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ABSTRACT

Summary: In this work we present a web-based tool for estimating

multiple alignment quality using Bayesian hypothesis testing. The

proposed method is very simple, easily implemented and not time

consuming with a linear complexity. We evaluated method against a

series of different alignments (a set of random and biologically

derived alignments) and compared the results with tools based on

classical statistical methods (such as sFFT and csFFT). Taking

correlation coefficient as an objective criterion of the true quality,

we found that Bayesian hypothesis testing performed better on

average than the classical methods we tested. This approach may

be used independently or as a component of any tool in

computational biology which is based on the statistical estimation

of alignment quality.

Availability: http://www.fmi.ch/groups/functional.genomics/tool.htm

Contact: edward.oakeley@fmi.ch

Supplementary information: Supplementary data are available

from http://www.fmi.ch/groups/functional.genomics/tool-Supp.htm

1 INTRODUCTION

Statistical estimation of the significance of proposed alignments

is one of the central challenges of evaluating the output of all
alignment tools. Local ungapped alignments play an important

role in the discovery and classification of both DNA and
protein sequences. To evaluate a proposed sequence alignment

we must know the likelihood of it occurring by chance rather
than, for example, deriving from a common ancestral sequence.

Statistically significant alignments have a higher chance of
being biologically relevant. The evaluation of ungapped local

alignment is usually made using its information content or
relative entropy (Hertz and Stormo, 1999; Nagarajan et al.,

2005):

Iseq ¼
XL

i¼1

XjAj

j¼1

nij
n
log

nij=n

bj
ð1Þ

where L is the length of the sequence from an alphabet A, nij
count of the j-th letter in the i-th column of alignment, n is the

number of sequences in the alignment and bj the background

frequency of the j-th letter. Using this scoring function (1) and a

null model, which assumes that each of the k columns has n

letters independently sampled according to the background

distribution we can estimate a P-value. The P-value for a given

scoring value s0 represents the probability of an entropy score

of s0 or better under the null model (Hertz and Stormo, 1999;

Nagarajan et al., 2005). When the information content (Iseq) is

small and the number of sequences (n) is large, the value 2nIseq
tends to be �2-distributed with k(|A|-1) degrees of freedom

(Wilks, 1938). But this approximation is very poor when we

have large scores and few sequences, which is a common

situation. Several methods have been developed to improve this

P-value estimation (Dembo et al., 1994; Hertz and Stormo,

1999; Karlin and Altschul, 1990; Keich, 2005; Nagarajan et al.,

2005). In this work, we present a web-based tool for estimating

sequence alignment significances without gaps using Bayesian

hypothesis testing. Bayesian methods have already been used in

algorithms for sequence alignment (Liu and Lawrence, 1999;

Liu et al., 1995; Lunter et al., 2005; Suchard and Redelings,

2006; Webb et al., 2002; Zhu et al., 1998), but in our

implementation we used a Bayesian approach to evaluate

multiple sequence alignments without gaps that had already

been generated. This approach can be used independently or as

a component of any tool in computational biology which uses

statistical alignment quality estimates.

2 METHOD

Quality estimation of multiple sequence alignments by Bayesian

hypothesis testing is based on the work (Minka, 1998; Liu and

Lawrence, 1999) which we have adapted for use with DNA and protein

sequence alignments. In the interest of simplicity, we will demonstrate

the utility of this method in the context of DNA sequence alignments,

but it can easily be applied to protein sequence alignments too.

Let us define an alignment X of n DNA sequences of length L:

X1
1 X

2
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L
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Let Xi represent the vector frequencies for each letter (base) for column

i of a multiple alignment: Xi¼ [X(a,i), X(c,i), X(g,i), X(t,i)]. We also

define Y as a vector with the same length as Xi, Y¼ [Y(a), Y(c), Y(g),*To whom correspondence should be addressed.
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Y(t)]¼ [yan, ycn, ygn, ytn], where ya, yc, yg and yt represents the

background frequencies of each base, respectively a, c, g, and t.

Background frequencies of each base can be estimated based on input

data or user can specify it. To evaluate the alignment (2), first we will

test the following hypotheses:

H0: Y and Xi come from the same multinomial distribution

H1: Y and Xi come from different multinomial distributions

ð3Þ

This hypothesis testing can be evaluated directly [in a way similar to

that described by (Liu and Lawrence, 1999; Minka, 1998), or in the

form of a test for independence (Minka, 1998) which gives slightly

different results because of different priors. We have used second

approach and a detailed description as to how it is possible to convert

the hypothesis test (3) into an independence test is given in

Supplementary Material 1. For each column we calculated a Bayes

factor BFi(Ho; H1) and likelihoods Pi(Y,Xi|H0) and Pi(Y,Xi|H1).

