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ABSTRACT

Motivation: Representing domain knowledge in biology has

traditionally been accomplished by creating simple hierarchies of

classes with textual annotations. Recently, expressive ontology

languages, such as Web Ontology Language, have become more

widely adopted, supporting axioms that express logical relationships

other than class–subclass, e.g. disjointness. This is improving the

coverage and validity of the knowledge contained in biological ontol-

ogies. However, current semantic tools still need to adapt to this more

expressive information. In this article, we propose a method to inte-

grate disjointness axioms, which are being incorporated in real-world

ontologies, such as the Gene Ontology and the chemical entities of

biological interest ontology, into semantic similarity, the measure that

estimates the closeness in meaning between classes.

Results: We present a modification of the measure of shared infor-

mation content, which extends the base measure to allow the incorp-

oration of disjointness information. To evaluate our approach, we

applied it to several randomly selected datasets extracted from the

chemical entities of biological interest ontology. In 93.8% of these

datasets, our measure performed better than the base measure of

shared information content. This supports the idea that semantic simi-

larity is more accurate if it extends beyond the hierarchy of classes of

the ontology.
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1 INTRODUCTION

Semantic similarity has direct application to the class–subclass

hierarchy of many biomedical ontologies, such as the Gene

Ontology (GO; Lord et al., 2003), the chemical entities of biolo-

gical interest ontology (ChEBI; Ferreira and Couto, 2010) and

the human phenotype ontology (Köhler et al., 2009). Semantic

similarity assigns a quantitative measure of similarity between

two entities in an ontology, which has seen multiple applications

in semantic web and bioinformatics contexts (Grego and Couto,

2013).
The state-of-the-art in knowledge representation in the

biomedical domain is evolving to make use of ontology lan-

guages such as the Web Ontology Language (OWL). OWL

allows for more logically expressive axioms than the simple

class–subclass hierarchy and the relational statements favored

in early bio-ontology releases (McGuinness and van Harmelen,

2004). Following this trend, there is a need to adjust the current

similarity measures to conform to current practices in ontology

development (Couto and Pinto, 2013). Ontologies such as ChEBI

and GO now contain disjointness axioms, which express for a

pair of classes the constraint that an instance of one of them

cannot also be an instance of the other [Although the terms

‘class’ and ‘concept’ are usually interchangeable in literature,

the former is favored by the Semantic Web and OWL language

communities and the latter by the description logic (DL) com-

munity. In this article, we use the term ‘class’.]. The constraint

also restricts subclasses from being a subclass of both of the

disjoint classes. If such shared instances or subclasses are de-

tected by an ontology reasoner, the reasoner will flag the ontol-

ogy as inconsistent, which can be used by ontology developers as

a validation step to prevent errors in ontology development.
In this article, we propose that disjointness axioms can also

enhance the information that is exploited by similarity measures.

Figure 1 illustrates this situation. In this snippet, it is stated that

no instance of Rectangle can simultaneously be an instance of

Trapezoid. However, given the open-world assumption that

underlies ontologies, there can be instances of Rectangle that

are also instances of Parallelogram (in fact, it is a consequence

of the relevant geometric definitions that all squares are both

rectangles and parallelograms). (Informally, the open-world as-

sumption states that what is not known to hold does not give any

information about what is known not to hold. One consequence

is that if an ontology does not contain subclasses for a given

class, it cannot be assumed that no such subclasses exist.) For

this reason, the similarity between Rectangle and Parallelogram

should intuitively be higher than the similarity between Rectangle

and Trapezoid. Using � to represent the two-argument function

that returns the similarity between two classes:

�ðRectangle,ParallelogramÞ4�ðRectangle,TrapezoidÞ ð1Þ
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Several current semantic similarity measures make use of the

idea of information content (IC) applied to the classes of the

ontology (Resnik, 1995; Sánchez and Batet, 2011). The IC is a

number that reflects how specific the class is. For example, in the

illustration in Figure 1, Shape is the least specific class, receiving

a lower IC than the other classes. There have been many pro-

posals for how best to measure the IC of a class [See, e.g.

