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ABSTRACT

Motivation: We have witnessed an enormous increase in ChIP-Seq

data for histone modifications in the past few years. Discovering sig-

nificant patterns in these data is an important problem for understand-

ing biological mechanisms.

Results: We propose probabilistic partitioning methods to discover

significant patterns in ChIP-Seq data. Our methods take into account

signal magnitude, shape, strand orientation and shifts. We compare

our methods with some current methods and demonstrate significant

improvements, especially with sparse data. Besides pattern discovery

and classification, probabilistic partitioning can serve other purposes

in ChIP-Seq data analysis. Specifically, we exemplify its merits in the

context of peak finding and partitioning of nucleosome positioning

patterns in human promoters.
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able in the supplementary material.

Contact: Philipp.Bucher@isb-sib.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on July 3, 2013; revised on March 28, 2014; accepted on

April 30, 2014

1 INTRODUCTION

ChIP-Seq (immunoprecipitation combined with high-throughput

DNA sequencing) experiments allow to characterize in vivo tran-
scription-factor binding events and local chromatin organization

on a genome-wide scale (Barski et al., 2007; Johnson et al., 2007;
Mardis, 2007). Within the past few years, ChIP-Seq has become

a widely used and indispensable technology in the study of tran-
scriptional regulation. Other epigenetic profiling assays are also

starting to have a similar impact on the research field (Ku et al.,

2011).
A ChIP-Seq experiment produces a large number of sequence

tags that are mapped to the genome, resulting in a genome-wide

profile of tag counts. A high tag count at a location on the

chromosome indicates the presence of a particular protein at
that location. This protein may be a sequence-specific transcrip-

tion factor, a post-translationally modified histone or some other
chromatin-associated protein. The regions enriched in ChIP-Seq

tags are diverse in terms of magnitude, shape and orientation
(Landt et al., 2012). Sequence-specific transcription factors

typically produce uniform narrow Gaussian peaks, while regions

enriched in histone modifications tend to show complex multi-

modal signal distributions.
The term ‘chromatin signature’ has been coined to designate

recurrent patterns found in ChIP-Seq-based histone modification

maps and other types of chromatin profiling data (Hon et al.,

2009). A chromatin signature is usually represented by a vector

of average tag counts in bins of certain sizes (typically 50–500 bp)

in a collection of larger genomic regions of sizes 1–10 kb.

Chromatin signatures can be detected by so-called aggregation

plots (APs) (Jee et al., 2011), if precisely mapped experimentally

defined anchor points [e.g. transcription start sites (TSSs)] are

available for selection and delineation of the genomic regions of

interest. A basic assumption in ChIP-Seq data analysis is that

specific chromatin signatures are associated with specific func-

tions. For instance, human promoters are characterized by a

nucleosome-free region of �150bp and a rigidly positioned

H3K4me3-marked +1 nucleosome centered 120 bp downstream

from the TSS (Schmid and Bucher, 2007).

Discovering a chromatin signature is difficult, especially when

anchor points are not available. An effective algorithm must be

capable to cope with the following obstacles.

� Biological inhomogeneity of the samples: The set of analyzed

genomic regions often consists of multiple unknown sub-

classes, in which case, a plot derived from all samples

shows the superposition of several different chromatin

signatures.

� Alignment uncertainty: Precise anchor points are rarely

available for delineating genomic regions. Selected chroma-

tin regions first need to be optimally shifted (registered)

with respect to each other before an AP can reveal a high-

resolution chromatin signature.

� Asymmetry: Chromatin signatures associated with direc-

tional molecular mechanisms (such as transcription) are usu-

ally asymmetrical. However, the orientation of the genomic

regions is often unknown. The input count vectors should

then be compared with each other in both orientations.

� Sparse count data: Certain bins may have very low tag

counts, leading to high sampling errors.

The problem of inhomogeneity can be tackled by off-the-shelf

clustering and partitioning algorithms. In fact, hierarchical clus-

tering and K-means have been incorporated in several*To whom correspondence should be addressed.
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multipurpose computational platforms for ChIP-Seq data ana-

lysis. SeqMINER (Ye et al., 2011) offers an in-built K-means

function, while ChIPseeker (Giannopoulou and Elemento, 2011)

is interfaced with a third-party hierarchical clustering software.

However, shifting and flipping are only implemented in specia-

lized programs like ChromaSig (Hon et al., 2008), ArchAlign

(Lai et al., 2010), CATCHprofiles (Nielsen et al., 2012) and

CAGT (Kundaje et al., 2012). ArchAlign performs only shifting

and flipping and can find only one single signature. CAGT sup-

ports flipping but not shifting. (The problem of optimal shifting

is typically solved by exhaustive comparison of all overlapping

subregions of a given size from two genomic regions, possibly in

both orientations.) ChromaSig, ArchAlign and CATCHprofiles

use progressive multiple alignment strategies to assemble similar

tag profiles. Because these algorithms have to carry out a large

number of pairwise comparisons, they tend to be slow. To over-

come this drawback, CAGT applies a two-step divide-and-con-

quer approach. It first uses the K-median algorithm (a variant of

K-means) to define top-level classes and then runs a hierarchical

clustering algorithm on each of these classes in turn. The shifting

and clustering functions require some type of distance measure.

