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ABSTRACT
The S stars near the Galactic Centre and any pulsars that may be on similar orbits can be
modelled in a unified way as clocks orbiting a black hole, and hence are potential probes of
relativistic effects, including black hole spin. The high eccentricities of many S stars mean
that relativistic effects peak strongly around pericentre; for example, orbit precession is not a
smooth effect but almost a kick at pericentre. We argue that concentration around pericentre
will be an advantage when analysing redshift or pulse-arrival data to measure relativistic
effects, because cumulative precession will be drowned out by Newtonian perturbations from
other mass in the Galactic Centre region. Wavelet decomposition may be a way to disentangle
relativistic effects from Newton perturbations. Assuming a plausible model for Newtonian
perturbations on S2, relativity appears to be strongest in a two-year interval around pericentre,
in wavelet modes of time-scale ≈6 months.
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1 IN T RO D U C T I O N

An orbiting clock as a probe of general relativity is familiar from
binary pulsars (Taylor 1994; Kramer et al. 2004) and from global
navigation satellites (Ashby 2003). In the coming years, a new class
of objects may join these.

The milliparsec region of the Galactic Centre is home to a com-
pact mass of ∼4 × 106 M� at Sgr A*, presumably a black hole.
This is known from a population of stars which orbit it at speeds
up to a few per cent of light, as shown by astrometric and spectro-
scopic observations (Schödel et al. 2002; Eisenhauer et al. 2003;
Eckart et al. 2005; Ghez et al. 2008; Martins et al. 2008; Gillessen
et al. 2009a,b; Meyer et al. 2012). Dozens of these ‘S’-stars have
been observed, and it is expected that many others with orbits even
closer to Sgr A* await discovery by the next generation of tele-
scopes such as the European Extremely Large Telescope (E-ELT).
An even more exciting prospect is the possibility of pulsars near
the black hole. A pulsar has recently been discovered in the region
(Rea et al. 2013), and population models argue that there should be
a few pulsars with periods <1 yr and observable with the Square
Kilometre Array (Cordes & Lazio 1997; Kramer et al. 2000; Pfahl &
Loeb 2004; Macquart et al. 2010). Since the gravitational radius of
the black hole is

GM

c2
� 20 light-second, (1)

and recalling that a parsec is 1.0 × 108 light-second, we see that the
S stars are at r ∼ 104 in relativistic units. This make their orbits the
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most relativistic of all known ballistic orbits, more than any known
binary system, and far more than Mercury or artificial satellites (see,
for example, fig. 2 in Angélil, Saha & Merritt 2010) and provides
incentive to search for relativistic effects.

Progress has been made to directly observe the event horizon
silhouette (Doeleman 2010), and these two kinds of observations
could potentially complement each other (Broderick et al. 2014).

An S star, or a pulsar on a similar orbit, can be considered
as a clock in orbit around a black hole. The clock moves on a
time-like geodesic and ticks at equal intervals of its proper time
τ c = nνc. With each tick, the clock sends out photons in all direc-
tions on null geodesics. Some of these photons reach an observer,
who records their arrival times as ta(n). The observer can also choose
to calculate the frequency by taking the derivative of the arrival times
with respect to the proper time of emission:

νa = 1

ta(n + 1) − ta(n)
= νc

(
dta

dτe

)−1

. (2)

Fig. 1 shows an example of what might be measured. For pulsars,
the ticks are simply the pulses. For an S star, there are no such
discrete ticks, but the clock model still applies, because

c ln(νc/νa) (3)

has the interpretation of redshift as usually measured from
spectroscopy1. It is not essential for the observer to know the in-
trinsic frequency in advance, since νc just introduces an additive

1 Redshifts are conveniently stated in km s−1, but in relativity no longer
correspond to radial velocities.
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Figure 1. Illustration of the basic scenario: an observer watches a clock
in a nearly Keplerian orbit around black hole, but relativity changes both
the clock’s orbit, and the paths that the signals take to reach the observer.
The orbits are initialized at zero proper time and then integrated forward
and back, but observer time lags by about a day, because of the placement
of the observer. Note how the tick rates are very similar until pericentre
passage, but then the relativistic orbit appears to get ahead a little bit – that
is pericentre precession. Spin effects are also included in the calculation, but
too small to see at the resolution of this figure. The eccentricity of this orbit
is e = 0.6, the semimajor axis is a = 0.06 mpc, and the inclination I = 45◦.
For this and all other numerical results in this paper, we set the black hole
mass to 20 light-second, cf. equation (1).

constant into equation (3). The important thing is to be able to
calculate ta(n), for which one has to compute time-like geodesics
(orbits) and null geodesics (light paths), and solve the boundary-
value problem for null geodesics from clock to observer. A moving
observer can also be allowed for, if desired.

