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Anorexia is part of the body’s acute-phase response to illness. Microbial products such as
lipopolysaccharides (LPS), which are also commonly used to model acute illness, trigger the
acute-phase response and cause anorexia mainly through pro-inflammatory cytokines. LPS
stimulate cytokine production through the cell-surface structural molecule CD14 and toll-like
receptor-4. Cytokines ultimately change neural activity in brain areas controlling food intake
and energy balance. The blood–brain barrier endothelial cells (BBB EC) are an important site
of cytokine action in this context. BBB EC and perivascular cells (microglia and macrophages)
form a complex regulatory interface that modulates neuronal activity by the release
of messengers (e.g. PG, NO) in response to peripheral challenges. Serotonergic neurons origi-
nating in the raphe nuclei and glucagon-like peptide-1-expressing neurons in the hindbrain may
be among the targets of these messengers, because serotonin (5-HT), acting through the 5-HT2C

receptor, and glucagon-like peptide-1 have recently emerged as neurochemical mediators of
LPS anorexia. The central melanocortin system, which is a downstream target of serotonergic
neurons, also appears to be involved in mediation of LPS anorexia. Interestingly, LPS also
reduce orexin expression and the activity of orexin neurons in the lateral hypothalamic area of
fasted mice. As the eating-stimulatory properties of orexin are apparently related to arousal, the
inhibitory effect of LPS on orexin neurons might be involved in LPS-induced inactivity and
anorexia. In summary, the immune signalling pathways of LPS-induced, and presumably acute
illness-induced, anorexia converge on central neural signalling systems that control food intake
and energy balance in healthy individuals.

Lipopolysaccharides: Food intake: Acute-phase response: Cytokines

Acute infections and other immune challenges trigger a
generalized host defence reaction (acute-phase response)
that comprises several physiological and behavioural
changes including anorexia (for example, see Hart, 1988).
The anorexia occurs largely independently of other acute-
phase response phenomena such as fever, lethargy or
metabolic changes (for review, see Langhans, 2000) and
appears to be beneficial for the host initially (for example,
see Murray & Murray, 1979), but becomes deleterious over
time. The present article reviews the signals that cause
anorexia during acute illness. Most of the pertinent
knowledge is derived from studies using lipopolysaccha-
rides (LPS), the Gram-negative bacterial cell-wall con-
stituents that are extensively used to model microbial
infections.

The model of lipopolysaccharide-induced anorexia

General features

LPS are powerful stimuli of innate immune responses
because they have no structural homologue in mammalian
organisms (Beutler, 2000). They are released during
bacteriolysis or during periods of rapid bacterial proliferation
(Rietschel et al. 1998). LPS administration triggers a
profound pro-inflammatory cytokine response (Abram
et al. 2000) and, hence, mimics many features of the acute-
phase response including the anorexia. LPS have been
shown to induce taste aversions in different experimental
situations (Langhans et al. 1991; Weingarten et al. 1993),
and conditioning may contribute to LPS anorexia under
conditions that favour associative learning (Weingarten
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et al. 1993; Exton et al. 1995). However, such learned
effects do not appear to play a major role in the anorectic
response to LPS under normal circumstances, i.e. when the
illness is not associated with a novel diet (Weingarten
et al. 1993). Fasting attenuates the feeding-inhibitory effect
of LPS (Gautron et al. 2005), which may be related to the
presumed lowering of the body-weight set point by
inflammatory mechanisms (Lennie, 1998). While the exact
mechanism(s) of this phenomenon are unknown, energy
restriction apparently attenuates the stimulatory effect
of LPS on macrophage cytokine production (Vega et al.
2004) and hypothalamic paraventricular nucleus activation
(as evidenced by a reduction in LPS-induced c-fos
expression; Gautron et al. 2005), both of which might curb
anorexia in response to LPS. It is also interesting that LPS
induces a stronger inhibition of feeding in females than in
males (Geary et al. 2004), a gender difference mainly
related to oestrogen (Geary, 2001; Geary et al. 2004).
While it is generally accepted that LPS induce anorexia by
stimulating the production of cytokines that then act on the
brain to inhibit feeding, there are several open questions,
including: (1) where and in which cells the stimulation
of cytokine production occurs; (2) which brain areas
and neurochemicals mediate the resulting behavioural
response.