All of these programs, except ChromaSig, use non-probabilistic

measures such as the Euclidean distance or the Pearson correl-

ation coefficient, neither of which does well with low counts per

bin. ChromaSig assesses similarity between samples and class

membership assuming position-specific Gaussian distributions

of the normalized ChIP-Seq signal within a chromatin signature.

The use of Gaussian distributions, which seems unnatural for

count data, is explained by the fact that ChromaSig was origin-

ally designed for ChIP-chip data.

In this article, we propose an alternative approach for finding

recurrent patterns in ChIP-Seq data by probabilistic partitioning.

The underlying principle of this general method is to optimize a

mixture model by an Expectation-Maximization (EM) algo-

rithm, a strategy that has already proved effective in finding re-

current DNAmotifs in selected genomic regions (Machanick and

Bailey, 2011). A key difference in this method compared with the

other clustering methods mentioned is that samples are not de-

terministically assigned to a single class: rather, their classifica-

tion status is defined by a vector of class membership

probabilities. While EM has long been a standard tool in ma-

chine learning, it is a general-purpose method, whose conver-

gence rates and running times depend on the exact formulation

of the objective function and the updating formulae. The pur-

pose of this article is to demonstrate the merits of EM when

applied to ChIP-Seq data and to explain by examples how it

can be applied to classification and motif-discovery problems

in research on chromatin structures. The probabilistic partition-

ing approach offers the following advantages.

(1) The use of probabilistic distance functions naturally takes

into account random sampling variation in low-count data.

(2) Probabilistic class assignment allows accurate character-

ization of classes even in situations where the classification

of individual samples is uncertain.

(3) Probabilistic class assignment is flexible and can combine

goals, for instance, the ranking and prioritizing of ChIP-

Seq signal-enriched regions based on peak shape.

(4) Shifting and flipping can be implemented in the EM

framework via hidden variables.

(5) The implementation of probabilistic partitioning is

straightforward with existing programming platforms.

All algorithms used in this work can be implemented by

530 lines of R code.

(6) Flexibility: Methods are readily customized to meet the

needs of a particular application. For instance, the switch-

ing from a Poisson probabilistic model to a negative bino-

mial model requires only one change in the corresponding

R code.

(7) Efficiency: In contrast to most existing methods, the EM

algorithm does not require exhaustive pairwise compari-

sons, so that each iteration runs in time linear in the

number of samples.

(8) Transparency and Reproducibility: Methods can be accur-

ately described in a research paper by reproducing a few

lines of R code (for example, see the R code given in the

Supplementary Material).

Section 2 presents in detail several variants of the probabilistic

partitioning algorithms. Section 3 analyses the performance of

these algorithms on carefully chosen examples based on simu-

lated and real ChIP-Seq data and compares its performance with

K-means clustering and CAGT.

2 METHODS

We are given N samples, S1, S2, . . . , SN. These samples could be regions

around TSSs of genes or transcription factor binding sites. We divide the

genome into bins and count the number of ChIP-Seq fragments that fall

into each bin to obtain bin counts. Thus, each sample Si is an integer

vector of length L, Si=ðsi1si2 . . . siLÞ, where each element sil is a bin count.

Bincount vectors of several ChIP-Seq libraries (e.g. different histone

marks) may be concatenated to partition them together. We assume

that the samples originate from a mixture of K different classes,

C1, C2, . . . , CK. Each class Cj occurs with characteristic probability

pj=PðCjÞ and is further characterized by ‘profiles’ of expected bin

counts: Cj=ðcj1cj2 . . . cjLÞ.

2.1 EM algorithm

The probability of sample Si given class Cj is computed as follows:

PðSijCjÞ=
YL
v=1

Poissonðsiv; �=cjvÞ ð1Þ

Now, the probability of class Cj given sample Si is given by:

PðCjjSiÞ=
pjPðSijCjÞXK

b=1

pbPðSijCbÞ

ð2Þ

Using this probability, we update the classes as follows:

cjl=

XN
a=1

PðCjjSaÞsal

XN
a=1

PðCjjSaÞ

ð3Þ

pj=

XN
a=1

PðCjjSaÞ

N
ð4Þ
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These computations are iteratively carried out for a fixed number

of steps.

2.2 Modified ‘Shape-Only’ EM algorithm

We also propose a shape-only version of the EM algorithm for normal-

ization purposes. For all K classes, the average count frequency is set to 1.