Many different relativistic effects are, in principle, measurable
from a clock orbiting a black hole. First, the space–time around the
black hole dilates the clock time. Then, every term in the metric
affects both the orbit of the clock and the photons from the clock,
and imprints itself on the observables in its own distinctive way.
The best-known examples are pericentre precession and the Shapiro
time delay; the former concerns orbits while the latter influences
light paths. Another difference is that precession is cumulative over
many orbits, whereas the Shapiro delay is transient and does not
get larger as one observes more orbits. In the Solar system and for
binary pulsars, both cumulative and transient effects are measurable.
The circumstances of the Galactic Centre region, however, strongly
favour the transients over the cumulatives for the following reasons.

(i) The orbital periods are long. Cumulative build-up needs mul-
tiple orbits which takes decades.

(ii) Orbits of S stars tend to be highly eccentric, e = 0.9 being
typical. Relativistic effects increase more steeply with small ra-
dius and high velocity than classical effects, and hence relativity is
strongest around pericentre passage.

(iii) The extended stellar system will contribute significant noise,
hampering in particular searches which rely on build-up over long
time-scales. Whereas it may be possible to disentangle transient ef-
fects from noise over short time-scales because the time dependence
of the former is well understood.

With a full four-dimensional relativistic treatment, this paper per-
forms numerical experiments – computing arrival times ta – to

gain insight into transient relativistic behaviour on S star redshifts.
Section 2 discusses the more familiar tests of the Kerr metric and
discusses a few examples of transient effects, Section 3.1 formalizes
our redshift-calculating method, and discusses how the different ef-
fects scale with orbital period. Section 3 calculates these effects
for mock S star orbits. Finally, in Section 4, we propose a novel
strategy based on wavelet decomposition which may help separate
relativistic behaviour from Newtonian noise.

2 FAMI LI AR EFFECTS FRO M K ERR

There are multiple relativistic effects which grow over many orbits.
This has been essential to observing them in artificial satellites,
planets or pulsars. Here, we list some of the well-known ones.

2.1 Cumulative

(i) The expected relativistic orbital precession has been discussed
extensively in the context of S stars (e.g. Rubilar & Eckart 2001;
Merritt et al. 2010; Sadeghian & Will 2011; Sabha et al. 2012) and
pulsars (e.g. Liu et al. 2012). Relativity gives several contributions
to the precession. The strongest cumulative relativistic effect comes
from the first Schwarzschild contribution, resulting in a perihelion
shift

�ω = 6π

a(1 − e2)
(4)

per orbit.2

(ii) There is another contribution to the precession if the black
hole has internal angular momentum. This is characterized by a
spin parameter; or angular momentum per unit mass s. Bodies near
the black hole experience frame dragging in the spin direction. The
precessional effect due to this is

�φ = −8πs [a(1 − e2)]−3/2 (5)

per orbit. The phenomenon of frame dragging has been first ob-
served only in recent years, by using laser ranging to accurately
determine the orbit of the Lageos satellites and reveal the relativis-
tic effect of the Earth’s spin (Ciufolini & Pavlis 2004; Iorio 2010).
The recently launched LARES satellite aims to measure the effect
to an accuracy of 1 per cent (Ciufolini et al. 2009).

(iii) Two further effects act on the spin of the star or pulsar. One is
geodetic precession, wherein a vector attached to an orbiting body
moves by (for circular orbits)

�φ = 3π

a
(6)

per orbit (Fließbach 1990). Gravity Probe B has measured this
effect in Earth’s gravitational field (Everitt et al. 2011). The parallel
transport of a vector along a geodesic is also influenced by frame-
dragging. This is called the Lense–Thirring effect, and was also
detected by Gravity Probe B (Everitt et al. 2011). It is possible that
the spin axis of a close-in pulsar be parallel transported enough
to change the pulse profile. Pulse-profile changes from geodetic
precession have been observed in binary pulsar systems (Kramer
1998; Weisberg & Taylor 2002; Hotan, Bailes & Ord 2005; Breton
et al. 2008), and could be observed in galactic centre pulsars.

2 In this paper, all lengths are measured in units of the gravitational radius
GM/c2.
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Orbital decay due to gravitational radiation is another well-known
effect, but the time-scales are too slow to be interesting for Galactic
Centre stars.

2.2 Transients

Unlike the orbits of satellites, planets or pulsars, in the Galactic
Centre, orbital periods are much longer, so accumulating relativistic
signals over many orbits is difficult even though the fields are far
stronger. Perhaps an even more serious problem is the Newtonian
perturbations due to gas and other stars in the Galactic Centre region.
So it is interesting to think about transient effects which occur over
a single orbit. These may be measurable over a short time, and
moreover a predictable time dependence could enable extracting the
signal from the Newtonian background. In fact, there is a plethora
of such effects, a few of which we describe here.