Lipopolysaccharide receptor mechanisms

LPS trigger biological responses by LPS-binding protein-
mediated binding to the cell-surface glycoprotein CD14
(Schutt et al. 1999), which is present on many immune
cells as well as on endothelial cells (EC). Furthermore, in
cells devoid of CD14 the circulating soluble form of CD14
can replace membrane-bound CD14 (Akira, 2000). LPS,
CD14, the myeloid differentiation protein 2 and the toll-
like receptor (TLR)-4, which is the ‘true’ LPS receptor
(Akira, 2000; Beutler, 2000), form the LPS receptor com-
plex. TLR are a family of transmembrane proteins that
mainly act as receptors for microbial substances (Akira,
2000; Beutler, 2000). It has been shown that CD14 and
TLR4, but not TLR2, are essential for the full expression
of LPS anorexia (von Meyenburg et al. 2004). LPS acti-
vation of TLR4 leads to recruitment of the myeloid adapter
protein MyD88, which forms a complex with the Ser/Thr
kinase IL-1 receptor-associated kinase that interacts with
TNF receptor-activated factor 6. This process activates the
transcription factors NF-kB and activating protein-1
(Beutler, 2002) and ultimately triggers the production of
pro-inflammatory cytokines, prostanoids and other down-
stream mediators of LPS effects. The intracellular path-
ways of LPS and cytokine signalling overlap and have
been extensively investigated. The absence of MyD88
signalling has recently been shown to completely eliminate
anorexia in response to either LPS or IL-1b (Ogimoto et al.
2006). Interference with NF-kB production has also been
shown to block the feeding-inhibitory effect of IL-1b
(Nadjar et al. 2005) and is the most likely mechanism by
which genetic lack of PPARb, administration of phospho-
diesterase inhibitors such as pentoxifylline (Porter et al.
2000) and some other pharmacological interventions
antagonize the feeding-inhibitory effect of LPS (for

review, see Langhans, 2004). The neural mechanism(s)
that mediate these effects, however, have not yet been
determined. In summary, various experimental manipula-
tions that interfere with TLR4 signalling and, hence, pro-
inflammatory cytokine production, antagonize the feeding-
inhibitory effect of LPS in animal models of systemic
bacterial infections.

Role of cytokines

It is well known that cytokines orchestrate non-specific and
specific immune reactions. They are broadly categorized as
being pro-inflammatory or anti-inflammatory, i.e. they are
involved in both the pathogenesis of signs of disease, such
as anorexia and fever, and the host defence against
the disease (for review, see Oppenheim, 2001). Several
pro-inflammatory cytokines, such as IL-1, IL-2, IL-6, IL-8,
IL-18, TNFa, interferon-g (IFN-g) and ciliary neurotrophic
factor (CNTF), have been implicated in LPS anorexia.
Each of these cytokines has been shown to inhibit eating
after peripheral or central administration (for example, see
Plata-Salaman, 1995; Langhans & Hrupka, 1999; Lambert
et al. 2001; Netea et al. 2006) and some of them are known
to act synergistically (Yang et al. 1994; Sonti et al. 1996).
The synergies are presumably related to the overlapping
effects of the cytokines and to the fact that they act through
converging intracellular signalling pathways. Leptin,
which is not considered to be a classical cytokine, also
affects immune functions and is in many aspects similar
to cytokines (Sanchez-Margalet et al. 2003). Leptin is
also implicated in the feeding-inhibitory effect of LPS (see
p. 323).