In other words, we impose

EðCjÞ=1,
XL
v=1

cjv=L ð5Þ

Equation (1) is modified as follows:

PðSijCjÞ=
YL
v=1

Poisson siv; �j=cjvð1=LÞ
XL
g=1

sig

 !
ð6Þ

The purpose is to adjust the average count frequency of class j to the

average count value of sample i.

Eð�jÞ=EðSiÞ ð7Þ

We further have to make sure that the average count frequency of the

reestimated class j equals 1. To this end, Equation (3) is modified as

follows:

cjl=

L
XN
a=1

PðCjjSaÞsal

XL
v=1

XN
a=1

PðCjjSaÞsav

ð8Þ

2.3 Variations—with shift and flip

We propose some variations of the basic method. In the following, we

show how flipping and shifting can be implemented. Note that these two

options could be implemented separately. Here (for the sake of generality)

we show the version that supports both. Shifting and flipping are mod-

eled with two hidden variables, the shift index m and the flip state inv.

Let m be the shift index and M be the maximum number of shifts

allowed, and let inv be equal to 1 when there is no flip and equal to 2

when there is one. Note that with shifting, the patterns Cj are shorter than

the samples Si byM – 1. The notation silðm; invÞ will be used to represent

the data for a particular shift and flip state: for inv=1,

silðm; invÞ=si;l+m�1; for inv=2, silðm; invÞ=si;L�M+m�l+1. Now, the

probability of sample Si given class Cj and further conditioned on shift

index m and flip state inv is computed as follows:

PðSijCj;m; invÞ=
YL
v=1

Poissonðsivðm; invÞ; �=cjvÞ ð9Þ

Now, the probability of class Cj given sample Si is given by

PðCj;m; invjSiÞ=
pjðm; invÞPðSijCj;m; invÞXK

b=1

XM
d=1

X2
e=1

pbðd; eÞPðSijCb; d; eÞ

ð10Þ

Using this probability, we update the classes as follows:

cjl=

XN
a=1

XM
d=1

X2
e=1

PðCj; d; ejSaÞsalðd; eÞ

XN
a=1

XM
d=1

X2
e=1

PðCj; d; ejSaÞ

ð11Þ

p�j ðm; invÞ=

XN
a=1

PðCj;m; invjSaÞ

N
ð12Þ

Here we assume that the shift states follow a centered Gaussian dis-

tribution with equal width for all classes. Therefore, we infer only the SD

of the distribution from the data. Practically, this is achieved by applying

the following regularization step to the reestimated probabilities

p�j ðm; invÞ.

�=

XK
b=1

XM
d=1

X2
e=1

p�bðd; eÞd

XK
b=1

XM
d=1

X2
e=1

p�bðd; eÞ

ð13Þ

�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
b=1

XM
d=1

X2
e=1

p�bðd; eÞðd� �Þ
2

XK
b=1

XM
d=1

X2
e=1

p�bðd; eÞ

vuuuuuuut ð14Þ

Let NormalðmjðM+1Þ=2; �Þ be the probability of shift m that has a

Gaussian distribution of mean ðM+1Þ=2 and SD �.

pjðm; invÞ=
NormalðmjðM+1Þ=2; �ÞXM

d=1

NormalðdjðM+1Þ=2; �Þ

XM
h=1

p�j ðh; invÞ ð15Þ

As before, these computations are iterated for a fixed number of steps.

Because we are able to estimate the probability of each shift for every

sample and class, we can use these probabilities to estimate the internal

position of a given pattern in a particular sample. Under Section 3.2.3, we

present a biological example where we make use of this possibility.

2.4 Seeding and initialization strategies

Various seeding and initialization strategies are possible for the proposed

probabilistic partitioning algorithms. Here are two such possibilities.

� Start with one class (K=1). Set PðC1jSiÞ=1 (for partitioning with-

out shifts or flips) and p1=1. The initial distribution of class one (c1l)

can be defined in either of these two ways: (i) we can take the mean

of the entire data across all the samples; (ii) choose a random distri-

bution by either picking a random subset of the data or by choosing

a random probability for each sample, and then taking the weighted

sum over all the samples according to their probability value. Then,

iteratively increase the number of classes (K=K+1) till the max-

imum number of classes is reached. With each iteration, the new

class is initialized to a uniform distribution (cjl=1) 8l and j is the

new class. The new class will have a prior probability

ðpnew class Þ=1=K, where K is the total number of classes so far. The

remaining classes have a total probability (
P

j pj) of ð1� 1=KÞ, where

each class is pj=ð1� 1=KÞpoldj (the earlier value of pj is p
old
j ). After the

initialization (for each increase in the number of classes), the EM

method is applied.