Because of our assumption of independence between the columns,

after calculating BFi(Ho; H1) and Pi(Y,Xi|H0) and Pi(Y,Xi|H1) for each

i¼ 1, . . . ,L (for each column) we can calculate:

BF ¼
YL

i¼1

BFiðH0,H1Þ ð4Þ

PðH0jY,XÞ ¼

PðH0Þ
QL

i¼1

PiðY,XijH0Þ

PðH0Þ
QL

i¼1

PiðY,XijH0Þ þ PðH1Þ
QL

i¼1

PiðY,XijH1Þ

ð5Þ

These scores provide us with an estimate of the multiple sequence

alignment significance. It is more significant when BF is small (much

smaller than 1) and when the posterior probability of the null model

P(Ho| Y, X) is small (smaller probability of null model for the given

alignment, i.e. smaller probability that given alignment is random).

Jeffreys’ scale (Jeffreys, 1961) of evidence for Bayes factors is given in

Supplementary Material 1- Table 2. We used the posterior probability

of the random model (null hypothesis) as a final score of alignment

quality for the evaluation of our method (see the next section), because

it is a more precise score value than Bayes factor.

3 RESULTS AND DISCUSSION

In this section we report our evaluation of the presented

method and its comparison to other methods from classical

(orthodox) statistics. We took 107 alignments of transcription

factor binding sites, representing each factor in the JASPAR

database (Lenhard and Wasserman, 2002; Sandelin et al., 2004)

and calculated the BF (4) and posterior probability of the

null hypothesis (random model) (5). Detailed list for each

transcription factor and its corresponding posterior probability

and Bayes factor is given in Supplementary Material 2.

All alignments, but 10, were found to be significant with very

small posterior probabilities for the null hypothesis

(much smaller than 0.001). Next, we generated 100 random

alignments (available from http://www.fmi.ch/groups/

functional.genomics/RandomAlignments.zip) using the

RSA tool (van Helden, 2003). The random and JASPAR

alignments had approximately the same distribution in terms of

length and the number of sequences (Supplementary Material

3-Table 1). For each random alignment, we calculated BF (4)

and posterior probabilities of the null hypothesis (5)

(Supplementary Material 4). All alignments had posterior

probabilities higher than 0.99 and they are correctly identified

as not being statistically significant (true negatives). There

are several classical (orthodox) techniques for the statistical

evaluation of local ungapped alignments. Fast, but inaccurate,

techniques are used in motif discovery tools [e.g. MEME

(Bailey and Elkan, 1994), Consensus (Hertz et al., 1990; Hertz

and Stormo, 1999)]. In Supplementary Material 5 - Table 1,

we report some of the more accurate methods for the

statistical estimation of short ungapped alignments and their

running times. The time complexity for the calculation of

Bayes factor (4) and posterior probability (5) is linear O(L),

and this has advantages over these other methods. We

compared results (posterior probabilities of the random

model) obtained by Bayesian approach with the P-values

calculated by two classical methods csFFT (Nagarajan et al.,

2005) and sFFT (Keich, 2005) for a the transcription

factor binding site alignments of each factor in the JASPAR

database and 100 random alignments. In Table 1 we sum-

marize the results for 207 alignments based on the P-values

provided by the sFFT and csFFT methods, together with

the results from the Bayesian method. The calculation of

specificity and sensitivity was performed using the following

formula:

Specificity ¼
TN

TNþ FP
Sensitivity ¼

TP

TPþ FN
ð6Þ

Finally, Pearson product-moment correlation coefficients [also

called the ‘phi coefficient of correlation’ (Burset and Guigo,

1996; Tompa et al., 2005)] were calculated using:

Corr:Coef: ¼
TP*TN� FN*FPffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ FNÞ*ðTNþ FPÞ*ðTPþ FPÞ*ðTNþ FNÞ
p

ð7Þ

Table 1. Summary of results from the estimation of 207 alignments (100 random and 107 JASPAR-derived) produced by three methods sFFT,

csFFT and Bayes method

Method True positive True negative False positive False negative Specificity Sensitivity Corr. coef.

sFFT 107 60 40 0 0.60 1 0.66

csFFT 107 60 40 0 0.60 1 0.66

Bayes method 97 100 0 10 1 0.91 0.91
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Correlation coefficients may take any value between -1
(indicating perfect anticorrleation) and 1 (indicating perfect
correlation).
We conclude, based on Table 1, that the Bayesian approach

is superior to the classical approaches.

4 CONCLUSIONS

The method for using Bayesian hypothesis tests to evaluate

alignment quality is simple, easy to implement and has a linear
time complexity. Our method shows very high sensitivity and
specificity in distinguishing biologically relevant from random

alignments. It performs much better than methods based on
classical statistics (Table 1). It can be integrated into any tool
that uses statistical estimates of sequence alignments or as a

post-processing filter of the output from any tool that returns a
number of ordered alignments. Possible applications include:
motif finder algorithms; algorithms for profile–profile and

sequence–profile alignment; and the analysis of protein
domains and their families. Our tool is available at http://
www.fmi.ch/groups/functional.genomics/tool.htm.
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