Ci) and by (6.9)
the sets C+ and C~ are both unbounded connected subsets of S. We now give our
main result of this section.

THEOREM 6.3. Under the hypotheses of this section,
( i )C + cP + , (ii) C"c:p-, (iii) C = C+uCTu{(0,0)},
where P± are defined as in Theorem 5.10.

Proof. We prove only part (i) by establishing properties (5.24(a)-(c)) as in the proof
of Theorem 5.10. The arguments are obviously similar, and we give only the new
aspects.

(a) A solution (A, u(X)) eLS+ fulfils

Lu(X) + h(-,u(X), X)u{X) = -g(•, X) ^ 0 in n,
(6.11)

u(X) = 0 on dQ,

in the generalised sense. If || u(X) |L < <5 and 0 < X < d, then assumption (6.7(i)) implies
that h(-,u(X),X)^0 in n. Since the linear operator L = L + h(-, u(X), X) satisfies all
three conditions in (2.2), it follows from the strong maximum principle that either
u(X) > 0 or u(X) = 0 in Q. However, this second alternative is ruled out by virtue of
(6.6(i)) and (6.11). Therefore (X, u(X)) e P+ and C+ nP+ # 0 . For the case (6.7(ii)),
we have Lu(X) ^ 0 in n , and we draw the same conclusion.

(b) Assume (X, u)eC+ and a sequence ( ( i , , « J ) c C + n P + such that kn-*k and
II«»-«IIoo-»0. Then X>0 and u(x)^OonQ. Since ue WQ-2{Q) solves

Lu + h(-,u,X)-u=-h(-,u,X)+u-g(-,X)£0 i n n (6.12)

in the generalised sense, the rest of the argument identical to the one for (b) given
in the proof of Theorem 5.10.

(c) Here the argument is again similar to that given in the proof of
Theorem 5.10. Observe that, instead of (5.27), we now have

Lun + h(-,un,Xn)un=-g(-,Xn)^0 inn, (6.13)

in the generalised sense, and Theorem 3.2 can again be applied. •
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7. Concluding remarks

Before ending this work, we point out the direct applicability of the results of
Section 6 to the anti-plane-shear problem of nonlinear elasticity (e.g. [8,11]). Let
Q c R2(n = 2), and suppose that J1 = Q x [0, L] c R3 is a stressfree configuration of
an elastic body. Let {#, /*, k) denote the standard orthonormal basis for K3. Referring
to (1.1), (2.1-3), we have that u(xt, x2)k is the (anti-plane-shear) displacement of the
body, and f(xl, x2, u, X) = g(xu x2,1) + h(xl, x2, u, l)u is the component of the body
force along k, for all (xu x2, x3) e St. Since g is independent of the displacement u,
it is called a "dead" load, while the configuration-dependent loading h • u is said to
be "live". Let S(x) eR 3 x 3 denote the first Piola-Kirchhoff stress tensor at x e 38. We
require part of the shear response to be linear elastic as follows:

S3j = aVDjU,i = l,2,(j =1,2). (7.1)

Finally, we choose b' = c' = d = 0. Then (1.1) expresses the component of (local)
linear momentum balance along k, and also specifies that the portion of the boundary,
3Q x [0, L] c dS&, is immobile. Of course there are two other linear-momentum-
balance equations, but they are decoupled from (1.1). (Generally, other body forces
along i and j are required to maintain the anti-plane-shear displacement, although
cf. [8] for special cases in which they are not.)

We now discuss the basic hypotheses of Section 6. Assumption (6.1) says that no
body forces are applied when the control parameter is zero. Conditions (6.4), (6.6(ii))
and either of (6.7) place physically reasonable restrictions upon the local sign of the
live load, while (6.6(i)) is a natural restriction to place upon the dead load. For
example, gravity loading fulfils condition (6.6(i)).

REMARK 7.1. At first glance it appears that the results of Section 5 on bifurcation
should also be applicable to the anti-phase-shear problem. However, conditions (5.1)
seem artificial and are hard to motivate with concrete examples.

REMARK 7.2. For technical reasons, we must restrict ourselves to linear elasticity
(7.1), and more generally to semi-linear equations (1.1). Nonetheless, we are able to
handle "bad" coefficients and inhomogeneities and rough boundaries. Although there
is nothing wrong with (7.1) (the same is not true for general deformations of three-
dimensional elastic bodies), it is, more generally, nonlinear in Du, in which case (1.1)
becomes quasilinear. It is interesting to note that Rabinowitz's original results [9]
hold for quasilinear equations—but at the price of smooth constitutive laws and
smooth boundaries.
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