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ABSTRACT

Motivation: Identification of regulatory networks is typically based
on deterministic models of gene expression. Increasing experimental
evidence suggests that the gene regulation process is intrinsically
random. To ensure accurate and thorough processing of the
experimental data, stochasticity must be explicitly accounted for
both at the modelling stage and in the design of the identification
algorithms.
Results: We propose a model of gene expression in prokaryotes
where transcription is described as a probabilistic event, whereas
protein synthesis and degradation are captured by first-order
deterministic kinetics. Based on this model and assuming that the
network of interactions is known, a method for estimating unknown
parameters, such as synthesis and binding rates, from the outcomes
of multiple time-course experiments is introduced. The method
accounts naturally for sparse, irregularly sampled and noisy data and
is applicable to gene networks of arbitrary size. The performance of
the method is evaluated on a model of nutrient stress response in
Escherichia coli.
Contact: cinquemani@control.ee.ethz.ch
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Mounting experimental evidence suggests that gene expression,
both in prokaryotes and eukaryotes, is an inherently stochastic
process. Stochasticity can be attributed to the randomness of
the transcription and translation processes (intrinsic noise), as
well as to fluctuations in the amounts of molecular components
that affect the expression of a certain gene (extrinsic noise)
(Elowitz et al., 2002; Longo and Hasty, 2006; McAdams and
Arkin, 2002; Paulsson, 2005). The behaviour of gene regulatory
networks also displays stochastic characteristics which, in several
cases, can lead to significant phenotypic variation in isogenic
cell populations (Ozbudak et al., 2002). In Samad et al. (2005),
stochastic modelling of genetic regulatory networks is reviewed
along with numerical simulation methods and is compared to
deterministic modelling. A related model of random dynamics of
gene networks is discussed in Hespanha and Singh (2005). In
practice, the stochastic dynamics of a regulatory network must be
inferred from experiments. To this aim, deterministic models are
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not suitable, since they are unable to capture the randomness of the
network. On the other hand, currently available stochastic models
are typically too detailed and hardly tractable by analytic means.

In this work, we present a stochastic approach to modelling and
parameter identification of gene regulatory network dynamics and
test it on a model for a procaryotic cell. The aim of our modelling
framework is to provide a convenient tradeoff between model
accuracy and analytic tractability that is typically not offered by
more complex models. In Cinquemani et al. (2008), we presented
ad hoc solutions for the identification of a simple biological model
composed of a chain of genes coupled to macroscopic (population-
level) dynamics. In Koutroumpas et al. (2008) the same example
was used to investigate identifiability of the gene network parameters
from macroscopic data by way of randomized optimization methods.
Both these contributions were Taylor-made for the specific form of
the example. Here, we extend the concepts to establish a general
genetic network modelling and identification methodology.

In Section 2.1, we introduce a model that accounts for the
stochastic nature of gene regulation dynamics by describing the
binding of transcription factors (TFs) as discrete random events.
In contrast, the description of the transcription and translation
processes is simplified by assuming that they can be approximated
by deterministic first-order kinetics. A similar approach is taken
in Zeiser et al. (2008) for the analysis and numerical simulation of
basic transcriptional network modules. The co-existence of discrete
and continuous-type events as well as of deterministic and stochastic
dynamics makes the model a stochastic hybrid one (Kouretas et al.,
2006).