(i) The strongest relativistic effect is gravitational time dilation,
one of the basic consequences of the Equivalence Principle. Time
is dilated by a factor

g
−1/2
tt = 1 − 2

r
(7)

with no effect at this order on the orbit or the light paths. For a
highly eccentric orbit, clearly there will be a peak at pericentre.
Global Navigation Satellite System (GNSS) satellites are sensitive
to this shift. For navigation demands, it is enough for GNSS satellites
to routinely step the on-board clock time back, correcting for this
effect. Gravitational time dilation has not yet been measured in the
galactic centre, but is expected to be possible in the near future
(Zucker et al. 2006). If observed, gravitational time dilation would
provide a new test of the Einstein Equivalence Principle (Angélil &
Saha 2011).

(ii) Lensing effects of gravity on photons travelling to us are
naturally also transient phenomena. Astrometric shifts due to grav-
itational lensing have been discussed in the Galactic Centre context
(Bozza & Mancini 2009), as have time delays due to a curved space–

time (Angélil & Saha 2010), although none have yet been detected.
With an impact parameter b, the deflection angle of a null ray is

�φ = 4

b
. (8)

This is the leading-order Schwarzschild contribution. The ∼b−2

effect is also relevant, and enters at the same order as the frame-
dragging lensing contribution, which we discuss later. The extra
delay induced in the arrival time of a packet of light compared to
had it travelled in a straight line is the Shapiro delay (Shapiro 1964),
and has been well tested with the Mariner 9 and Viking spacecraft
in the Solar system (Shapiro et al. 1968, 1977; Reasenberg et al.
1979) and in binary pulsar systems (Stairs 2003; Demorest et al.
2010).

(iii) Underlying every type of orbit precession, there is a fleet-
ing contribution which occurs around pericentre, the memory of
which is not retained by the orbit’s shape afterwards. Fig. 2, which
we shall return to later, shows our first example: the precession of
the instantaneous pericentre of a highly eccentric orbit. Far from
being the smooth effect suggested by equation (4), it consists al-
most of discrete kicks. In the derivation of (4), an oscillatory term
crops up beside this term. Because this term imparts a momen-
tary perturbation which time-averages to zero, it is dropped in text-
book derivations.(Weinberg 1972; Misner, Thorne & Wheeler 1973;
Carroll 2004; Schutz 2009). Analogously, Fig. 3 shows pericentre
precession due to frame dragging by the black hole spin, of which
equation (5) is the average. These two examples are artificial and
do not themselves correspond to observable quantities, for two rea-
sons. First, for Fig. 3, we have dropped lower order contributions
from space curvature so as to isolate frame dragging. Secondly,
the instantaneous pericentre of an orbit is defined as the pericen-
tre of a Keplerian orbit with the same instantaneous position and
momentum (the osculating elements, see e.g. Murray & Dermott
1999). In relativity, the instantaneous pericentre therefore becomes
gauge dependent and hence is not an observable quantity (cf. Preto
& Saha 2009). None the less, Figs 2 and 3 do suggest that time-
resolved observations could detect relativistic effects over a single

Figure 2. Illustration of Schwarzschild precession. The orbit is like a 1/3-size version of the star S2 (Gillessen et al. 2009b), with semimajor axis
a = 0.041 arcsec and eccentricity e = 0.88, but viewed face-on. We have set the distance to the galactic centre at 8.31 kpc. Along the trajectory we
may associate a value for the argument of pericentre ω to the value it would take were the phase space position a solution to Kepler’s equations. The right-hand
panel shows the instantaneous argument of pericentre against coordinate time for a distant observer. We see here that, for high eccentricities, precession is
concentrated so strongly around pericentre that it looks nearly discrete. The dashed curve is the well-known formula (4) for the cumulative precession.
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Figure 3. Illustration of frame-dragging precession. Since the effect is higher order than Schwarzschild precession, a smaller orbit is used than in Fig. 2 in
order to make the precession visible: the orbit is a 1/30-sized version of the star S2 (here with e = 0.88 and a = 0.0041 arcsec), yet viewed face-on. The spin is
maximal and perpendicular to the orbit; were the spin direction not perpendicular to the orbital plane, the orbital plane would also precess about the spin axis.
Frame-dragging is even more strongly concentrated around pericentre than Schwarzschild precession. The dashed curve is the formula (5).

orbit, especially around pericentre, where relativity is strongest and
Newtonian perturbations are likely to be at their weakest.

In Section 3 below, we show how these and several other effects can
be readily calculated numerically using a Hamiltonian formalism,
and show various illustrative examples.

3 TI M E D E L AY S A N D R E D S H I F T S IN K E R R

3.1 The Hamiltonian

The Hamilton equations for

H = 1
2 gμν pμ pν (9)

are simply the geodesic equations, with the affine parameter taking
on the role of the independent variable. Since H does not depend
explicitly on the affine parameter, H is constant along a geodesic.
Proper time is

√|H | times the affine parameter, except for the case
of H = 0, corresponding to null geodesics.