� Start with K classes (K � 1). Like done before, we could take K

different subsets of the original data and compute their mean, and

use this to compute the initial distributions for different classes.

Alternatively, one could also choose K random probability vectors

(each vector containing probabilities for all samples) and use this to

compute K weighted sums for finding the initial distributions of the

K classes. After this initialization, the EM method is applied.

Determining the optimum number of classes or clusters (choosing K)

in a dataset has been a problem, which has been addressed in the litera-

ture for many decades now. The number of classes should strike a balance

between assigning all samples into one class and assigning each sample

into a separate class. Methods that look at percentage of variance as a

function of number of classes (Ketchen and Shook, 1996) or by using

methods based on information criteria like Akaike information criterion

or Bayesian information criterion are often used (among many others).

However, most of these methods have their drawbacks (Yang, 2005).
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Because probabilistic partitioning method is to be used as an exploratory

tool, we leave it to the user to manually see what is the best number of

interesting classes for the dataset being used.

3 RESULTS/DISCUSSION

3.1 On simulated data

We first run the computational experiments on simulated data.

The data are composed of a mixture of two classes characterized
by bin count frequency profiles of different shapes. The samples

were integer vectors of length 100. Counts were generated by
randomly sampling from a Poisson distribution with � varying

in a class- and position-specific manner along the bin count fre-
quency profiles. Because we were particularly interested in the

algorithm’s capability of recovering patterns from sparse count
data, we varied the total count coverage f over a wide range of

relevant values (f is defined as the total expected bin counts per
sample). The simulated data were generated using statistical soft-

ware R. The R code and additional details of the computational
protocols are given in the Supplementary Material.

3.1.1 Data without shifts or flips We first generated random
samples belonging to two classes, 1000 samples for each class.

The classes were defined by bin count profiles of Gaussian shape,
each one with a different mean and variance. The experiments

were repeated several times with coverage f ranging from 50 to
0.5. The shape-based version of probabilistic partitioning

(Partition) was compared with K-means and the recently intro-
duced Clustered AGgretation Tool (CAGT). The latter was used

with two different distance metrics, Euclidean and correlation
[henceforth denoted as CAGT (Euclidean) and CAGT (correl-

ation)]. CAGT differs from the other two methods in that it tries
to infer the number of classes from the data, a behavior that can

be partly controlled by the command line parameter ‘K-means/
median’. For the sake of fair comparison, we changed the value

of this parameter, so as to force the program to always return
exactly two classes. For CAGT (Euclidean), the parameter k

(the number of clusters for K-means/medians) was always set
to 2, while for CAGT (correlation), it was set to 2 when f55
and to the default value of 40 when f � 5. For the same reason,

we disabled the flipping option with CAGT. During the test, we
observed that CAGT (correlation) returned an error when trying

to process samples consisting of zeros only. We therefore elimi-
nated these samples from the input datasets fed to CAGT (cor-

relation). The number of EM iterations in the probabilistic
partitioning method was set to 30 for any value of f. Here and

in all subsequent experiments, we used the iterative version of
EM, starting with an initial class consisting of the mean bin

count vector taken over all samples.
The performance of the different methods was assessed in sev-

eral ways: (i) by visual inspection of APs for the true and redis-
covered classes (Fig. 1)—in the case of the probabilistic

partitioning method, the AP represents a probability-weighted
average; (ii) by measuring the similarity between the true and

rediscovered patterns as a Pearson correlation coefficient of the
corresponding bin count profiles (Table 1); (iii) by comparing the

reestimated class frequencies to the true class frequencies of 50%
(Table 1); (iv) by computing the classification error defined as the

percentage of misclassified samples (Table 2). Classification error

is calculated as N�cr1�cr2
N

� �
100, where cr1 and cr2 are number of

samples from classes 1 and class 2, respectively, which were cor-

rectly classified as belonging to their respective classes, and N is

the total number of samples in the data. To compute the classi-

fication error, we need to label the classes inferred by the various

algorithms. Because the setup of the simulations involves only

two classes, we could easily do this by hand. In addition for the

probabilistic partitioning method, we need to give a deterministic

class assignment for each sample, and we give it to the most

probable class.
As a general trend, we can see that all methods work well when

the count coverage is high (f � 10). When there is a lower cover-

age, probabilistic partitioning clearly outperforms all other meth-

ods. In fact, it recovers the underlying patterns of the two classes

surprisingly well (r40.94) even at a low coverage (f=0.5) and

this in spite of a high classification error of �33% (Table 2). The

high classification error is probably due to the expected large

number of samples consisting of zeros only (60%) all of which

will be attributed to class c2, which has the higher estimated

frequency (Table 1). K-means and CAGT (correlation) still re-

cover the count frequency profiles of the two classes with rea-

sonable accuracy at a coverage as low as f=2. Note further that

probabilistic partitioning is the only method capable of accur-

ately estimating the frequencies of the two classes at a low cover-

age. This is clearly related to the probabilistic rather than the

deterministic assignment of class membership.