While genetic ablation of a particular cytokine or its
receptor often does not substantially attenuate the anorectic
effect of peripheral LPS (for review, see Langhans, 2004),
acute pharmacological or immunological antagonism of
cytokines appears to be generally more effective (Bluthe
et al. 1992; Porter et al. 1998a, 2000; Swiergiel & Dunn,
1999; Laye et al. 2000; Harden et al. 2006). These seem-
ingly discrepant findings may be related to the redundant
and overlapping actions of the cytokines, which could
permit unusually extensive developmental compensation.
Accordingly, simultaneous interference with several cyto-
kines often has a stronger effect on LPS anorexia than
acute blockade of only one cytokine alone; indeed, such
compound treatments are at times necessary in order to
observe any effect (Swiergiel & Dunn, 1999; Bluthe et al.
2000), suggesting that pro-inflammatory cytokines can
replace each other to a certain extent in mediating LPS
anorexia.

Some data suggest a special role for IFN-g in LPS
anorexia (Arsenijevic et al. 2000). IFN-g is mainly pro-
duced in T-cells and natural killer cells (Billiau &
Vendenbroeck, 2001), neither of which possesses TLR-4
(Beutler, 2002). Thus, LPS indirectly stimulates IFN-g
production through macrophage-derived IL-12 and IL-18
as well as TNFa (Doherty et al. 1992; Billiau & Venden-
broeck, 2001). The main function of IFN-g is to activate
macrophages and EC, partly in synergy with macrophage-
derived cytokines (Billiau & Vendenbroeck, 2001). Thus,
by enhancing pro-inflammatory cytokine production and
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action, IFN-g may be essential for the full expression of
LPS anorexia (Arsenijevic et al. 2000). In general,
although it is clear that pro-inflammatory cytokines play a
prominent role in mediating LPS anorexia, the complex
interactions among several cytokines rather than the
action(s) of any single cytokine appear to be crucial.

Roles of leptin and ghrelin

Leptin is another possible mediator of LPS anorexia. LPS
and pro-inflammatory cytokines increase the expression
and production of leptin in adipose tissue (Grunfeld et al.
1996; Faggioni et al. 1998; Finck et al. 1998), and there is
a correlation between these increases and the feeding-
inhibitory effects of the cytokines (Grunfeld et al. 1996).
In turn, leptin increases cytokine expression (Dixit et al.
2004). Moreover, neutralization of circulating leptin with a
leptin antiserum has recently been shown to reverse the
feeding-inhibitory effect of LPS (Sachot et al. 2004;
Harden et al. 2006). Moreover, it was found that LPS
causes an up-regulation of IL-1b and IL-1 receptor
antagonist mRNA in the hypothalamus, and this effect is
also attenuated by leptin antiserum (Sachot et al. 2004).
These results suggest that leptin is a circulating mediator
of LPS anorexia, possibly through a hypothalamic IL-1b-
dependent mechanism. On the other hand, it has recently
been reported (Gayle et al. 2006) that an anorectic dose of
LPS given intraperitoneally barely increases plasma leptin
in male rats despite a reduction in food intake. Studies in
animals with genetic defects in the leptin system have also
yielded mixed results. When compared with normal control
animals LPS administration has a more pronounced
feeding-suppressive effect in ob/ob (leptin-deficient) mice
and it causes weaker food-intake inhibition in db/db
(leptin receptor-deficient) mice (Faggioni et al. 1997) than
in corresponding wild-type mice. Furthermore, a single
intraperitoneal LPS injection reduces food intake similarly
in lean (Fa/?) and obese (fa/fa) Zucker rats (Lugarini et al.
2005). High doses of LPS (500mg/kg or 1.0 mg/kg) also
cause a similar initial (day 1) inhibition of feeding in lean
and obese Zucker rats, although the recovery of normal
food intake is somewhat delayed after the highest dose
(1.0 mg/kg) in obese rats. In general, the available data
suggest that leptin or functional leptin receptors are not
necessary for the feeding-inhibitory effect of LPS, but that
leptin nonetheless contributes to LPS anorexia in several
ways.