Seddiqui and Aono (2010) and Van Buggenhout and Ceusters

(2005)].
Another notion commonly used in semantic similarity is the

most informative common ancestor (MICA; Resnik, 1995). This

applies to a pair of classes x and y, and is defined as the class

with the highest IC from the set of all ancestors of both x and y:

MICAðx, yÞ ¼ arg maxcfICðcÞ j c 2 AðxÞ \AðyÞg ð2Þ

where AðxÞ is the set of ancestors (super-classes) of x, including x.
The first semantic similarity measure to make use of IC, by

Resnik (1995), estimates similarity as the IC of the MICA be-

tween x and y. The motivation behind this choice of the formula

is simple: x and y share a certain amount of information, and the

MICA is one way to estimate this shared information. Many

semantic similarity measures are based on this notion of shared

IC (Jiang and Conrath, 1997; Lin, 1998; Pesquita et al., 2008).

For example:

�Resnikðx, yÞ ¼ ICðMICAðx, yÞÞ ð3Þ

�Linðx, yÞ ¼
2� ICðMICAðx, yÞÞ

ICðxÞ þ ICðyÞ
ð4Þ

On the other hand, work has been published recently showing

a new approach to the problem of finding the best way to meas-

ure shared IC between two classes. Although shared IC has been

assumed to be best estimated as ICðMICAðx, yÞÞ (Resnik, 1995),

Couto and Silva (2011) suggest DiShIn, which behaves as an add-

on to the measure of IC, and contributes to a better measure of

shared IC by exploring multiple parentage to ensure that all the

shared information across multiple ancestors is taken into

account.
Just as was done for DiShIn, instead of proposing a semantic

similarity measure, we propose an add-on that can be used by

existing measures, such as the ones in Equations (3) and (4). Our

add-on refines the estimation of shared information between the

two classes by incorporating the disjointness axioms in the ontol-
ogy. We call the new shared IC measure ICs

disjðx, yÞ, which will be
based on a prior measure of shared IC, denoted by ICsðx, yÞ. We

stress that any measure of shared IC can be used as a base to
ICs

disj, not just the one proposed by Resnik, as is the case with
DiShIn.

Given the example presented in Figure 1 and the inequality of
Equation (1), it would be desirable for the measure of shared IC

to decrease for classes that are known to be disjoint, to formalize
the intuition that disjoint classes are less similar, as they cannot
share instances. Furthermore, to respect the open-world assump-

tion that often accompanies ontologies, the measure should stay
unchanged when two classes are not known to be disjoint.
With this novel measure of shared IC, we intend to show that

semantic similarity can take advantage of the disjointness axioms
of an ontology, thus providing evidence that future measures

should consider them in evaluating the closeness in meaning
between two classes.

2 CHEBI

For the evaluation of our proposal, we have computed shared IC
for ChEBI, the ontology of Chemical Entities of Biological
Interest (Degtyarenko et al., 2008). It is worth, as such, to intro-

duce the reader to the state of disjointness information that this
ontology includes. In the Open Biological and Biomedical
Ontologies community (in which ChEBI is embedded), there is

a tacit agreement that it is good practice to ensure that sibling
terms are mutually disjoint. This is, however, not the case for

ChEBI: mid-level chemical classes, which constitute most of
ChEBI, are generally not pairwise disjoint, as chemical classifi-
cation is compositional, i.e. classes often reflect parts or proper-

ties of molecules that may co-occur in many different
combinations in fully specified molecules (Hastings et al., 2012b).
In an ontology of chemical compounds, a leaf class can, in

theory, be regarded as disjoint with the other leaf classes. For
example, �-D-glucose is disjoint with histidine. However, ChEBI

is not a complete ontology for chemistry, and some of the leaves
it contains do not follow this rule. For example, aminophospho-
lipid, defined as ‘a phospholipid that contains one or more amino

groups’, is a leaf in ChEBI at present. However, this class rep-
resents the molecules that contain specific substructures and, as

such, it is not necessarily disjoint with the other leaves. Given
that ChEBI is a work in progress, where new knowledge is added
after careful manual duration, this has resulted in aminophospho-

lipid being presently a leaf. Other such cases can be found, ren-
dering even the theoretical rule that all leaves are disjoint not
applicable.