In our case, gμν are the contravariant components of the Kerr
metric. The Kerr metric is a vacuum solution to the Einstein Field
Equations. This is the appropriate metric to use if we are interested
in solving the forward problem for relativistic effects. This will
allow us to investigate examples of transient relativistic effects in
isolation. In Section 4, we treat the more realistic case; we relax the
vacuum assumption, and add other S stars as Newtonian perturbers
to the system, and see whether we can uncover transient relativistic
effects when the Newtonian noise is significantly large.

Assuming the orbits and light paths do not go close to the hori-
zon, we can expand the Hamiltonian in powers of 1/r. The result is
available in Angélil & Saha (2010). However, because it is conve-
nient to be able to set the black hole spin direction without having
to rotate the observer and the orbit, we use a slightly different
form. The Kerr geometry in Boyer–Lindquist coordinates neces-
sarily aligns the axis of symmetry of the coordinate system with
the axis of symmetry of the space–time geometry itself, and it is
therefore not possible to disentangle the preferred direction of the
coordinates with that of the spin in these coordinates. This means

we need to first transform to pseudo-Cartesian coordinates. Table 1
contains the form of the Hamiltonian which we use here, in pseudo-
Cartesian coordinates, and with the spin promoted to a 3-vector
s = (

sx, sy, sz

)
. (An equivalent table is given in Angélil et al. 2014,

but using Boyer–Lindquist variables.) For convenience, we use the
short form

s⊥ ≡ s × x
r

and s‖ ≡ s · p
r

. (10)

Presenting the Hamiltonian in table form allows us to group the
terms according to physical effects on orbits or light paths.3 The
Kepler/Rømer terms are classical. The leading relativistic effect is
time dilation, but as it is not associated with geodesics as such, it
does not appear in the table. Relativistic terms not depending on
the spin parameter s are labelled ‘Schwarzschild’. Then there are
various terms depending on spin. Of these, the term odd in s gives
frame dragging.

We are now ready to use the Hamilton equations corresponding
to the Hamiltonian in Table 1 to explore the dynamics, and the con-
sequences of the many terms in Table 1. While Angélil et al. (2010)
solve the inverse problem for relativity on S stars, here we attempt to
give a more qualitative picture of exactly how relativity perturbs the
orbit and redshifts/arrival-times, in particular for transient effects.

3.2 Numerical experiments with S stars and pulsars

We have already referred to Fig. 1, in passing in the Introduction.
That figure compares the observable pulse rate from two cases:
(i) a clock follows a relativistic orbit and the ticks are conveyed to the
observer along null geodesics, and (ii) the classical case including
Kepler and Rømer effects, and time dilation. The relativistic case
includes all terms in Table 1, other than the two highest order
‘not included’ terms in the light path. The orbits are initialized at

3 While both orbits and light paths are geodesic in the same metric, the
orders at which various terms affect the dynamics differ, due to the different
behaviour of their momentum.
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Table 1. Hamiltonian terms for orbits and light paths in a Kerr space–time. The full Hamiltonian (9) is the sum of all the terms in the left column, plus
higher order terms that we have not considered. The middle and right terms group the terms by physical effect and scaling of the time delay �t with
period P, as explained in Section 3.1 Note that we are using geometrised units GM = c = 1 here. To put �t and P in time units, simply multiply by a
power of GM/c3 so as to get the dimensions right.

Orbits Light paths

−p2
t

2
Static Rømer �t ∼ P 2/3

+ p2

2
Kepler �t ∼ P 2/3

−p2
t

r
Shapiro �t ∼ P0

− (x · p)2

r3
Schwarzschild �t ∼ P0

− 2p2
t

r2

− 2pt p · (s × x)

r3
Frame-dragging �t ∼ P−1/3 Frame-dragging, spin-squared, Shapiro �t ∼ P−2/3

+ s2
⊥

2r4
(x · p)2 − 1

2r4

( p · s × x)2

s2
⊥

− 1

2r4

1 − s2
⊥

1 − s2
‖

(
( p · s) r − (x · s) (x · p)

r

)2

Spin (even), Schwarzschild �t ∼ P−2/3

+p2
t

r3
s2
⊥ − 4p2

t

r3
Not included

apocentre with e = 0.6 and inclination I = 45◦ with respect to
the line of sight, and are integrated forward and back. The rest-
frame tick rate of the clock is 1000 Hz and its orbital period is a
week, while the assumed gravitational radius of the black hole is
GM/c2 = 20 light-second (corresponding to Sgr A*) – these choices
are only for the sake of putting axes on the figure and have no
physical significance.

From Fig. 1, we can infer that relativity makes the pericentre
precess, but to see more details we need to extract the difference
between the relativistic and non-relativistic cases. It is especially
interesting to see what different groups of terms from Table 1 do to
the time-delay and redshift curves. To label different cases, let us
introduce some shorthand, as follows.