The contribution of leptin to LPS anorexia might explain
two seemingly-unrelated phenomena: (1) the attenuated
feeding-inhibitory effect of LPS and pro-inflammatory
cytokines after food deprivation; (2) the hypersensitivity of
female individuals to LPS anorexia. As food deprivation
reduces plasma leptin (Boden et al. 1996), stimulation of
leptin production by LPS in fasted individuals may fail to
sufficiently increase circulating leptin for a feeding-inhi-
bitory effect. As females appear to produce more leptin
than males in response to LPS (Gayle et al. 2006) and are
more sensitive to exogenous leptin than males (Clegg et al.
2003), leptin could well contribute to the stronger feeding-
inhibitory effect of LPS in females compared with males.

Intraperitoneally administered LPS has been reported to
substantially decrease circulating ghrelin (Basa et al. 2003;
Hataya et al. 2003; Wang et al. 2006). Interestingly, the
LPS-induced decrease in plasma ghrelin is prevented by
IL-1 receptor antagonist and indomethacin (Wang et al.
2006), suggesting that it is mediated by IL-1b and a prosta-
noid-dependent mechanism. Exogenous ghrelin anta-
gonizes the LPS-induced inhibition of food intake and
gastric emptying (Basa et al. 2003; Hataya et al. 2003;
Wang et al. 2006). Although it is unclear how LPS and
cytokines inhibit gastric ghrelin production, it has been
shown that ghrelin potently stimulates feeding (Tschop
et al. 2000) and LPS inhibits feeding by reducing meal
number (Langhans et al. 1989), which is at least consistent
with an involvement of ghrelin.

Mode of cytokine action

Vagal afferents

Although IL-1b can activate vagal afferents (Niijima,
1996; Kurosawa et al. 1997), this mechanism does not
appear to be crucial for the feeding-inhibitory effects of
LPS and IL-1b. For example, subdiaphragmatic vagotomy
has been reported to attenuate some cytokine-induced
phenomena (Dantzer et al. 2000), including inhibition of
instrumental responses to obtain food induced by intra-
peritoneal LPS or IL-1b in mice (Bret-Dibat et al. 1995).
However, subdiaphragmatic vagal deafferentation, alone
and in combination with celiac-superior mesenteric ganglio-
nectomy, did not alter the anorexia after intraperitoneal
injection of LPS or IL-1b in rats (Schwartz et al. 1997;
Porter et al. 1998b). Subdiaphragmatic vagal deaf-
ferentation is the most selective and specific method
available to lesion vagal afferents. These findings therefore
show that abdominal vagal and spinal visceral afferents are
not necessary for the anorectic effects of these immune
stimuli, at least in the rat.

Blood–brain barrier mechanisms

Pro-inflammatory cytokines produced in response to LPS
may directly act on the brain to elicit anorexia because
they are actively transported across the blood–brain barrier
(BBB) (Banks & Kastin, 1996) and also enter the brain
where the BBB is ‘leaky’, i.e. in the circumventricular
organs. Several lines of evidence suggest, however, that
non-neural cells of the BBB are the most important site of
cytokine action in response to LPS (see Fig. 1). BBB EC
and perivascular cells such as microglia and macrophages,
presumably together with blood monocytes, have emerged
as a highly-complex regulatory interface controlling brain-
mediated reactions to peripheral challenges (Licinio &
Wong, 1997; Turrin & Rivest, 2004). BBB EC and peri-
vascular cells possess cytokine receptors (VanDam et al.
1996; Deckert-Schluter et al. 1999) as well as TLR
(Laflamme & Rivest, 2001). In addition, membrane-bound
CD14 is present on BBB EC under basal conditions
(Lacroix et al. 1998), and a robust increase in CD14
mRNA levels takes place in these cells in response to a
single peripheral injection of LPS (Lacroix et al. 1998;
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Rivest, 2003). Accordingly, peripheral administration of
LPS or IL-1b leads to a rapid induction of c-fos mRNA in
all non-neural cells of the BBB (Herkenham et al. 1998).
Furthermore, LPS and pro-inflammatory cytokines cause
activation of the transcription factor NF-kB in BBB EC
(Bierhaus et al. 2000) and trigger the release of neuro-
modulators such as prostanoids or NO (Cao et al. 1996;
Nadeau & Rivest, 1999; Rivest, 1999). Activation of BBB
EC and the feeding inhibition induced by IL-1b are both
mediated by NF-kB activation. In a recent study (Nadjar
et al. 2005) intracerebroventricular injection of a specific
inhibitor of NF-kB activation was found to block the
feeding-inhibitory effect of intraperitoneally-administered
IL-1b and dramatically reduce IL-1b-induced c-fos
expression in various brain regions. These findings
strongly support the hypothesis that IL-1b-induced NF-kB
activation at the BBB is a crucial step in the transmission
of the immune signals mediating anorexia from the peri-
phery to the brain.