3.1.2 Data with flips The next thing we wanted to see was how
well the method works when there are flips in the data. We used

two classes as before. The simulated data now contain 2000 sam-

ples per class, 1000 presented in one orientation and 1000 in the

reversed orientation. We compared probabilistic partitioning in

shape-based mode to CAGT (correlation) with flipping enabled.

Because CAGT (correlation) in default mode returned variable

numbers of patterns for f55, we reduced the parameter k to 5

Fig. 1. Simulated data without shifts or flips. Shows the data and the

patterns found using the K-means clustering method, CAGT methods

and the probabilistic partition method (shape-based without shift

or flips). Sub-figures a1, b1, c1, d1 and e1 are for f=50 and a2, b2,

c2, d2 and e2 are for f=1. Dashed line is class 1 (class c1 in Table 1)

and solid line is class 2 (class c2 in Table 1)
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for f=2 and to 4 for f=1, to force the program to output only

two classes. Overall, the results (Fig. 2 and Table 3) were similar.
The methods were able to recover the underlying patterns with

high accuracy if the coverage was not too low. At a lower cover-
age, probabilistic partitioning worked better. Note, however,

that in this test, we had to increase the number of iterations
from 30 to 70 to reach good performance with a low coverage

(for f � 2). In general, it was seen that for low values of f, we
may need to increase the maximum number of EM iterations for

this experiment. The probabilistic partitioning method is, how-

ever, seen to be robust over a wide range of EM iterations.

3.1.3 Additional tests with simulated data We performed similar
tests with mixtures of more than two classes and show that the

probabilistic partitioning approach works well. The details of the

test protocols and the corresponding results are presented in
Supplementary Materials. We also found that the CAGT (cor-

relation) method does not work well in differentiating classes
with co-localizing peaks but different width. However, CAGT

(Euclidean), K-Means and probabilistic partitioning method do
not run into the same problem. We show an example in the

Supplementary Material to demonstrate this.

3.2 On real ChIP-Seq data

We now check the usefulness of the method on real data from
ChIP-Seq experiments.

3.2.1 H3K4me1 and H3K4me3 promoter signatures These two
histone marks exhibit characteristic and distinct chromatin sig-

natures around promoters. In the following experiment, we mix

H3K4me1 and H3K4me3 bin count profiles representing pro-

moter regions to test whether automatic classification methods

can correctly identify the two classes of samples and accurately

reconstruct the corresponding chromatin signatures (i.e. bin

count frequency profiles). As a promoter collection, we used

34 741 annotated TSSs from ENSEMBL. We then extracted

H3K4me1 and H3K4me3 tag counts from public ChIP-Seq

data for mouse embryonic stem (ES) cells [(Creyghton et al.,

2010), GEO entries GSM594577 and GSM594581]. For each

sample, tags for H3K4me1 and H3K4me3 were counted in

bins of 50 bp over a region of –2500 to +2500 relative the

TSS. The two datasets were then combined into one. The advan-

tage of having such a combined dataset (by mixing two real

datasets) is that we know the underlying truth, and we can do

Table 1. Results for simulated data without shifts or flips

Method f=50 f=10 f=5 f=2 f=1 f=0.5

K-means c1 1 (50%) 0.9986 (53.00%) 0.9905 (58.45%) 0.5588 (88.6%) 0.5732 (92.55%) 0.5576 (96.45%)

K-means c2 1 (50%) 0.9999 (47.00%) 0.9993 (41.55%) 0.7443 (11.4%) 0.6459 (7.45%) 0.4590 (3.55%)

CAGT (Euclidean) c1 1 (50%) 1.0000 (49.9%) 0.9990 (50.2%) 0.9742 (59.15%) 0.5730 (92.55%) 0.5802 (96.35%)

CAGT (Euclidean) c2 1 (50%) 1.0000 (50.1%) 0.9998 (49.8%) 0.9950 (40.85%) 0.6459 (7.45%) 0.4965 (3.65%)

CAGT (correlation) c1 1 (50%) 0.9994 (47.9%) 0.9956 (44.53%) 0.9829 (57.06%) 0.5498 (80.62%) 0.5874 (88.30%)

CAGT (correlation) c2 1 (50%) 0.9998 (52.1%) 0.9993 (55.47%) 0.9987 (42.94%) 0.6748 (19.38%) 0.4391 (11.70%)

Partition c1 1 (50%) 1.0000 (50.03%) 1.0000 (49.99%) 0.9989 (49.23%) 0.9929 (48.59%) 0.9407 (48.44%)

Partition c2 1 (50%) 1.0000 (49.97%) 1.0000 (50.01%) 0.9998 (50.77%) 0.9985 (51.41%) 0.9862 (51.56%)

Note: Model accuracy is expressed as Pearson correlation coefficient between original and rediscovered patterns/classes. The percentage of samples attributed to a class is

shown in parentheses. The classes c1 and c2 correspond to the dashed and solid lines in Figure 1, respectively.