Based on this modelling formalism, genetic network identification
is addressed in Section 2.2. The overall problem can be seen
as a sequence of three tasks, each posing its own challenges:
(1) identification of the network of interactions; (2) estimation of
the unknown parameters; (3) validation of the model. Here, we
concentrate on Task 2, assuming that Task 1 has been accomplished.
Parameter estimation for regulatory networks has traditionally been
studied in a deterministic setting. The literature on identification of
stochastic regulatory network models is quite recent. In Reinker et al.
(2006), an approximate maximum likelihood identification method
is developed for a discrete Markov chain model of biochemical
reaction networks. A similar approach is taken in Tian et al. (2007),
where the likelihood function is evaluated by simulation. A Markov
chain Monte Carlo method relying on an approximate diffusion
model is considered in Golightly and Wilkinson (2005). Based on
our modelling framework, we develop a method for the estimation
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of the unknown parameters of the model from observations of the
evolution of protein concentrations in a single cell. The method
deals naturally with sparse and noisy observations. It reduces the
identification problem to several subproblems. In each subproblem,
the estimation of the dynamics of a single gene is performed based on
the concentration profiles of the proteins that regulate its expression.

To demonstrate the effectiveness of the proposed identification
algorithm, we apply it to the estimation of the parameters of a
stochastic model of the Escherichia coli carbon starvation response
network. The model is inferred from Ropers et al. (2006) and
described in Section 3.1. Estimation is performed on simulated data
from the same model with realistic parameter values (G.Ferrari-
Trecate et al., 2007, personal communication). Results are discussed
in Section 3.2. In light of the current rapid progress of single-cell
protein level measurement techniques (Cai et al., 2006; Golding
et al., 2005), the next step will be applying the method to protein
concentration profiles drawn from real-world experiments.

2 METHODS

2.1 Genetic network modelling
Gene expression in prokaryotes is mainly regulated at the stage of
transcription (Wagner, 2000). Of the many steps that transcription comprises,
gene activation and inactivation is one of the key events that contribute to
random fluctuations of protein production. The main molecular causes for
this ‘switching’ are dissociation of repressors and association of activators to
the operator of the gene. Collectively called TFs, repressors and activators
are composed of proteins that may be produced by other genes, or by the
regulated gene itself, thus creating feedback loops among genes.

Consider a network with n genes, each encoding one protein. Let xi(t)
denote the concentration of protein i at time t. For i = 1,...,n, we describe
the evolution of xi(t) by the following discrete-time model: for a given T >0
and all t ∈T ×Z (integer multiples of T ),

xi(t+T ) = λixi(t)+gi(t), (1)

where λi ∈[0,1] is a degradation rate and gi(t)≥0 is a variable synthesis rate
associated with the activation state of gene i at time t. More specifically, gi is
modelled as follows:

gi(t) =
∑

j

(
bj

i

∏
k∈�(i,j)

ui,k(t)

)
, (2)

where the bj
i are fixed synthesis rates, the ui,k(t) are variables taking on

values 0 or 1 and �(i,j) is a subset of {1,...,n}. Each ui,k(t) indicates whether
TF k is bound (ui,k(t) = 1) or not bound (ui,k(t) = 0) to the operator site of
gene i at time t. Products of variables ui,k correspond to the requirement
that all TFs listed in the index set �(i,j) be simultaneously present for
gene activation/inhibition. In other words, if a certain k belongs to �(i,j),
then TF k is involved in the regulation and hence ui,k(t) is included in the
product; if �(i,j) is empty, we assume by convention that the product is
equal to 1. Finally, different summation terms (i.e. different values of j)
may describe alternative regulation paths. This model may encode quite
complicated activation rules and is illustrated in Figure 1.

More generally, one may think of (2) as abstract rules governing the
expression of a gene. In this case, variable ui,k(t) may not express the
binding of TF k to the operator of gene i, but a different discrete event
whose outcome is the regulation of gene i by TF k, such as formation of
complexes, translocation, etc.