BBB EC also produce cytokines (Licinio & Wong,
1997; Bierhaus et al. 2000) and show signal transducer and

activator of transcription-3 activation in response to LPS
(Rummel et al. 2005). Furthermore, peripheral immune
stimulation by LPS, IL-1b or TNFa triggers a rapid
(within 30–90 min) increase in transcription of monocyte
chemoattractant protein-1 in BBB EC and all circumven-
tricular organs (Thibeault et al. 2001). Only ligands that
trigger NF-kB signalling have the ability to increase
monocyte chemoattractant protein-1 gene expression. The
substantial increase in monocyte chemoattractant protein-1
production attracts monocytes that produce pro-inflamma-
tory cytokines. The interaction of BBB EC and monocytes
in response to LPS should thus lead to a substantial
increase in local cytokine production and action (Fig. 1),
which might explain several failures to relate cytokines in
the systemic circulation and LPS anorexia.

An interesting feature of BBB EC is their polarization,
with the luminal (blood-facing) and abluminal (brain-
facing) cell membranes differing in their lipid, receptor
and transporter compositions. Interestingly, constitutive
and LPS-induced secretion of pro-inflammatory cytokines
produced by BBB EC is polarized in favour of luminal
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Fig. 1. Schematic diagram of the interactions between monocytes and blood–brain barrier endothelial cells (BBB EC) in the transmission of the

lipopolysaccharide (LPS)-induced immune signals causing anorexia. LPS acts on monocytes and BBB EC to stimulate the release of pro-

inflammatory cytokines. In response to LPS and cytokines, BBB EC release monocyte chemoattractant protein-1 (MCP-1) which recruits

additional monocytes. IL-12 and IL-18 trigger the release of interferon-g (IFN-g) from T-cells and natural killer (NK) cells. A major role of IFN-g is

to enhance the production and action of other pro-inflammatory cytokines. The combined action of LPS and cytokines on BBB EC finally

activates cyclooxygenase-2 (COX-2) thus stimulating PGE2 production. PGE2 modulates neurons involved in control of food intake and energy

balance. Perivascular cells (microglia, macrophages) and receptors (CD14, toll-like receptors, cytokine receptors) have been omitted for

simplicity. For further details, see p. 323–324.
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secretion of these cytokines (Verma et al. 2006), whereas
other mediators appear to be released abluminally (Fig. 1).
Thus, despite the putative role of cytokines in LPS ano-
rexia, it appears unlikely that BBB EC-derived cytokines
act as messengers for neurons, suggesting that mediators
downstream of pro-inflammatory cytokines, such as pro-
stanoids and/or NO, fulfil this function.