Thus, in what follows, we have not attempted to automatically
enhance the number of disjointness axioms available in ChEBI.

Rather, we have used only those axioms that have explicitly been
added to the ontology.

3 METHODS

3.1 Shared information using disjointness

We propose the new measure of shared IC:

ICs
disjðx, yÞ ¼ ICs

ðx, yÞ � kðx, yÞ ð5Þ

Fig. 1. A snippet of a hypothetical shape ontology. Arrows represent

class–subclass relationships and dashed lines represent disjointness

axioms. We use the term Trapezoid to mean a quadrilateral with two par-

allel sides and two obtuse angles. Note that proper shape ontology would

classify Square as a subclass of Rectangle, Rhombus and Parallelogram.

However, for the sake of the argument being exposed, we assume that such

information is as yet unknown by the ontology creators
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where ICs
ðx, yÞ is any measure of shared IC between x and y, kðx, yÞ40 if

x and y are disjoint and kðx, yÞ ¼ 0 otherwise.

Two points were crucial in the development of our measure.

First, we note that, as is, this equation presents a discontinuity. In the

hypothetical ontology of Figure 2, this measure leads to

ICs
disjðD,EÞ5ICðBÞ. Depending on the value kðD,EÞ, this could lead to

ICs
disjðD,EÞ5ICðAÞ ¼ ICs

disjðD,FÞ, which, however, should not be pos-

sible, as D and E share more information than D and F. Therefore,

k was bounded according to the IC of the most informative ancestor of

the MICA, which, in this case, results in kðD,EÞ � ICðBÞ � ICðAÞ.

The second major point associated with our measure is an operational

notion: the likelihood of two classes sharing ancestors that are not

asserted as such. We call this the potential for implicit common ancestors

(ICAs). Take as an example the ontology snippets of Figure 3. In situ-

ation B, given the open-world assumption, there is a small chance that Y

turns out to be a subclass of X0, while in situation A that cannot happen,

as Y is inferred to be disjoint with X0. This suggests that there is a lower

potential for ICA between the classes X and Y in situation A, as the

disjointness is declared between the direct subclasses of M.

Rather than modeling the potential for ICA, we model the unlikelihood

of ICA as the function fðx, yÞ, which returns higher values for situations

with lower potential for ICA:

fðx, yÞ ¼ max
1

pða, bÞ
j a 2 AðxÞ ^ b 2 AðyÞ ^ Jða, bÞ

� �
[ f0g ð6Þ

where AðxÞ is the set of ancestors of x (including x), Jða, bÞ is true when a

and b are disjoint (either by assertion of inference), and false otherwise

and pða, bÞ is the length of the shortest path from a to b. The path length

takes into account only the class–subclass relations, not the disjointness

arcs (the dashed edges of the figures).

Using the example ontologies in Figure 3, we can illustrate this

definition by calculating fðX,YÞ. In B, Jða, bÞ is true only for

ða, bÞ ¼ ðX,YÞ; the shortest path from X to Y, using only class–subclass

relations, is X! X0 !M! Y0 ! Y, which has length 4. Therefore,

fðX,YÞ ¼ maxf14 , 0g ¼
1
4. In A, Jða, bÞ is true for ða, bÞ 2 fðX,YÞ,

ðX,Y0Þ, ðX0,YÞ, ðX0,Y0Þg. These correspond to paths of length f4, 3, 3, 2g,

respectively, leading to fðX,YÞ ¼ maxf14 ,
1
3 ,

1
2 , 0g ¼

1
2. Finally, for non-

disjoint terms, such as X0 and Y0 in situation B, Jða, bÞ is always false:

therefore, the first set of the union becomes empty, resulting in

fðx, yÞ ¼ 0.