Fig. 2. Simulated data with flips. Data (4000 samples) consist of two

classes characterized by Gaussian-shaped patterns. Each class is repre-

sented by two subsets of 1000 samples, one showing the underlying pat-

tern in native, the other one in reversed (flipped) orientation. Sub-figures

a1, b1, c1 and d1 are for f=50 and a2, b2, c2 and d2 are for f=1. b1

and b2 are APs of the same data but with all samples presented in their

native orientation. It can be seen that the probabilistic partitioning

method (shape-based) using flips captures the actual data patterns at a

high (f=50) and low (f=1) coverage. The CAGT (correlation) method

works well for f=50 only. Dashed and solid lines correspond to classes

c1 and c2 in Table 3, respectively

Table 2. Classification error (in percentage) between the discovered pat-

terns and their data classes

Method f=50 f=10 f=5 f=2 f=1 f=0.5

K-means 0 3.00 8.85 40.20 43.85 47.75

CAGT (Euclidean) 0 0.30 3.60 32.15 43.85 48.00

CAGT (correlation) 0 1.75 5.44 17.41 39.63 43.96

Partition 0 0.00 1.05 11.20 23.55 33.95
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the quantitative comparisons similar to what we have done using

simulated experiments by trying to separate the two datasets

from the combined dataset.
This test dataset potentially poses several new difficulties as

compared with the previous synthetic datasets. (i) The two

classes are likely to be inhomogeneous themselves because not

all promoters are active in ES cells, and this is known to be

reflected by the respective histone modification signatures. (ii)

The two classes are highly unequal in terms of coverage
(f=11 for H3K4me1, f=90 for H3K4me3). This explains

why an AP of the mixed dataset looks quasi-identical to an AP

for H3K4me3 only (Fig. 3a and b). Because unequal coverage

may help to distinguish between the two classes, we tested prob-

abilistic partitioning in both basic- and shape-based mode. (iii)

This dataset is much larger than the previously tested synthetic

datasets and thus may represent a challenge in terms of CPU

requirements. We exploited this fact to carry out a speed com-

parison of the different programs.
In total, we tested five methods on this dataset, K-means,

CAGT (Euclidean), CAGT (correlation), partitioning (basic—

non-shape-based) and partitioning (shape–based). The results

are shown in Figure 3 and Table 4. Not surprisingly, all methods

perform well in reconstructing the H3K4me3 signature around

promoters, which dominates the dataset in terms of tag coverage.

For the H3K4me1 signature, probabilistic partitioning (shape–

based) performs best, followed by CAGT (correlation) and par-
titioning (basic). A possible explanation for this fact is that

coverage is highly inhomogeneous within the H3K4me3 class,

causing misclassification of low-coverage H3K4me3 samples as

H3K4me1 by the basic but not the shape-based version of prob-

abilistic partitioning. It is noteworthy that CAGT (correlation)

outperforms probabilistic partitioning in estimating the relative

frequencies of the two classes. This may be due to the fact that

CAGT (correlation) was tested on a reduced dataset lacking

samples with zeros only.
Regarding speed, we note that probabilistic partitioning

(shape–based) is a little slower than CAGT but is still capable

of processing the datasets in a few minutes. The speed figures

should be interpreted with caution, as they depend on the

number of iterations carried out by the probabilistic partitioning

algorithm. We further note that K-means is fast but basically

incapable of recovering the two histone modification signatures.

3.2.2 Application to nucleosome positioning in promoters In the
previous example, we have shown that our method can separate

H3K4me1 and H3K4me3 signals that are artificially pooled to-

gether. Such a test is useful for method validation but obviously

not representative of an interesting biological application. In the

following, we apply probabilistic partitioning to a potentially

inhomogeneous dataset where the subclasses are not known in

advance. Specifically, we analyze the positioning of nucleosomes

in human promoters. As anchor points, we use 9714 precisely

mapped TSSs from EPDnew version 1 (Dreos et al., 2013).

Nucleosome mapping data produced by MNase digestion were

taken from Schones et al. (2008). Before partitioning, the

mapped MNase tags were shifted by 70bp toward the center

of the nucleosome and then counted in bins of 20 bp. Thus, the

input data vectors reflect the frequency at which a nucleosome

center occurs at a given distance from a TSS.