Mediators downstream of cytokines

LPS and cytokines synergistically increase cyclooxygenase
2 mRNA expression in BBB EC and potently stimulate
prostanoid, in particular PGE2, production (DeVries et al.
1995; Cao et al. 1996; Rivest, 1999). Non-specific
cyclooxygenase inhibitors attenuate the anorectic effects
of LPS and IL-1b (Langhans et al. 1989, 1993). Further-
more, the cyclooxygenase 2 inhibitor NS-398, but not
the cyclooxygenase 1 inhibitor resveratrol, attenuated the
anorectic effect of intraperitoneal LPS and blocked the
concomitant LPS-induced increase in cerebrospinal PGE2

(Lugarini et al. 2002). Interestingly, Pecchi et al. (2006)
have recently shown a robust up-regulation of microsomal
PGE synthase-1 enzyme in the brain in response to intra-
peritoneally- and intracerebroventricularly administered
anorectic doses of IL-1b. Microsomal PGE synthase-1
catalyses the last step of PGE2 biosynthesis, and its
expression is stimulated by pro-inflammatory agents. In
addition, IL-1b failed to decrease food intake in micro-
somal PGE synthase-1(-/-) mice (Pecchi et al. 2006),
although these animals developed anorexia in response to
an injection of PGE2. Together these results demonstrate
that microsomal PGE synthase-1 is essential for IL-1b-
induced anorexia. All these findings are consistent with the
notion that LPS and cytokines act on BBB EC (Fig. 1) to
trigger the production and release of PGE2, which acts on
neurons that are involved in, or are connected to, brain
sites involved in food-intake control.

Central nervous system mechanisms

Cytokines

Neurons in various brain areas increase expression of sev-
eral pro-inflammatory cytokines, their accessory proteins
and their receptors in response to peripheral administration
of LPS (Gabellec et al. 1995; Gayle et al. 1997b; Turrin
et al. 2001). While it appears unlikely that centrally
produced cytokines are the exclusive mediators of peripheral
LPS anorexia (for review, see Langhans, 2004), they may
contribute under certain circumstances. Leptin increases
hypothalamic IL-1b, central injection of IL-1 receptor
antagonist inhibited the hypophagic effect of central or
peripheral injection of leptin and IL-1 receptor-knock-out
mice did not reduce food intake in response to leptin
(Luheshi et al. 1999). These data suggest that hypo-
thalamic IL-1b contributes to the feeding-inhibitory effect
of leptin. As leptin is a possible mediator of LPS anorexia
(see p. 323), central IL-1b might also be involved in peri-
pheral LPS anorexia. More recently, Wisse et al. (2006)
have shown that the melanocortin antagonist SHU9119
blunts the LPS-mediated increase in hypothalamic IL-1b,

but that pharmacological or genetic disruption of IL-1
receptor signalling does not prevent the anorexia induced
by the melanocortin agonist MTII. These data question the
role of central IL-1b as a major mediator of LPS anorexia
because SHU9119 (Huang et al. 1999) and genetic lack of
the melanocortin-4 receptor (Marks et al. 2001) attenuated
the feeding-suppressive effect of LPS. Other direct tests of
the role of central IL-1b have also yielded inconsistent
results; while intracerebroventricular administration of
IL-1 receptor antagonist failed to inhibit the feeding-
inhibitory effect of intraperitoneal LPS in rats (Bluthe
et al. 1992), it did attenuate the effect of intraperitoneal
LPS in mice (Laye et al. 2000). The reason for this dis-
crepancy is unclear.

CNTF, a trophic factor for motor neurons in the ciliary
ganglion and spinal cord, has been found to markedly
reduce food intake and body weight (see Lambert et al.
2001). IL-1b is essential for CNTF production in response
to brain injury or trauma (Herx et al. 2000), raising the
possibility that CNTF may also be a downstream mediator
of IL-1b effects on food intake. Some data suggest that
CNTF ultimately affects energy balance by reducing the
expression and action of neuropeptide Y (Xu et al. 1998).
A reduction in hypothalamic neuropeptide Y mRNA has
also been reported during IL-1b-induced anorexia (Gayle
et al. 1997a), although the decrease in neuropeptide Y
expression appears to be too small to account for the sub-
stantial reduction in food intake. It is possible, however,
that cytokine-induced decreases in neuropeptide Y atten-
uate the feeding that normally occurs in response to an
energy deficit (Inui, 1999). Recently, it has been reported
(Steinberg et al. 2006) that a potent CNTF analogue and
leptin reduce food intake and hypothalamic AMP kinase
expression similarly. Numerous reports in the last few
years suggest that hypothalamic AMP kinase functions as
an energy sensor in the control of energy balance (Small
et al. 2004).