The general procedure to calculate ICs
disjðx, yÞ is, therefore:

(1) Determine M ¼MICAðx, yÞ;

(2) Determine Z ¼ arg maxcfICðcÞ j c 2 AðMÞg, i.e. the most inform-

ative ancestor of M;

(3) Estimate the unlikelihood of ICA, fðx, yÞ, as described in (6);

(4) Calculate kðx, yÞ ¼ fðx, yÞ � ðICðMÞ � ICðZÞÞ;

(5) Calculate ICs
disjðx, yÞ ¼ ICsðx, yÞ � kðx, yÞ.

With this procedure, the new shared IC is estimated as a weighted

average between ICðMÞ and ICðZÞ, where a higher f (lower potential

for ICA) leads to a shared IC closer to ICðZÞ and lower f (higher poten-

tial for ICA) leads to a shared IC closer to ICðMÞ. This means that the

shared IC decreases by a larger amount when there is a smaller potential

for ICAs. Note that if the two classes are not disjoint, kðx, yÞ ¼ 0 and

ICs
disj ¼ ICs, which satisfy the open-world assumption.

3.2 Assessment

The assessment was done in the following three steps: (i) increase in cor-

relation coefficient, (ii) effect of the number of disjointness axioms and

(iii) the effect of our measure in several random datasets.

3.2.1 Increase in correlation coefficient First, we applied our new

measure of shared IC to a subset of ChEBI. Disjoint axioms were sup-

plied by the ChEBI development team (Hastings et al., 2012a, 2013), and

the main ontology was directly extracted from the official web page

(http://www.ebi.ac.uk/chebi/downloadsForward.do) on October 18,

2012 (corresponding to version 96 of the ontology).

To avoid any bias to an external corpus, IC for a class c was calculated

with an intrinsic measure based on the total number of direct and inferred

subclasses of c (Van Buggenhout and Ceusters, 2005):

ICðcÞ ¼ �
1

logN
� log
jDðcÞj

N
ð7Þ

where D(c) is the set of subclasses of c (including c) and N is the total

number of classes in the ontology. For example, leaves of the ontology

(those classes without any descendants) have the maximum possible IC,

1.0. It is worth noting again that this is but one of the many possible ways

of measuring IC, and that our measure can be adapted to any of them.

We also used, for this assessment, the classical notion of shared IC pro-

posed by Resnik (1995):

ICs
ðx, yÞ ¼ ICðMICAðx, yÞÞ ð8Þ

The subset of chemical classes from ChEBI used in this assessment

(see Supplementary Material A) was randomly selected by first choosing

Fig. 3. This image illustrates the notion of the potential for ICAs between

two classes. In both cases, MICAðX,YÞ ¼M, and the most informative

ancestor of M is Z. The difference is in the location of the disjointness

axiom. In situation A, there is a lower likelihood of ICA between X and

Y, because the axiom of disjointness is closer to their common ancestry

Fig. 2. An illustration of an ontology containing disjointness axioms.

Arrows between classes represent class–subclass relationships and

dashed lines represent disjointness
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a pair of asserted disjoint classes in the ontology, A0 and B0, and then

choosing two classes A and B, respectively, descendants of A0 and B0,

both fulfilling two conditions:

� Classes, not leaves: as many of ChEBI’s leaves represent fully speci-

fied chemical compounds but we lack a trivial way to detect whether

they do so (see Section 2), we decided not to use the leaves in the

testing dataset.

� Classes with sufficient structural information: a class was included

in the dataset if either (i) it contains a Simplified Molecular-Input

Line-Entry System (SMILES) representation of its chemical

structure or (ii) at least 80% of its leaf descendants contain such a

representation. This allowed us to compare semantic similarity with a

purely structuralmeasure, as explained later in the text.Only classes in

the chemical entity branch of ChEBI can fulfill this condition.

These selection criteria were applied until 40 distinct classes were

found. Therefore, the resulting set contained some pairs of classes that

are disjoint and some that are not. We chose to create a dataset bounded

by a number of classes rather than use all disjointness axioms at once

because it would be much larger and therefore analysis would take more

time.