The AP plot for the complete promoter set (Fig. 4) shows a

well-positioned +1 nucleosome flanked downstream by a

damped oscillatory pattern with the expected period of

�200bp. The region immediately upstream of the TSS appears

Fig. 3. H3K4me1 and H3K4me3 histone modification data. H3K4me1

and H3K4me3 data mixed together and separated using the K-means,

CAGT (correlation), CAGT (Euclidean) and probabilistic partitioning

approach (non-shape and shape-based). Dashed line is for the class

that represents H3K4me1 and solid line is for H3K4me3. In the figures,

each class is normalized so that the maximum value is 1 for the sake of

clarity for each class. Only for sub-figure (b), we normalize using a global

maximum of H3K4me1 and H3K4me3

Table 3. Results for simulated data with flips

Method f=50 f=10 f=5 f=2 f=1

CAGT (correlation) c1 0.9999 (50%) 0.9996 (49.8%) 0.9990 (48.99%) 0.9946 (23.08%) 0.9918 (22.97%)

CAGT (correlation) c2 1.0000 (50%) 0.9999 (50.2%) 0.9998 (51.01%) 0.9791 (76.92%) 0.9598 (77.03%)

Partition c1 0.9999 (50%) 0.9996 (49.99%) 0.9991 (50.05%) 0.9986 (50.06%) 0.9965 (50.13%)

Partition c2 1.0000 (50%) 0.9999 (50.01%) 0.9998 (49.95%) 0.9997 (49.93%) 0.9986 (49.87%)

Note: Model accuracy is expressed as Pearson correlation coefficient between the original and rediscovered patterns/classes. The percentage of samples attributed to a class is

shown in parentheses. The classes c1 and c2 correspond to the dashed and solid lines in Figure 2, respectively.
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to be nucleosome free. No clear oscillatory pattern is seen in the

promoter upstream region. The absence of an oscillatory pattern

could mean that nucleosomes are randomly positioned or that

different promoters have regularly positioned nucleosomes with

different phase shifts relative to the TSS. We used shape-based

probabilistic partitioning with limited shifting (�1 bins/20bp) to

discriminate between these two alternatives. The results obtained

with K=4 are shown in Figure 4(b–f). With one exception

(class 4), the class-specific AP plots show higher nucleosome

peaks and stronger oscillatory patterns than the AP plot for

the complete set. Therefore, we conclude that the absence of a

periodic signal in the upstream region in Figure 4a promoters

results from interference of periodic patterns with different phase

shifts that almost entirely cancel out each other. We were won-

dering whether the four promoter classes with distinct nucleo-

some architectures may differ in terms of regulatory properties.

To this end, we analyzed the distribution of an active and a

repressive histone mark (H3K4me3 and H3K27me3) as well as

Pol II in the same cell type (Supplementary Fig. S3). We see clear

differences. Perhaps most interestingly, classes 2 and 3 show

regularly positioned H3K27me3-labeled nucleosomes indicative

of a repressed state.

3.2.3 Shape-based peak evaluation with shifting In this example,

we apply probabilistic partitioning to improve a publicly avail-

able peak list originating from a ChIP-Seq experiment against a

sequence-specific DNA-binding protein. Note that this applica-

tion is different from the previous ones in that here we are not

trying to discover distinct classes. We are merely trying to sep-

arate typical examples (belonging to the majority class) from

atypical examples, assuming that atypical examples are contam-

inants. The second goal is to refocus the peak center positions.

To reach these objectives, we use shape-based probabilistic par-

titioning with two classes, one corresponding to the majority

class and trained during EM, the other one with a flat count

distribution representing background and not modified during

EM. As output, we obtain for each peak region in the input list a

probability of being a true binding site plus an optimal shifting

distance under the true peak model.
To test this approach, we used ChIP-Seq data for CTCF in

HUVEC from Broad/ENCODE downloaded from GEO

(Barrett et al., 2013). As anchor points, we used the midpoints

of the CTCF binding regions given in the peak file included in

the GEO sample entry (GSM733716). For each binding region,

we counted sequence tags in bins of 10 bp within a 1 kb region

around the anchor point. Probabilistic shifting was done by eval-

uating the ChIP-Seq signal in 31 overlapping windows of 700 bp

(70 bins). After partitioning, we split the input peak list into a

‘good’ and a ‘bad’ peak class, applying a threshold probability of

0.5. We also shifted the center positions of the good peaks based

on the posterior probability distribution over the 31 shift classes.

We then evaluated the peak lists obtained in this way by motif

enrichment using the CTCF position weight matrix from the

JASPAR database (Portales-Casamar et al., 2010). Figure 5a

shows the frequency of CTCF binding motifs around the peak

center positions. We note an essentially flat ChIP-Seq signal dis-

tribution for the bad peaks and a drastically enhanced Gaussian-

like distribution with an increased height and a narrower width

for the shifted good peaks. Given the relatively small size of the

bad peak set (12 552 of 63 904), the increase in peak height pri-

marily results from shifting and only to a lesser extent from false

binding sites elimination.