Let x�(i) be the subvector of x collecting the concentrations of the proteins
that act as TFs on gene i. We assume that the evolution in time of each ui,k

is stochastic and is governed by the laws of a discrete-time Markov chain

Fig. 1. A regulatory network with n = 4 genes. Graphical conventions
follow (Kohn, 2001). Expression of gene 4 is activated by TF2. Then,
g4(t) = b1

4u4,2(t) (when TF2 is bound to the operator of gene 4, the gene
is expressed and the encoded protein is synthesized at rate b1

4). Conversely,
expression of gene 1 is inhibited by TF2. Then, g1(t) = b1

2

(
1−u1,2(t)

)
(the

protein encoded by gene 1 is synthesized at rate b1
2 when TF2 is not bound

to the operator). Expanding this product one gets g1(t) = b1
2 +b2

2u1,2(t), with
b2

2 = −b1
2, which is in the form of (2). Gene 3 has a single promoter but is

controlled simultaneously by the activating TF4 and by the inhibiting TF1.
Then, g3(t) = b1

3u3,4(t)
(
1−u3,1(t)

)
(the gene is expressed whenever TF4 is

bound and TF1 is not bound to the promoter site). Finally, gene 2 has two
independent promoters, one for the activating TF1 and one for the inhibiting
TF4. Then, g2(t) = b1

2u2,1(t)+b2
2(1−u2,4(t)) (the synthesis of the protein

encoded by gene 3 occurs at rate b1
2 if TF1 is bound and at rate b2

2 if TF4
is not bound; if both conditions hold simultaneously, the resulting synthesis
rate is the sum of the two).

with transition probabilities

pi,k(z) = P[ui,k(t) = 1|ui,k(t−T ) = 0,x�(i)(t) = z],
qi,k(z) = P[ui,k(t) = 0|ui,k(t−T ) = 1,x�(i)(t) = z],

where z is arbitrary and the notation P[A|B] denotes the conditional
probability of event A given event B. The probability that ui,k remains at
0 [respectively at 1] is fixed to 1−pi,k(z) [respectively to 1−qi,k(z)]. The
following is a basic underlying assumption of our model framework.

Assumption 1. For different values of i and k, the random variables ui,k(t)
are mutually conditionally independent given the x�(i)(t) and their previous
values ui,k(t−T )

For ease of exposition, we shall also assume the following.

Assumption 2. qi,k = 1−pi,k

The generalization of our methods to arbitrary choices of qi,k and pi,k

is straightforward. Under Assumption 2, one finds that the ui,k(t) are
independent of the ui,k(t−T ) given the x�(i)(t) (Cinquemani et al., 2008). We
shall focus on the biologically relevant case where each transition probability
pi,k is a sigmoidal function of xk (Hill function). That is, dropping subscripts
for simplicity, p(x) = s+(x;η,d) or p(x) = s−(x;η,d), where

s+(x;η,d) = xd

xd +ηd
, s−(x;η,d) = ηd

xd +ηd

with η>0 and d >0. Function s+ increases from 0 to 1 as concentration
x increases from 0 to +∞; the larger the concentration, the larger the
probability that the TF will be bound to a target site. Parameter η is the
value of x for which s+(x;η,d) = 1/2 and will be called the threshold.
Parameter d defines how abruptly the transition from s+(x;η,d)<1/2
to s+(x;η,d)>1/2 occurs and will be called the steepness. Function
s− = 1−s+ is complementary, i.e. it decreases from 1 to 0, downcrossing
1/2 at η with a steepness increasing with d. While this function cannot
represent a binding probability, it is well suited to express the influence of a
TF on the expression of a gene. For instance, if TF k inhibits the expression
of gene i, function s− says that larger concentrations of TF k imply smaller
probabilities of the transcription of gene i. In more generality, the probability
laws s± (meaning s+ or s−) quantify the probability of the discrete events
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that the associated Markov chains describe. Examples of a decreasing and
an increasing sigmoidal function can be found in Figure 4 (subfigures C2
and C4).