(i) Hsch means that Schwarzschild terms but not spin terms have
been included in the orbits, while no relativistic terms have been
included for the light paths. These are the fourth and fifth rows in
Table 1. Hsch means that Shapiro terms have been included for the
light paths, while the orbits are classical. These are the third and
fourth rows in Table 1.

(ii) Hs (Hs) means that only the spin pt (x × p) /r3 term has been
added to the classical terms, and only for orbits (light paths). This
term is found in the sixth row in Table 1.

(iii) Similarly, Hs2 (H s2
) means classical plus spin-squared terms

in the orbits (light paths). These terms are the remaining rows of
Table 1.

Figs 2 and 3, mentioned in the previous section, show the orbit
effects Hsch and Hs as a perturbation to pure Newtonian motion.
Cumulative precession is a discrete phenomenon which occurs at
pericentre. However, the effect is not completely step-like, with tran-
sient behaviour before and after the pericentre kicks. The compli-
cated Hs2 orbit evolution effects are shown in Fig. 4. The evolution
depends on the relative orientation of the orbital angular momen-
tum with the black hole spin. We do not have any interpretation
that helps understand the dynamics generated by these higher order
terms, and merely show this orbit as an example.

Moving now to light-path effects, Fig. 5 shows the contribution
of Hsch, and Fig. 6 shows the contributions of Hs and H s2

. The even-
spin signals on timing and redshift are capable of a wide variety of
signal shapes, which depend on the orbit geometry relative to the
observer and the spin-direction. Timing delays due to spin effects
influencing photon paths have been calculated for binary pulsars
(see for example fig. 5 in Wex & Kopeikin 1999).

3.3 Scaling

Table 1 also gives the scaling of the time delay, which depends
on some power of the orbital period P. For the classical Kepler or
Rømer effect �t ∼ P2/3. With respect to the relevant terms in the
Hamiltonian, we thus have

p2 ⇒ �t ∼ P 2/3 . (11)

The p2
t /r behaves differently for orbits and light paths. For orbits,

it is of course part of Keplerian dynamics. For light paths it is
part of the Shapiro delay, which depends only logarithmically on r.
Accordingly, we write

p2
t

r
⇒ �t ∼

{
P 2/3 orbits

P 0 light paths.
(12)

Table 1 also has many terms which look like increasingly elaborate
versions of the classical ones. The scaling of �t for such terms is
simple: provided we are not close to the horizon, a factor of 1/r in a
Hamiltonian term introduces a factor P−2/3 in the time delay. That
leaves only the pt x × p term to deal with. To do that, we consider
the geometric mean of p2 and p2

t /r
4 to get

pt x × p
r3

⇒ �t ∼
{

P −1/3 orbits

P −2/3 light paths.
(13)

Table 1 includes all terms with �t contributions up to P−2/3.
Redshifts scale like

�t

P
(14)
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Figure 4. Orbital effects of Hs2 (even-spin terms). The orbit is like a 1/300-size version of S2 (a = 0.02 mpc and e = 0.88), initially in the x–z plane, while
the spin is along x. Schwarzschild and frame-dragging terms have been omitted, so this is a completely artificial example. It is none the less interesting, as it
illustrates the complexity of the spin-derived effects, from which none of the Keplerian orbital elements are exempt from change.

Figure 5. Light-path contributions to time delays and redshifts of Schwarzschild terms. The left-hand panel is simply the well-known Shapiro delay. The
redshift is the derivative of the time-delay, stated in equation (2). The orbital period is 3 yr – a scaled version of the orbits used for Fig. 1: e = 0.6,
a = 0.041 arcsec, I = 45◦, and R0 = 8.31 kpc. The time delay depends only logarithmically on the period P, but the redshift signal scales as 1/P. Because this
is a light-propagation effect, there is no cumulative component to this effect.

as will be evident from equations (2) and (3). This assumes, as
before, that orbits and light paths are not too close to the horizon.
This suggests that prospects for testing relativity as period sizes
decrease improve quicker for stellar orbits than pulsar orbits.

We can test these scalings with numerical experiments. In Fig. 7,
we show how the transient-relativistic contribution of Hsch, Hs and
Hs2 scale with the orbital period P. We isolate the transient signal by
calculating the most-positive plus most-negative difference in the
observables, upon initializing two orbits at pericentre integrating
over one period with and without the Hamiltonian terms in ques-
tion. All orbits have e = 0.6, I = 45◦, as in Fig. 1, but the period
was varied. As we can see in the figure, the predicted scalings from

Table 1 are borne out. Note, in particular, that the leading-order
Schwarzschild effects on the orbit makes for timing signals which
remain constant as the orbital size deceases. The redshift contribu-
tion of Schwarzschild however, scales as 1/P. Fig. 8 then shows
how the light-path contributions scale with period. For the latter
figure, the spin is maximal and perpendicular to the orbit, but this
detail is unimportant for the scaling.