Serotonin

The increase in c-fos expression (i.e. the activation) in
medullary and hypothalamic paraventricular neurons that is
elicited by LPS or cytokine treatment (Elmquist & Saper,
1996; Ericsson et al. 1997; Lacroix & Rivest, 1997)
appears to be mediated by PGE2 (Ericsson et al. 1997;
Lacroix & Rivest, 1997). This finding is interesting
because serotonin (5-HT) and catecholamine cell groups in
the midbrain and hindbrain, but not in the paraventricular
nucleus, possess PG EP3 receptors and are activated by
PGE2 (Ericsson et al. 1997; Nakamura et al. 2001). Seroto-
nergic projections from the midbrain raphe area and the
hindbrain to the hypothalamus are particularly interesting
candidate pathways for the anorectic effects of LPS and
cytokines. First, it has recently been observed (BS Kopf, N
Geary, W Langhans and L Asarian, unpublished results)
that intraperitoneal LPS increases c-fos in large parts of
the raphe. Second, it has also been found (see Langhans,
2004) that microinjection of a cyclooxygenase 2 inhibitor
into the dorsal raphe nucleus markedly reduces anorexia
following intraperitoneal LPS, and that microinjection of
PGE2 into the same area decreases food intake. The dorsal
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raphe nucleus also contains IL-1 receptors (Cunningham
et al. 1992), and central as well as peripheral administra-
tion of IL-1b and TNFa increased serotonergic activity in
this area (Clement et al. 1997). 5-HT potently inhibits
eating, apparently mainly through the 5-HT1B and/or
5-HT2C receptors (Simansky, 1995; Nonogaki et al. 1998).
Pretreatment with a highly-specific 5-HT2C receptor
antagonist blocked the anorexia induced by both peri-
pheral and central injection of LPS or IL-1b in rats (von
Meyenburg et al. 2003a,b). Furthermore, administration
of the 5-HT1A autoreceptor agonist 8-hydroxy-2-di-n-
propylamino-tetralin directly into the dorsal raphe nucleus
blocked the feeding-inhibitory effect of peripheral LPS and
IL-1b (von Meyenburg et al. 2003a,b), whereas pharma-
cological antagonism of other 5-HT receptors (5-HT1B,
5-HT2A, 5-HT3) did not. Pharmacological 5HT2C antagon-
ism also attenuated the feeding-inhibitory effect of intra-
peritoneal LPS in mice, although LPS did not reduce food
intake in 5-HT2C-knock-out mice (Asarian et al. 2007). In
addition, some pharmacological data in mice (Swiergiel &
Dunn, 2000) suggest that the involvement of central 5-HT
neurons in LPS and cytokine-induced anorexia is situa-
tionally variable. In summary, therefore, although several
findings implicate the 5-HT neurons in the median raphe
nucleus and 5-HT2C receptors in the hypothalamus in LPS
anorexia, it is not yet clear whether this mechanism plays a
necessary role, at least in mice. Finally, emerging evidence
indicates that 5-HT modulates the release of endogenous
agonists and antagonists of brain melanocortin receptors,
which are crucial for the central control of energy balance
(Heisler et al. 2002, 2006).

Neuropeptides

LPS increases the number of glucagon-like peptide-1 neu-
rons in the nucleus of the solitary tract that express c-fos
(Rinaman 1999), and both 3rd-intracerebroventricular and
4th-intracerebroventricular administration of the glucagon-
like peptide-1 receptor antagonist exendin-(9–39) attenuated
the anorectic response to intraperitoneal LPS in rats (Comer
& Rinaman 2000; Grill et al. 2004). These findings have
recently been extended by Grill et al. (2004) to show that
3rd-intracerebroventricular administration of exendin is
ineffective when the caudal flow of cerebrospinal fluid is
blocked by occlusion of the cerebral aqueduct, which sug-
gests that LPS anorexia is mediated in part by release of
glucagon-like peptide-1 within the caudal brain stem.