Let E[·|x(t)] denote conditional expectation given state x(t). For
i = 1,...,n, the expected evolution of (1) from x(t) is

E[xi(t+T )|x(t)] = λiE[xi(t)|x(t)]+
∑

j

bj
i

∏
k∈�(i,j)

E[ui,k(t)|x(t)]

= λixi(t)+
∑

j

bj
i

∏
k∈�(i,j)

s±(xk(t);ηi,k,di,k),

where the conditional expectation commutes with the products thanks to
Assumption 1, and the expectation of each ui,k(t) follows from Assumption 2
and the definition of the pi,k . This equation suggests a link with commonly
used deterministic models of gene regulatory networks in the form of
reaction-rate equations, such as those reviewed in de Jong (2002), where
sigmoidal functions are used to model the binding of TFs on the operator
DNA (Becskei et al., 2001; Keller, 1995; Yang et al., 2007). It shows that
the expected evolution of the system from a given state is in agreement with
standard ordinary differential equation models. However, due to randomness,
the actual next state may differ from the expected one. This possibility is
excluded by deterministic modelling.

The use of a Markov chain for modelling the changing states of the
operator can be traced back to one of the first stochastic models for gene
induction (Ko, 1991). Here, we further assume that the switching rate of a
certain gene depends in a non-linear way on the concentration of the TFs
that affect it. This assumption is based on experimental evidence suggesting
that TFs directly affect the probability of formation of the transcription
complex, while the rate of protein production once the gene is active remains
independent of TF concentration (Walters et al., 1995). Along the same
lines of Ko (1991), we lump together all the individual steps between
gene activation and mRNA production, by assuming that RNA polymerase
produces a constant amount of RNAtranscripts per unit time (once the gene is
active). On average, the number of these transcripts will be proportional to the
average number of protein molecules produced by translation [a commonly
made assumption, which is also supported by recent experiments (Golding
et al., 2005)].

2.2 Parameter identification algorithm
Consider an experiment where the evolution of the protein concentration
levels is observed at time instants τ0 <τ1 <τ2 < ···<τL . We model the
observations as follows:

y(τl) = x(τl)+n(τl), (3)

where x(τl) is the vector of protein concentration levels at time τl and n(τl)
is independent, identically distributed (i.i.d.) measurement noise with mean
zero and covariance matrix � = diag(σ 2

1 ,...,σ 2
n ). For simplicity, we assume

that τl is an integer multiple of T for all l. We address the problem of
estimating the parameters λi, bj

i , ηi,k and di,k from the observations (3).
Establishing the identifiability of these parameters analytically is an
extremely difficult task, out of the scope of this article. A qualitative
discussion of identifiability issues will be given in the case study of
Section 3.1.

The identification method we propose is inspired by the Prediction
Error Methods used for the parameter identification of linear stochastic
systems (Ljung, 1999). For i = 1,...,n, we perform simultaneous estimation
of all parameters relevant to the i-th equation (1), namely θi = {λi}∪
{bj

i : ∀j}∪{ηi,k,di,k : ∀k}, from the observations of x�(i) and of xi.
Let Yi(τl) = {y�(i)(τh),yi(τh) : h = 1,...,l} be the observations of x�(i) and

of xi up to time τl . We consider the optimal predictor x̂i(τl+1,τl;θi)�
E[xi(τl+1)|Yi(τl),θi] associated with model (1)–(3), and draw an estimate
θ̂i of θi by solving the following optimization problem:

θ̂i = argmin
θi

L−1∑
l=0

(
yi(τl+1)− x̂i(τl+1,τl;θi)

)2
. (4)

The idea is that the closer the estimated model is to the real model, the better
it can predict the evolution of the state, i.e. the sum of the prediction errors
should be as small as possible. For any value of l, assume that x̂i(τl,τl;θi) is
known. Then, x̂i(τl+1,τl;θi) may be computed by iterating

x̂i(t+T ,τl;θi) = λi x̂i(t,τl;θi)+E[ḡ(
x�(i)(t)

)|Yi(τl),θi]
for t = τl,τl +T ,...,τl+1 −T , where

ḡ
(
x�(i)(t)

) =
∑

j

bj
i

∏
k∈�(i,j)

s±(xk(t);ηi,k,di,k).