For both orbit and light-path effects, our simulations show that

(i) the relativistic contributions are concentrated around
pericentre, and

MNRAS 444, 3780–3791 (2014)
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Figure 6. Light-path contributions of spin terms to time delays and redshifts. The orbit in each case is 1/50-sized version of the one in Fig. 5 (a = 0.0008 arcsec,
e = 0.6), while the spin is maximal. Only the spin direction changes: in the top row, the spin is perpendicular to the orbit; in the middle row, the spin is along
the line of sight, and hence the frame-dragging signal is null, leaving only even-spin contributions; in the bottom row, the spin is perpendicular to the line of
sight.

(ii) vary along the orbit in a complicated way, (especially when
spin is included), yet

(iii) none the less agree with the orbital period scalings in Table 1.

As we shall see in the next section, (i) and (iii) will prove useful for
extracting relativistic signals from extended mass noise.

4 FI LT E R I N G N E W TO N I A N P E RTU R BATI O N S

Orbit fitting in the pure Kerr case poses no fundamental problems
(Angélil et al. 2010), however, critical to being able to resolve
relativistic effects on galactic centre stars will be the handling of
other perturbations. The most significant are expected to be those
from the extended mass distribution, mainly from other stars, but
also perhaps from a significant dark matter component. Merritt
et al. (2010), Antonini & Merritt (2013) and Iorio (2011) compare
the cumulative effects of extended mass and relativity.

In this section, we are interested in transient relativistic signals
over a single orbit. A star whose redshift/time-delay is expected to

be influenced by relativity is the target star. The redshift/time-delay
of this star is also affected by the Newtonian attraction of other
black hole orbiting stars in the neighbourhood, which we call the
perturbers.

While the relativistic time dilation signal is likely to be
stronger than extended Newtonian signals, the next strongest ef-
fects (Schwarzschild and Shapiro) may be partially obscured. In this
section, we first discuss how to calculate the Newtonian perturba-
tions on the target star, before introducing a wavelet decomposition
method as a tool which could be used to help distinguish them from
relativistic perturbations.

4.1 Newtonian perturbers

The classical leading-order perturbation due to other stars orbiting
the black hole is given by a Hamiltonian contribution

Hstellar =
∑

j

mj

M

(
x · xj

|xj |3 − 1

|x − xj |
)

, (15)
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Figure 7. Transient orbital contributions to time delays and redshifts of dif-
ferent relativistic terms (Schwarzschild, frame-dragging and spin-squared),
as a function of orbital period. The cumulative components of these rel-
ativistic effects have significantly smaller amplitude. The orbit size used
in Fig. 1 corresponds to the short-period end of these panels. The orbital
geometry we maintain over this calculation has I = 45◦, and e = 0.6.

where x is the star being observed and mj , xj refer to perturbing
stars. For a derivation, see Wisdom & Holman (1991), especially
their equation 17, and disregard the mutual perturbations of the xj

stars. Note however, that the back-reaction on the observed star due
to the perturbed position of the black hole must be included. We
model the perturbations by adding the classical perturbation (15) to
the relativistic Hamiltonian from Table 1. Will (2014) shows that
new relativistic terms appear in general N-body problems, if there
is a tidal force or a quadrupole of the same order as the dominant
monopole. If the star being observed were in a binary, such terms
would arise, but for the simpler problem we are considering, the
approximation of simply adding the classical perturbers appears to
be valid.

As an example of the effect of Newtonian perturbers, we con-
sider a target star at x on an S2-like orbit (Gillessen et al. 2009a)
with semimajor axis a = 30 000 in geometric units, and eccentricity
e = 0.9. The perturbers at xj are 100 stars, all of equal mass, together
making up 1percent of the black hole’s mass or �4 × 104 M�.
These are distributed according to a power-law profile ρ(r) ∝ exp

Figure 8. Light-path contributions to time delays and redshifts of different
relativistic terms. This figure complements Fig. 7. The main difference is in
how the odd-spin (or frame-dragging) term scales.

(−γ r) with γ = 0.5. Their eccentricity distribution is uniform.
Fig. 9 contrasts the Newtonian and relativistic perturbations on
the target star’s semimajor axis a and periapsis argument ω. As
we see, the relativistic perturbations are completely submerged un-
der the Newtonian stellar perturbations. We may recall that for
Mercury, Newtonian perturbations from other masses are an order
of magnitude larger than the relativistic effects, yet the accumula-
tion of �ω � 0.1 arcsec per orbit is measurable. What makes such a
measurement possible is that in the Solar system, planetary masses
are known accurately and hence the Newtonian perturbations can
be subtracted off. Near the Galactic Centre, there is no prospect of
measuring all the perturbing masses accurately. Hence, if the model
perturbers in Fig. 9 are at all representative, relativistic effects would
be drowned under Newtonian perturbations.