To assess the usefulness of the disjointness axioms, we calculated the

Pearson’s correlation coefficient between the outcome of ICs
disj and a

purely structural measure of similarity between every pair of compounds

in the dataset created previously. Semantic similarity, in general, is not

intended to replace structural measures of similarity but to complement

them with a knowledge-oriented perspective. Thus, it may seem strange,

at first, that we use the correlation between structural similarity and ICs
disj

as a way to validate our measure. However, ChEBI’s chemical entity

branch models chemistry knowledge largely based on the structural prop-

erties of the molecules. As such, it is to be expected that measures of

semantic similarity between classes from this branch of the ontology

reflect, to some extent, the structural similarity between them.

Therefore, in the particular case of this branch of ChEBI, semantic simi-

larity should also reflect structural similarity, and, as such, it is valid to

assume that an ontology-based measure with a higher correlation to

structural similarity is better at estimating similarity than a measure

with lower correlation to structural similarity.

To measure structural similarity, we used PubChem’s fingerprint

method (Bolton et al., 2008). To compare classes x and y, we extracted

the SMILES representations associated with their leaf descendants, using

a best-match average approach to average over all the similarities, as

follows:

(1) For class x, choose the leaf descendant classes that contain

SMILES information, fx1, . . . , xng. If x has SMILES information,

assume n ¼ 1 and x1 ¼ x. Do the same for y to achieve the set

fy1, . . . , ymg.

(2) Generate a PubChem fingerprint for each xi and yj.

(3) Compare all the xi fingerprints with all the yj fingerprints, with the

Tanimoto coefficient (Flower, 1998), generating the matrix of

structural similarities sðxi, yjÞ.

(4) For each i, find fxðiÞ ¼ maxjfsðxi, yjÞg; and for each j, find

fyðjÞ ¼ maxifsðxi, yjÞg.

(5) Assign

P
i
fxðiÞþ

P
j
fyðjÞ

nþm to the structural similarity between x and y.

In summary, for the dataset created above, we compared all

compounds with all the other compounds (780 distinct pairs) using

three measures: structural similarity, classical ICs and ICs
disj. We pro-

ceeded by using Wolfe’s t-test (Rosner, 2010; Wolfe, 1976) to determine

the statistical significance of the increase from the correlation coefficient

between ‘‘structural similarity’’ and ICs to the correlation coefficient

between ‘‘structural similarity’’ and ICs
disj.

It is important to notice here that we do our analysis over the raw

value of ICs
disj, rather than any one measure of similarity based on this

value [such as in Equation (4)]. This was done to show that we can

increase the actual utility factor of the measure of shared IC rather

than the utility of a specific measure of similarity.

3.2.2 Effect of the number of axioms The second assessment step

was aimed at measuring the effect of the number of disjointness axioms in

the increase of correlation. To this end, we created 10 sets of axioms

based on the full set of 199 axioms of disjointness to which we had

access. The first set contained 20 random axioms, the second contained

these same 20 axioms plus 20 other random ones, etc, until the final set,

which contained all the 199 axioms (see Fig. 4 for a graphical represen-

tation of this procedure). For each of these sets, we ran the ICs
disj algo-

rithm and plotted a graph showing the increase in correlation versus the

number of axioms. To remove any bias that could have resulted from the

random method used to create these groups, we ran the same experiment

20 times.

3.2.3 Effect on other datasets As the third assessment step, we stu-

died the increase in correlation coefficient on other datasets, as the data-

set created for the first step resulted from a random selection process.

Following the same selection process presented above, we created 550

more datasets (all with either 40 or 41 compounds) and compared the

correlation coefficient as previously explained.

3.2.4 Implementation The semantic-related algorithms we used were

implemented by us in Java, based on the OWL–API (Horridge and

Bechhofer, 2011). Python was used to calculate Pearson correlation

coefficients and to compute the P-values of the Wolfe’s t-test. We used

scipy (http://www.scipy.org/) package for this effect.

4 RESULTS AND DISCUSSION

We present three main results stemming from the comparison of

structural and semantic similarity measures. Our main assump-

tion is, as stated above, that in the chemical entity branch of

ChEBI, a measure that correlates more strongly with structural

similarity is performing better at estimating the real similarity

than a measure with a lower correlation.