Although the rightmost expectation cannot be computed in closed form,
in practice one can use the approximation

E[ḡ(
x�(i)(t)

)|Yi(τl),θi]� ḡ
(
x∗
�(i)(t)

)
, (5)

where x∗
�(i)(t)�x�(i)(t) is chosen based on the data. If x∗

�(i)(t) was the
optimal estimate of x�(i)(t) given the data, approximation (5) would just
follow from the linearization of ḡ(·) about x∗

�(i)(t) itself (Jazwinski, 1970).
However, the computation of the optimal estimate of x�(i)(t) involves
additional unknown parameters θi′ , with i′ 	= i, and requires the simultaneous
observation of several (possibly all) proteins of the network, which is
impractical. Fortunately, for realistic values of the steepness parameters
di,k , the choice of x∗

�(i)(t) turns out not to be critical. Therefore, we
still use approximation (5) but interpolate x∗

�(i)(t) from its neighbouring

measurements by simply setting x∗
�(i)(t)� [y�(i)(τl+1)−y�(i)(τl)]/2 for all

t ∈[τl,τl+1). This choice will be shown to perform well in our numerical
experiments.

It remains to discuss the computation of x̂i(τl,τl;θi). If σi = 0 (noiseless
observations), then x̂i(τl,τl;θi) = xi(τl) and hence

x̂i(τl,τl;θi) = yi(τl). (6)

In general, the optimal estimate of x(τl) given Yi(τl) may be computed as a
balance between the predicted value x̂i(τl,τl−1;θi) and the new observation
yi(τl); the larger σi, the smaller the weight attributed to yi (Jazwinski, 1970).
For the sake of simplicity, we shall use the estimate (6). Again, the validity
of this choice will be apparent from the simulation results.

This method can be immediately generalized to exploit data from several
independent experiments. It is sufficient to reformulate the optimization
problem (4) as follows:

θ̂i = argmin
θi

M∑
m=1

L−1∑
l=0

(
y(m)

i (τl+1)− x̂(m)
i (τl+1,τl;θi)

)2
, (7)

where superscript ‘(m)’ denotes data and predictions from the m-th
experiment.

The algorithm performs separate identification of the dynamics of every
gene in the network from the proteins that act on it as TFs. This guarantees
that the complexity of the method scales well with the size of the network
(the dimension of the search space for the i-th optimization problem is equal
to the number of unknown parameters that enter the laws of gi). In addition,
it allows one to identify portions of a larger network based on a convenient
subset of all proteins in the network. In principle, there is no guarantee that
the cost function in (7) is convex, nor that it has a unique local minimum.
Therefore, numerical minimization may be challenging. In absence of prior
information on the unknown parameters, global optimization methods such
as those reviewed in Moles et al. (2003) may be advisable. In this article, we
shall not investigate numerical optimization strategies in detail. A discussion
of numerical optimization for our case study is given in Section 3.2.

3 RESULTS AND DISCUSSION
One way to evaluate the accuracy of the estimates of the
identification algorithm is to simulate identification in silico. The
idea is to consider a model where the parameters are fixed to
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Fig. 2. Key global regulators and regulatory interactions taking place during
the transition from stationary to exponential growth phase in E.coli. The
model of the network used here is a reduced version of the original model
by Ropers et al. (2006) for the case where the starvation signal is off. In
the absence of starvation, the enzyme adenylate cyclase (cya) is not active.
This leads to the deactivation of the global regulator CRP. The level of DNA
supercoiling is controlled by the opposing effects of GyrAB and TopA and,
in turn, regulates the expression of many genes in the cell, including fis. Note
that the CRP activation and supercoiling boxes are used here to abstract sets
of interactions. The genes encoding for stable RNAs (generally considered
to represent cellular growth rate) are all regulated in the same way and are
collectively represented in the model by rrn.

realistic values, and then estimate the same parameters from
simulated data. This not only allows one to determine the reliability
of the estimates under variable experimental conditions, but also
provides hints on how to most profitably design the experiments.
Our aim in this section is to establish a benchmark problem and to
test the efficacy of our identification method on it.