4.2 Wavelets

However, the situation is not hopeless. Because the transient rela-
tivistic effects have a very specific time dependence that is known
in advance, it may be possible to extract them from under the
Newtonian background. Matched-filter techniques, well known
from gravitational-wave searches (see for example Sathyaprakash
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Figure 9. The evolution of the instantaneous Keplerian elements a and ω.
The Newtonian perturbations from other stars are distributed throughout the
orbit, whereas relativistic perturbations are concentrated near pericentre.
(Note that the instantaneous a and ω are not directly observable in relativity,
because they are gauge dependent and do not take signal propagation into
account. The observable quantities are arrival times and redshifts.)

& Schutz 2009), will not work because the observables are non-
linear in the perturbing effects. But progress may be possible using
wavelets.

A wavelet decomposition (Daubechies 1988, 1990) allows one to
identify features by breaking down a signal according not just to the
frequency at which they occur, but also according to the time they
occur. In contrast to a Fourier decomposition, where each basis func-
tion carries frequency information only, a wavelet basis function
includes both frequency and localization information. Relativistic
perturbations and perturbations due to the extended mass affect the
dynamics in different ways, as Fig. 9 illustrates, at different fre-
quencies and different localizations. We are interested in designing
a procedure which helps identify relativistic signals when shrouded
by significant extended-mass noise. Because redshift curves over a
single orbit have no periodicity, and because relativistic perturba-

Table 2. The coefficient structure of a wavelet trans-
formation. The first index gives the time-scale, the
second index give the localization.

n Cn,m

0 C0,1

1 C1,1

2 C2,1, C2,2

3 C3,1, C3,2, C3,3, C3,4

4 C4,1, . . . , C4,8

5 C5,1, . . . , C5,16

tions are most prevalent around pericentre, wavelets are a natural
choice for designing filters. As a result of relativistic effects be-
ing most pronounced around pericentre – and non-lingering due
to their oft transient nature – we can expect high-frequency co-
efficients, localized around pericentre passage, to be of greatest
value in retaining information from relativistic effects. We would
expect the extended mass perturbations to also impart transient,
high-frequency effects, such as close encounters, but those would
not be concentrated around pericentre.

In a typical wavelet decomposition, such as the Daubechies 4 and
Daubechies 20 wavelet types, a signal is expressed as

z(t) =
∑

n

2n∑
i=1

Cniψni(t). (16)

The wavelet basis functions ψni(t) are the scaled and translated
versions of a single function, called the mother wavelet, while the
Cni are the expansion coefficients. Table 2 schematically outlines
the wavelet coefficient structure. Each row of this table corresponds
to a particular time-scale, which is twice as fast as in the row above
it. The nth row has 2n coefficients, each of which correspond to
different time windows (or localizations). Let us write

Wn z(t) ≡
2n∑
i=1

Cniψni(t). (17)

The operator Wn isolates a particular time-scale in the signal.4

Fig. 10 shows the result of applying the Wn operator to an ex-
ample curve, consisting of two superposed Gaussians with different
means and widths. We see that n = 2 the first (wider) Gaussian
dominates, at n = 3 the second Gaussian starts to take over, and
from n = 5 the first Gaussian has been completely filtered out and
only the narrower Gaussian contributes.

4.3 Filtering relativistic signals with wavelets

We now consider an S star (or S pulsar) whose redshift (or pulse-
arrival times) are contaminated by significant noise from an ex-
tended mass system, and investigate how the wavelet coefficients
are influenced by relativistic versus extended-mass perturbations.
Starting with an unperturbed Keplerian orbit, we proceed as follows.

First, we generate three redshift curves for this orbit: zKepl has
no perturbations, zPert includes the Newtonian perturbation by in-
cluding the effects of equation (15), and zGR includes only the rel-
ativistic Schwarzschild and Shapiro perturbations. The differences
zGR − zKepl and zPert − zKepl are plotted in the upper panel of Fig. 11.
Here, we use the same extended Newtonian mass system example

4 We will speak of wavelet frequencies in this section, even though we really
mean time-scalings of the wavelets.

MNRAS 444, 3780–3791 (2014)



Clocks around Sgr A* 3789

Figure 10. In this demonstration, a sum of two Gaussians (top panel) is
decomposed into the Daubechies 20 wavelet basis (other panels). Each of
the wavelet panels corresponds to equation (17) for the stated value of n.
(The constant zeroth mode is not shown.) The sum of the lower panel curves
yields the parent shape.

as earlier in this section, corresponding to Fig. 9. In this mock data
example, the relativistic redshift signal is ∼30 times weaker than
that due to the extended mass perturbations.