Fig. 4. The process used to assess the effect of the number of axioms on

the correlation coefficient between structural and semantic similarity. The

axioms are randomly partitioned into clusters p1–p10. Consecutively, each

of these clusters is joined with the previous ones to create a set

si ¼
Si

j¼1 pj, which is then used to compute the increase in correlation

coefficient
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4.1 Increase in correlation coefficient

Our first conclusion is that exploring the axioms of disjointness

leads to an increase in the correlation between structural and

semantic similarity.
The Pearson’s correlation coefficient between the structural

measure and ICs is 0.69883, and after taking the disjointness

axioms into account, the correlation for structural similarity ver-

sus ICs
disj becomes 0.71571. This represents an increase of

0.01688. Despite the small absolute increase, this value is statis-

tically significant, with a P-value of 4:5� 10�8.

The small increase of the correlation can be attributed to at

least three factors:

� As the annotation of disjointness is still incomplete in

ChEBI, we have access to only a small subset of all the

real disjointness axioms that could be expressed in ChEBI,

which means that the shared IC changes only for a fraction

of all the class pairs (39% from the sample selected). As

more axioms of this kind are included in ChEBI, we

expect both this fraction and the difference between correl-

ation coefficients to increase.

� Although highly correlated, structural similarity and seman-

tic similarity measures are inherently different, and as such,

there is a maximum bound on the actual correlation that can

be expected between the two. Also, different classes within

ChEBI can be expected to show a lower increase, whereas

others show a higher increase.

� Disjointness is only one of the logical axiom types that are

used to express class definitions in an OWL ontology. In

fact, ChEBI contains a number of other properties that

are also used to capture the meaning of its classes, e.g. the

property has-tautomer, which connects together closely

structurally related chemicals, and has-role, which connects

a chemical class to its biological activity.

4.2 Effect of the number of axioms

To clarify the first item above, we performed the second assess-

ment step, which aims to simulate the development of the ChEBI

ontology with respect to the number of disjointness axioms. For

each of the 20 runs, we studied the difference between the cor-

relation coefficients as the number of disjointness axioms

increases, and plotted a graph with this information.
The graphs in Figure 5 show the result of some of these ex-

periments. These graphs illustrate that not all disjointness axioms

are important for a given dataset. In fact, only for some of the

sets of axioms is the correlation coefficient significantly affected,

which suggests that those sets contained the axioms that change

the logical meaning behind the classes in the dataset. The graphs

present a very obvious trend (see Fig. 6 for an average of the

graphs of all the 20 experiments) that indicates an increase of the

correlation, which, again, indicates that the disjointness axioms

improve the correctness of the measure of semantic similarity.

4.3 Effect on other datasets

As the dataset created for the purpose of the results presented

before resulted from a random selection process, we also studied

the effect of considering the axioms of disjointness in other 550

datasets. The graph of Figure 7 is a histogram that represents the

difference in the Pearson’s correlation coefficient for all these

datasets. As is visible in that graph and in Table 1, the vast

Fig. 5. These graphs illustrate the effect of the number of disjointness

axioms on the correlation coefficient between structural and semantic

similarity. In each graph, the abscissa is the number of axioms used by

the semantic similarity measure, and the ordinate is the correlation coef-

ficient. The correlation coefficient for 0 axioms is always equal to the

correlation measured with the classical ICs, which is 0.69883; the correl-

ation coefficient for the maximum number of axioms corresponds to the

value 0.71571 presented in Section 4.1. These graphs are representative of

the behavior obtained in all of the 20 runs

Fig. 6. This graph shows the average of all the graphs produced in the 20

runs of Section 4.2. Although these values do not have any statistical

significance in themselves, they clearly show the trend that the more

disjointness axioms are considered, the better is the correlation between

structural and semantic similarity
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majority of the datasets are associated with an increase in the

correlation coefficient. In fact, the effect of considering the dis-

jointness axioms for the semantic similarity only impacts nega-

tively 6.2% of the datasets. We observed a mean correlation

increase of 0.0149, with a standard deviation for that value of

0.0130. Furthermore, in 72.5% of the datasets, the increase in

correlation is significant at a confidence value of 0.05.

