CABIOS COMMUNICATION

Vol. 11 no. 2 1995
Pages 224-226

Optimal production of biological documentation:

the JAM format

R.Doelz

Abstract

The current environment for providing documentation for
users in molecular biology frequently requires written
information for both printed and electronic media. The
JAM (Just Another Metafile) Format requires that only a
single file of text is written. This is, then, processed by the
jam program which converts this text to a document set
which is suitable for on-line documentation in the hypertext
mark-up language (HTML) of the World Wide Web
system. For printed output, the jam program can produce
either text in wordprocessor-ready Rich Text Format
(RTF), or source code for the LaTEX typeselting system.
The latter allows for professional text layout and can
generate, amongst other formats, postscript files to be
printed on a variety of devices.

Today, documentation in the biocomputing disciplines
must be available in various formats. Users who have
never used computers for biocomputing purposes before
will not easily adopt ail-electronic information and require
professionally printed material. Colleagues at remote sites
who wish to print the text locally in chapters, or send it
around in electronic Mail messages, require a reasonable
format to communicate structured text which can be
further processed on-site. Electronic hypertext systems, on
the other hand, have become increasingly popular in
recent years and have the tremendous advantage that the
cross-references are much more intuitive and easy to
follow with sophisticated browsers such as Mosaic (a
program that interprets and displays hypertext as
formatted ‘pages’, and ailows to follow links with mouse
clicks).

For documentation that has been created in the biology
user support sector, the use of translators provided a
preliminary way of switching between different media.
Various elements of text structuring and cross references
are similar between the printed and electronic formats,
and allow translators to achieve a one-to-one imaging of
the text formats. However, the detailed wording and
presentation to the user are different and depend on the
context of the document. Some information is lost during

Biocomputing, Biozentrum der Universudt Basel, Klingelbergstrasse 70,
CH 4056 Basel, Switzerland

the translation, and the reader might have difficulty to
understand details.

The required formats include the plain text as used in
word processors on personal computers, text prepared
for the LaTEX typesetting system, and ‘hypertext mark-
up language’, HTML. The following example illustrates
the desired appearance, which cannot be achieved by
translators:

ASCII TEXT
This programhas beendiscussed earlier.
LaTEX source (usually not visible to the user)
This program (see also, \ref{seqed}) has been
discussed earlier.
LaTEX appearance:
This program (see also, 3.1.5) has been
discussed earlier.
HTML source (usually not visible to the user)
This program has
been discussed earlier.
HTML appearance
This program has been discussed earlier.

To avoid the obvious shortcomings of translators, which
were unable to create the explanatory wrappers for
crosslinks as depicted above, we have created the JAM
format in order to produce different formats from one
single source. This source can be edited and handled
independently and does not require that either of the tools
for formatting (Word processor, LaTEX or WWW
browser) is available during editing.

The Just Another Metafile (JAM) format

This JAM format is suited to be translated into either
LaTEX, hypertext markup language (HTML), or Rich
Text Format as commonly accepted by word processors.
An alphabetical index as well as a table of contents is
provided within each different format.

All resulting presentation takes full advantage of the
specific capabilities of the word processing system used.

LaTEX processing

The jam program produces a LaTEX source file which can
be processed with the usual LaTEX procedures. LaTEX

224

© Oxford University Press

Optimal production of biological documentation: the JAM format

processing requires an additional stylesheet which comes
with JAM in order to be processed, and the makeindex
utility to generate the correct index (makeindex is part of
each LaTEX installation).

On-line version in HTML

The jam program produces a set of files which can be
viewed after proper installation with any WWW client.
Both LYNX and Mosaic type of viewers are supported,
i.e. there is no need for sophisticated FORMS support.
Jam allows specific hypertext links for referencing
electronic sources.

Electronic/printed version in RTF

The RTF version generated from JAM Format has a
running head for nice printing in word processors.
Hypertext links outside of the document are not resolved
but hidden text elements are available to create both index
and table of contents if this feature is available within the
word processor.

Other formats

The jam program implementation is clearly structured and
easily allows the adaptation of other formats such as plain
text (ASCII, not covered in the distributed version).