3.1 Example: E.coli nutrients response
We consider the model of the E.coli carbon starvation response
network discussed in Ropers et al. (2006), arguably one of the
most sophisticated dynamical models of genetic regulatory networks
found in the literature. Figure 2 shows all the various components of
this network, but depicts only the regulatory interactions controlling
the cell transition from the stationary phase (cells do not multiply)
to the exponential growth phase (cells divide and the population
grows exponentially). This happens only when the carbon starvation
signal (acting as ‘input’ to the system) is off (lack of food is not
detected). The model describes the concentration evolution of key
global regulators in the network by means of ordinary differential
equations, using sigmoidal activation functions. In Ropers et al.
(2006) the reader can find the biochemical arguments leading
from the graphical network representation to the derivation of the
differential equations governing its behaviour.

In order to obtain a discrete-time stochastic hybrid model
from Ropers et al. (2006), we replace the deterministic sigmoidal
activation functions with random binary processes governed by
sigmoidal probability laws. This leads to the following equations:

x+
1 = λ1x1 +b1

1u1,3 +b2
1

x+
2 = λ2x2 +b1

2

x+
3 = λ3x3 +b1

3u3,3 +b2
3u3,3u3,4u3,5

x+
4 = λ4x4 +b1

4u4,3 +b2
4u4,3u4,4u4,5

x+
5 = λ5x5 +b1

5u5,3u5,4u5,5

x+
6 = λ6x6 +b1

6u6,3 +b2
6

C
R

P
C

ya
F

is
G

yr
A

B
T

op
A

rr
n

Time (Minutes)

Fig. 3. Simulation of nutrient upshift response in E.coli cell (molar
concentrations).

where x+
i , xi and ui,k are shorthand for xi(t+1), xi(t) and

ui,k(t), respectively. The state variables x1 and x2 represent the
concentrations of the global regulator cAMP (cyclic adenosine
monophosphate) receptor protein (CRP) and the signalling
enzyme adenylate cyclase (Cya), respectively. x3 represents the
concentration of the global regulator Fis, while x4 and x5 represent
the concentrations of proteins GyrAB and TopA, controlling the
level of DNAsupercoiling. x6 represents stable RNAs concentration.
The probability laws of the binary variables ui,k are reported in the
Supplementary Material. The resulting stochastic system has 16 rate
parameters, 11 threshold coefficients and 11 steepness coefficients.

3.2 In silico simulation and identification
We consider a scenario where E.coli has undergone an initial
growth phase followed by starvation. We simulate the re-entry
into the exponential growth phase using realistic values for
protein synthesis/degradation rates, sigmoid coefficients and initial
concentrations after starvation. These parameter values were derived
by manually fitting the model in Ropers et al. (2006) to experimental
data and are reported in the Supplementary Material (G.Ferrari-
Trecate et al., 2007, personal communication). Figure 3 shows the
evolution of the states during phase transition (blue solid line) as
compared with the protein threshold values (dashed black lines).
The narrow state evolution path limits the number of thresholds
crossed, which may result in constant binary process values.

Parameter identification experiments were performed on the
simulated data based on the same model but assuming that the
model parameters are unknown. The assumption that the exact
model structure is known clearly facilitates the identification task,
as the presence of model mismatch would bias the parameter
estimates. The stochastic nature of the system and the unobserved
binding/unbinding activity of the regulation factors makes the
identification problem challenging even if the dynamics that govern
the network are perfectly known.