5 LIMITATIONS

Although the work presented here shows with statistical strength

the utility of ICs
disj when measuring shared IC between two

classes, it can still be improved. We presented the discontinuity

problem, and how to avoid it by restricting k so that shared IC

never reduces below ICðZÞ (where Z is the most informative

ancestor of the MICA). This can lead to some other problems.

For example, future changes to the ontology can lead to unex-

pected changes in ICs
disj. Consider the ontology change of

Figure 8. Assuming 1000 classes in the ontology, ICðBÞ � 0:77

and ICðAÞ ¼ 0. After the step illustrated in the figure,

ICðXÞ � 0:72. This means that ICs
disjðE,FÞ increases unexpect-

edly from 0.38 to 0.74 because of a very small change in the

ontology. These kinds of top-level additions, however, are not

very common, and as such, the magnitude of this particular jump

in similarity is not expected to happen very often.
A second point of future development in our measure concerns

Equation (6), used to model the potential for ICAs. Our ap-

proach depends on the edge distance between two classes;

however, it may be possible to explore the semantics of the

edges themselves to refine this measure.
Another important point to notice in this work is that the

measure of IC influences the results obtained with ICs
disj. In

this case, IC was calculated with the information contained in

the ontology alone. It would be informative to see the effect of

changing the IC measure used with ICs
disj to a more realistic one.

Finally, this assessment is valid in ChEBI because we may

assume that semantic similarity correlates with structural simi-

larity in the particular branch we used. For other ontologies,

where such assumption is not valid, the most promising way to

validate would be to rely on external and curated gold standards.

6 CONCLUSION

Recently, Couto and Pinto (2013) presented the benefits that

result from using DL axioms in the calculation of similarity.

To the best of our knowledge, this article is the first attempt to

include DL axioms into ontology-based similarity measures in

the biomedical domain.

Accordingly, the main purpose of this work was to test

whether exploiting the disjointness axioms of an ontology in-

creases the performance of shared IC measures. We developed

an add-on that can be used with any measure of shared IC, called

ICs
disj, which satisfies the designated requirements set forth in the

beginning of the work, particularly that its value should decrease

for disjoint pairs of classes.
The assessment of our measure, which is based on the

Pearson’s correlation coefficient between structural similarity

and semantic similarity, has shown that there is, in fact, an im-

provement of the measure of shared IC because its correlation

with structural similarity in an ontology that encodes structural

knowledge increases as the number of disjointness axioms

increase.
This new approach is able to successfully explore more than

just the subsumption hierarchy of an ontology, relying

Fig. 8. A hypothetical developing step in one ontology. From one iter-

ation to the next, the ontology gained a new term between A and B.

Before this change, the similarity between E and F depends on the dif-

ference ICðBÞ � ICðAÞ; after the change it depends on ICðBÞ � ICðXÞ

Fig. 7. Distribution of the difference in correlation coefficient for 550

random datasets. The majority of the cases show a positive difference.

We used Wolfe’s t-test to calculate the P-value associated with the

hypothesis that the increase was due to random chance, and marked

with a darker shade the amount of datasets for which P 50:05. The

vertical line shows the 0 of the axis, i.e. where the two correlation coef-

ficients are the same

Table 1. Statistics related to the histogram of Figure 7

Characteristic Number

of datasets

Percentage

datasets

Increase in correlation 516 93.8%

P 50:05 399 72.5%

Note: The last column shows the frequency relative to all the 550 datasets created.
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additionally on a partial subset of the description logic axioms
that are included in the ontology to further refine the comparison
of two classes.
To the best of our knowledge, this represents the first attempt

to use description logic expressivity in semantic similarity in the
biomedical domain. We demonstrated our hypothesis that dis-
jointness axioms contain informative data that can be correctly

explored by semantic similarity measures, even with a naı̈ve
approach. More sophisticated approaches may include the
exploration of the semantics of edges, other types of IC based

on external corpus, etc.
In conclusion, this work strongly suggests that future measures

of semantic similarity should consider the full logical formalism

of the ontologies that they use to establish a measure of similarity
that more accurately reflects the reality of the domain of know-
ledge therein modeled.
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