As a control, we split the same peak list into good and bad

examples using the P-values contained in the file downloaded

from GEO. (The probability threshold was chosen such as to

match the numbers of the subsets obtained with probabilistic

Table 4. Model accuracy (represented by Pearson correlation) and classification error between the discovered patterns and their data classes for the

various methods

Method Model accuracy Model accuracy Classification error Time (s)

H3K4me1 H3K4me3

K-means 0.0244 (83.65%) 0.9980 (16.35%) 33.72 1.16

CAGT (Euclidean) 0.9270 (69.03%) 0.9987 (30.97%) 23.85 106.31

CAGT (correlation) 0.9463 (42.86%) 0.9994 (57.14%) 26.98 108.35

Partition (non-shape-based) 0.8959 (75.76%) 0.9997 (24.24%) 27.26 97.91

Partition (shape-based) 0.9713 (62.53%) 0.9996 (37.47%) 20.64 149.57

Note: The time (in seconds) taken for each of the methods is also shown. Real data for H3K4me1 and H3K4me3 around TSS regions are mixed (34 741 samples in each dataset

with each sample containing 99 bins). The percentage of each class is shown in brackets. H3K4me1 and H3K4me3 stand for the two datasets (Values are rounded to the fourth

decimal place for model accuracy and two decimal places for classification error.).

Fig. 4. Partitioning of nucleosome positioning patterns in human pro-

moters. All curves are drawn to the same scale. Probabilistic partitioning

reveals strong oscillatory patterns for subclasses of promoters that par-

tially cancel each other when mixed together
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partitioning.) With this filtering criterion, the AP for the bad
peak set still shows a low Gaussian-shaped signal distribution,
suggesting the retention of a few true binding sites, whereas the

good peaks exhibit only a modest increase in signal height
(Fig. 5b). The latter was expected because these peaks were not
subjected to optimal shifting.
We also evaluated probabilistic peak ranking in terms of re-

producibility, using a GEO sample that provides separate peak
lists for replicates (see Supplementary Material for details). At an
equivalent irreproducible discovery rate of 1%, our method finds

slightly fewer peaks than the peak-finder used by the data sub-
mitters. However, our peak list was more enriched in CTCF
motifs. A possible interpretation of these findings is that our

method, which attempts to eliminate peaks of atypical shape, re-
moves artifacts that are reproducibly called by other peak-finders.
Taken together, our results show that probabilistic partition-

ing is an effective post-processing method for filtering and
focusing a publicly available ChIP-Seq peak list obtained with
a state-of-the-art peak finder.

3.2.4 Other real examples We wanted to know whether the

results obtained with our method would differ from results ob-
tained with another method when applied to the same dataset.
Therefore, we tested probabilistic partitioning on an example

that was used in (Kundaje et al., 2012) for introduction and
illustration of the CAGT algorithm. The details of this analysis
are presented in the Supplementary Material. This dataset con-

sists of H3K27ac bin count profiles around CTCF binding sites.
Overall, the two methods reveal concordant trends, but the re-
sults differ in some details (see Supplementary Material).

4 CONCLUSION

We presented a probabilistic partitioning method to find signifi-
cant patterns in ChIP-Seq data. The corresponding algorithm

runs in O(n) time given a fixed number of classes and EM iter-
ations. It is capable of processing large datasets (tens of

thousands of samples) in minutes. The method is conceptually
simple yet flexible, and has been implemented in a few lines of R

code. The basic partitioning algorithm is readily adjusted to
handling flips and shifts following standard principles of EM.

With low data coverage, the probabilistic partitioning method

gives excellent model accuracy, superior to K-means or CAGT
when tested on the same data examples. We have further shown

that probabilistic partitioning can serve other purposes than pat-

tern discovery and classification, like partitioning of nucleosome
positioning patterns in human promoters, and shape-based

evaluation and re-focusing of ChIP-Seq peaks from published

peak lists.
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(a) (b)

Fig. 5. Shape-based peak evaluation with shifting. The figure illustrates

the effects of probabilistic partitioning on a CTCF peak list provided by

ENCODE in terms of motif enrichment. (a) Probabilistic partitioning

with shifting. (b) Partitioning based on original P-values. Method details:

CTCF binding motifs where identified by scanning the DNA sequence

around peak centers with the JASPAR matrix MA0139.1 at a P-value

threshold of 10�5. The percentage of sequences containing a CTCF motif

is plotted in a sliding window of 50bp. The numbers in parentheses in-

dicate the sizes of the peak lists. For fair comparison, the threshold for

partitioning with the original P-values was chosen such as to match the

numbers of good and bad peak obtained with probabilistic partitioning.

The motif enrichment profile for the complete peak list (dotted line) is

included in both graphs
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