Before taking wavelet transforms, another step is necessary: we
need to choose the reference orbit zKepl anew, because of course
the ‘original’ unperturbed orbit will not be provided by data. It
would be natural to choose a reference orbit that best fits the data,
but any consistent convention can be used. For simplicity, we shift
the epoch of zKepl so as to minimize the integrated difference from
zGR and zPert, respectively. We denote the shifted Keplerian curves
as z̃Kepl and z̄>Kepl. The differences zGR − z̃Kepl and zPert − z̄Kepl

are plotted in Fig. 11’s second panel. In this example, they have
approximately the same amplitude.

We then decompose the signals into different modes according
to frequencies and plot the differences

Wn

(
zGR − z̃Kepl

)
(18)

and

Wn

(
zPert − z̄Kepl

)
(19)

for n = 1–9. These are plotted in Fig. 12, which shows the results
using two different wavelet basis functions.

In our example, the wavelet-reconstructed perturber signal is
stronger than the relativistic ones over all wavelet scales, except
at n = 5 (with twice the amplitude) and n = 6 (with almost the
same amplitude). This decomposition procedure indicates that given
the geometry of our chosen orbit, Schwarzschild effects, although
obscured by extended mass perturbations with a signal-to-noise
ratio S/N ∼ 1/30, will impart a significant contribution on the

Figure 11. The upper panel shows the pure signals zGR − zKepl and zPert

− zKepl. In our chosen example, the perturbation from the extended mass
distribution is ∼30 times larger than the relativistic signal. The lower panel
shows the signals after shifting epochs to minimize the area under the curves.
It is the latter we plug into the wavelet procedure detailed in Section 4.

n = 6 frequency modes. Alternatively, one can say that
Schwarzschild effects, though about 30-fold weaker overall than
extended-mass perturbations (in this model), none the less stand
out over Newtonian perturbations over a two-year interval around
pericentre, in wavelet modes of time-scale ≈6 months.

The above suggests that subtracting off a Keplerian orbit, ap-
plying a wavelet transform to the residual, and then considering a
specific subset of the wavelet coefficients may succeed in filtering
out Newtonian perturbations.

5 C O N C L U S I O N S A N D O U T L O O K

Galactic Centre stars travel upon the most relativistic orbits known.
However, the accessible relativistic effects are not simply extensions
of similar experiments in the Solar system and in binary pulsars.
S stars, and S pulsars if they exist, live in stronger fields than binary
pulsars, but their orbital periods are much longer. The combination
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Figure 12. Reconstructed signals from wavelet frequency modes. Due to the linearity of the wavelet transformation, the sum of the signals in each column
yields the lower panel curves of Fig. 11. The wavelets down the left-hand column are the Daubechies 4 variety, and those down the right the Daubechies 20.
Despite the raw relativistic signal being 30 times less than that from Newtonian effects due to the perturbing stars, the relativistic signal manages to significantly
dominate at n = 6. This happens for both wavelet types used here, Daubechies 4 and Daubechies 20. This procedure highlights the specific time and frequency
localization properties of the two effect types, and tools like this could aid future searches in decorrelating them.
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of the strong fields, long orbital time-scales, and the typically high
eccentricities push otherwise negligible aspects of dynamics near
a black hole into the observables. For example, precession is not
a steady process, as the well-known orbit-averaged formulas (4)
and (5) may suggest, but nearly a shock that happens at pericentre.
The concentration of dynamical effects around pericentre passage
applies even more to effects which depend on the spin of the black
hole. These pericentre shocks will be important when separating
relativistic signals from noise sources.

If the observed dynamics is found to be in agreement with a Kerr
space–time plus perturbations from the surrounding astrophysical
environment, Einstein gravity will be tested to a new level. A further
benefit is that because we test gravity by tracking freely falling
bodies, as well as photon paths, by inferring the components of the
metric by looking at their effects on the behaviour of geodesics,
we probe not just the field equations, but implicitly test the notion
requisite to describing gravity with geometry – the principle of
equivalence.

The spectrometers of the Keck and the Very Large Telescopes
have independently observed the spectra of the S stars, manag-
ing to achieve spectral resolution to ∼10 km s−1 in the best cases.
The next generation of instruments, such as the High Resolution
Near-infrared Spectrograph (SIMPLE) on the E-ELT is expected
to achieve ∼2 km s−1 (Origlia, Olivia & Maiolino 2010). If an S
star with period ∼1 yr is discovered, observations clustered around
pericentre passage at this level of accuracy could provide a mea-
surement for frame-dragging. Were S pulsars with stable periods to
be detected with orbits similar to the already-known S stars, pulsar
timing even at the ms level would be, in principle, enough for all the
effects summarized in Table 1. The challenge would be removing
the Newtonian ‘foreground’ due to the extended mass distribution
around Sgr A*. Separating cumulative effects into Newtonian ver-
sus relativistic is a challenging task, yet with transient effects that
vary along an orbit in different ways, one can be more optimistic.
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