Recent findings (Becskei et al. 2006) suggest that peri-
pheral LPS reduces c-fos expression in the lateral hypo-
thalamic area and decreases the number of lateral
hypothalamic area neurons expressing orexin-A protein
in mice deprived of food for 12 h. As orexin-A has a
potent orexigenic effect (Rodgers et al. 2002), this finding
raises the possibility that a decrease in orexin-A expression
contributes to LPS anorexia. Since orexin-A is mainly
implicated in arousal (Rodgers et al. 2002), the inhibitory
effect of LPS on orexin-A protein-expressing neurons
might also be involved in LPS-induced lethargy and
inactivity.

Peripheral injection of IL-1b increased hypothalamic
corticotrophin-releasing factor mRNA (Suda et al. 1990),

and IL-1b-induced anorexia was attenuated by 3rd-intra-
cerebroventricular administration of a corticotrophin-
releasing factor antagonist (Uehara et al. 1989), suggesting
that hypothalamic corticotrophin-releasing factor is in-
volved in IL-1b-induced anorexia. Prostanoids mediate the
effect of IL-1b on hypothalamic corticotrophin-releasing
factor release (Watanabe et al. 1990), suggesting a link
between the putative role of PGE2 (Langhans et al. 1993;
Lugarini et al. 2002) and corticotrophin-releasing factor
(Uehara et al. 1989) in the anorectic effects of LPS and
IL-1b.

Finally, LPS stimulates the release of a-melanocyte-
stimulating hormone (Catania et al. 1995), which anta-
gonizes acute-phase reactions at various levels (cytokine
production, cytokine action; Lipton & Catania, 1998).
a-Melanocyte-stimulating hormone binds to central melano-
cortin receptors (MCn-R; MC3-R and MC4-R), and
central administration of MC4-R agonists inhibits food
intake, increases energy expenditure and reduces body
weight (see Tritos & Maratos-Flier, 1999). In turn, defi-
ciency of the MC4-R is associated with increases in
food intake and body weight (Fan et al. 1997). Intra-
cerebroventricular administration of a-melanocyte-
stimulating hormone enhanced, and intracerebroventricular
administration of the MC3-R and MC4-R antagonist
SHU9119 attenuated, intraperitoneal LPS anorexia in rats
(Fan et al. 1997; Huang et al. 1999). More recently, the
anorexia induced by intraperitoneal LPS and cytokines has
also been shown to be attenuated by the endogenous
MC3-R and MC4-R antagonist Agouti-related peptide and
in MC4-R-knock-out mice but not in MC3-R-knock-out
mice (Marks et al. 2003). These results specifically impli-
cate the central MC4-R in LPS and cytokine-induced
anorexia. Given the putative role of 5-HT in the anorectic
effects of LPS and IL-1b (see p. 325), it is interesting to
note that the melanocortin system is a downstream target
of serotonergic neurons (Heisler et al. 2002, 2006).

Concluding remarks

In summary, the signalling pathways of LPS anorexia
ultimately converge on well-known neurotransmitter and
neuropeptide systems that control food intake and energy
balance. Assuming that the overlap between the mecha-
nisms of LPS anorexia and physiological satiety generalizes
to the anorexia during other illnesses, the data discussed
here are consistent with the view that illness-related ano-
rexia, like other disease mechanisms, does not represent a
completely new physiological adaptation, but rather results
from modulation of normal homeostatic processes that
operate in healthy individuals.

Finally, it is important to understand the mechanisms of
illness anorexia in order to design well-targeted therapeutic
approaches for this clinically-important problem. Despite
considerable progress towards an understanding of these
mechanisms over the last few years, however, further stu-
dies are necessary before effective and specific therapies
for the various forms of illness anorexia can be proposed.
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