In each run of the identification algorithm, we considered data
from 25 (and 100) in silico generated stochastic state trajectories.
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Fig. 4. The bar plots compare the estimation results from 100 Monte Carlo repetitions of the two independent identification tests under four different
experimental conditions (25 trajectories with and without measurement noise and 100 trajectories with and without measurement noise). The normalized mean
values (i.e. the mean estimate divided by the true parameter value) and a 90% confidence band (i.e. 90 out of 100 estimates fall within the interval) are visually
conveyed by the bars and brackets, respectively. For each parameter estimate, the green bar represents results from 25 trajectories without measurement
noise, red 25 trajectories with measurement noise, blue 100 trajectories without measurement noise and yellow 100 trajectories with measurement noise (from
left to right). (A) Results from the first identification test. Steepness (A1) and threshold (A2) coefficients of all sigmoids are identified. Those coefficients
deemed unidentifiable (see Supplementary Material) are saturated at 2. (B) Results from the second identification experiment. Steepness (B1) and threshold
(B2) coefficients explored by the dataset are considered along with all synthesis (B3) and degradation (B4) rates. The parameters deemed unidentifiable (see
Supplementary Material) are saturated at 2. (C) An example of scatter and sigmoidal estimation plots from one explored (C3 and C4) and one unexplored (C1
and C2) sigmoid in the first test case (only sigmoid coefficients identified) with a dataset of 25 trajectories. The scatter plots compare the sigmoid coefficient
estimates with (blue crosses with mean represented by black dashed lines) and without (red dots with mean represented by black dotted lines) measurement
noise to the true parameter values (black solid lines). The sigmoid curves visually convey the variance and mean of the estimates with (cyan dotted lines
with mean represented by a red dashed line) and without (yellow dotted lines with mean represented by a red dotted line) measurement noise versus the true
sigmoid curves (blue solid line) and the sigmoid curve representing the initial estimates (green solid line). Vertical gray lines indicate the location of the
measurements.

The time scale for the model was set to T = 12 s and the initial state
values for each run were randomly selected according to a Gaussian
distribution such that 95% of the initial conditions fall within ±10%
of the nominal initial values. Single cell protein concentration values
were obtained at 5 min increments (significantly undersampled
with respect to the dynamical sampling period T ) over a 7 h
transient period. Measurement noise was taken to be normally

distributed and concentrated within 10% of the protein median
value with 95% probability. A visual example of the intrinsic
stochasticity of the process as well as the effect of noise and
sparse sampling can be found in the Supplementary Material. The
resulting measurement rate and the amount of data collected for
subsequent processing appear to be compatible with the current
experimental capabilities, as described e.g. in Golding et al. (2005)
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and Cai et al. (2006). The simulation of the stochastic trajectories
and the identification of the unknown parameters were performed
in the MatLab environment. The optimization problem (7) was
solved using the local (gradient-based) solver ‘fmincon’ under the
assumption that the order of magnitude of the parameters is known.
Several global methods were considered and a multi-start method
was tested, but the numerical advantages were negligible.

In the first test, we assume that all protein degradation and
synthesis rates are known, and consider the identification of all
sigmoid parameter values. This scenario is motivated by the fact that,
in many cases of interest, protein synthesis and degradation rates do
not depend on the structure of the network and can be estimated
separately by means of dedicated experiments. The results from 100
Monte Carlo repetitions of the identification procedure are reported
in Figure 4. They allow us to perform a statistical analysis of the
performance of the identification method and provide information
on the expected quality of the actual estimates. The mean and SD
values for all parameter estimates are reported in the Supplementary
Material.

The results reveal that the estimation accuracy depends crucially
on the distribution of the data samples in space. Satisfactory
parameter estimates from both 25 and 100 trajectories are obtained
for the regulation functions that have been fully ‘explored’ by the
system trajectories (i.e. the dataset includes sufficient information on
both sides of the binary switching threshold value). In the presence
of noise, the poor quality of the measurements contributes to
estimation bias and increased variance. Additionally, as the number
of trajectories is increased from 25 to 100 (with and without noise),
the resulting mean values remain mostly unchanged while the SD
reduces in magnitude.