JAM processor availability

The jam program has been implemented on the OSF/1
flavour of the UNIX operating system and was success-
fully compiled on IRIX, ULTRIX, AIX, Solaris, AXP/
VMS, VAX/VMS, Microsoft Windows 3.11 and Mac-
intosh 7.1 operating systems. The JAM Format has been
developed at the Biocomputing Facility in Basel over the
years and was put into the public domain in 1994. The
code is available from the author (doelz@comp.bioz.
unibas.ch) on request, or via anonymous ftp from
bioftp.unibas.ch in the programs/bioftp-sw/
jam directory. Binaries as well as source code are
available. In order to recompile the code with the
graphical user interface, the VIBRANT toolkit (Kahns
et al., NCBI) must be installed.

Application of the JAM Format

The ‘Biocomputing Survival Guide’ is a cookbook which
we have prepared at our site for the computer novice. It
allows users unfamiliar with molecular biology computing
to work in our environment effectively and with ease. We
have updated the guide as version 2.0 and rewritten it in
JAM format. The Guide can be translated into either a
VMS or a UNIX version, and allows for site-specific

details within more than ten include files. The overall
material to be changed to adapt the guide to a given site is
less than five pages and can be modified with great ease.

We have further created a ‘teaching application’ using
the JAM format. Courses which we offer at the
Biozentrum include ‘question sheets’ and ‘answers’. The
answers explain how to approach the problems mentioned
in the ‘question sheets’ using the ‘Biocomputing Survival
Guide’ as a reference. The ‘Biocomputing Survival Guide’,
the ‘question sheets’, the ‘answers’ and all reference data
required to cross-check the obtained results are available
via anonymous ftp on bioftp.unibas.ch in the
archive_data/survival directory tree in either
RTF or LaTEX format. The HTML versions are also
on-line as hypertext version, on the URL (universal
resource locator) http://beta.embnet.unibas.
ch/basel/course.html you will find a page to guide
you to the various parts of the teaching and documenta-
tion section.

Customization

In order to utilize documentation containing site-specific
information, extensive editing is usually required. The
JAM text source, however, may contain several configur-
able files which hold site-specific information such as
contact addresses for the local computing centre, which
editor to use, and similar localized elements. The local
information, as well as the residual text, therefore allows
the adaptation of individual elements in a single fashion,
i.e. both UNIX- and VMS type of environments may be
described in the same text tile. In order to adapt a
document for different environment than the one it was
originally developed for, it is sufficient to modify only site-
specific files which are included into the document by the
Jjam program. Both ‘Biocomputing Survival Guide’ and
teaching material, therefore, may be easily adapted to fit
individual needs.

JAM Format specification

The format has several classes of statements, which are
processed in the following order:

Comments

The percent (%) character in column 1 of a line indicates a
comment.

Conditional statements

The processing directives are extremely simple and similar
to the C-pre-processor and expanded before the format-
ting statements. The use of #ifdef, #else, and #endif
statements allows several configurations in the same

225

format (i.e. VMS and UNIX) to be written in the same
JAM source code. Another conditional statement is the
#include directive that permits site-specific text to be
written in separate files, which allows a readily available
general version to be ‘adapted’ to specific sites easily.

Formatting statements

It is required to display four different types of non-flow
text. These are

e verbatim (e.g. all is printed as written)

e itemized (such as this text)

o special (e.g. different appearance but not verbatim,
used for ‘examples’)

e explicit links (most useful for the HTML version)

Each of these formatting statements inserts a break in the
current text flow and a new line starts after each of these
formatting statements. For example, verbatim is printed
as written and all formatting of the original text will be
retained. Special sections are for examples and similarly
emphasised text. Itemized sections do not honour
formatting, but rather build a list-like appearance.
Explicit Link sections display a hypertext link in the
HTML version, whereas in the text version the link is only
described in writing.

Structuring statements

Structuring statements are processed after the conditional
and formatting statements and are automatically num-
bered. The text structure permits three levels. Chapters,
Sections, and Headlines are implemented.

Referencing statements

The purpose of referencing statements is to allow indexing
and transparent reference insertion. Index entries, pointers
to anchors and anchors are allowed.

Detailed syntax descriptions, hints, recommendations
and examples how to implement various elements of
specific text are included in the documentation of the
program distribution.

Recerved January 20, 1995, accepted February 6, 1995

226