On the contrary, estimation was inconsistent for those sigmoid
probability laws that were only sampled near the values zero or
one. In this case it is impossible to extrapolate the whole shape of
the sigmoid (that is, the correct value of the parameters), as the
randomness of the system and, when applicable, the measurement
noise makes different parameter estimates agree with different
datasets. This lack of robustness is not due to the identification
method but to the data. This important observation suggests that,
when it comes to parameter identification and experimental analysis,
a good dataset can be just as important as a true model structure.
When the true model structure is known, this difficulty can be
ameliorated by designing experiments that guarantee that the
activation functions are fully explored. In principle, this can be
achieved by a convenient choice of the system’s initial conditions. In
practice, given that the initial protein concentration levels cannot be
chosen freely, one could make the system follow different protein
concentration profiles by controlled inhibition or enhancement of
the expression of certain genes.

In a second test, we investigate the significantly more challenging
problem of estimating protein synthesis and degradation rates
simultaneously with the sigmoid coefficients. Since the synthesis

rates bj
i multiply the binary switching variables, their simultaneous

estimation with the sigmoid parameters ηi,k and di,k may result
in an ill-conditioned problem, especially if the value of the binary
switching variable is nearly constant along the observed trajectories.
In particular, it is clear that the identification of the sigmoid
parameters that were not estimated correctly in the previous test
is ruled out. Therefore, in addition to all degradation and synthesis
rates, we only attempt to estimate the parameters of those regulation

functions that are effectively explored by the data, while fixing
the parameters of the unexplored sigmoids to their true values.
The results are reported in Figure 4. They again demonstrate
the strength of the identification method. The decay rates show
excellent agreement for both the small (25 trajectories) and large
(100 trajectories) datasets, with and without noise. In most instances
the synthesis rate coefficients and the parameters of the sigmoids are
estimated consistently, with slightly larger estimation variance in
the presence of measurement noise. Yet, there are a few outstanding
cases in which the estimation of certain parameters is weak or simply
not possible, which would motivate additional experimentation. In
the dynamical equation for x1, the estimates of η1,3, of b1

1 and to
some extent of d1,3 are diluted in the presence of measurement
noise. Contrary to the first test case, the combination of a large
magnitude of noise and the additional requirement of identifying
the synthesis rate b1

1 led to a less than ideal statistical result. In the

dynamical equation for x3, the synthesis rates, b1
3 and b2

3, are lost
under all conditions, while the estimates of η3,4, d3,3 and d3,4 are
considerably biased. Lastly, we consider the unidentified synthesis
rate b2

4 of the dynamical equation for x4. Because the measurements
are concentrated on one side of threshold η4,5, the binary variable
u4,5 is essentially 0 during the entire trajectory. Since this variable
multiplies the synthesis rate b2

4, the effect of the latter is never felt.

That is, the lack of identifiability of b2
4 in this case is again due to

the distribution of the data.

4 CONCLUDING REMARKS
We have considered the problem of stochastic modelling and
parameter identification of genetic regulatory networks in
prokaryotes. We introduced a model where the discrete nature of the
interactions between TFs and gene operators obey stochastic laws
that depend on the protein concentrations in the network, whereas
the evolution of protein concentration levels is modelled by simple
first-order reaction dynamics. In our opinion, this model provides a
convenient tradeoff between accuracy and tractability. Based on this
model, we proposed an algorithm that performs estimation of the
network parameters from the observation of protein concentration
time profiles, under the assumption that the topology of the network
and the nature of the interactions (activation/repression) is known.
The identification algorithm was applied on a benchmark model
of carbon stress response in E.coli. This allowed us to assess the
efficacy of the method and to gain insight into experiment design
issues. We believe that, in addition to parameter estimation, the
stochastic modelling framework we presented is well suited to the
development of tools for model validation and for the identification
of the network of interactions. These aspects of genetic network
identification are part of our current research activity.
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