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E-mail: tanja.stadler@env.ethz.ch.

Received 5 March 2010; reviews returned 2 July 2010; accepted 6 January 2011
Associate Editor: Tiffani Williams

Abstract.—In this paper, I develop efficient tools to simulate trees with a fixed number of extant species. The tools are
provided in my open source R-package TreeSim available on CRAN. The new model presented here is a constant rate
birth–death process with mass extinction and/or rate shift events at arbitrarily fixed times 1) before the present or 2) after the
origin. The simulation approach for case (2) can also be used to simulate under more general models with fixed events after
the origin. I use the developed simulation tools for showing that a mass extinction event cannot be distinguished from a
model with constant speciation and extinction rates interrupted by a phase of stasis based on trees consisting of only extant
species. However, once we distinguish between mass extinction and period of stasis based on paleontological data, fast
simulations of trees with a fixed number of species allow inference of speciation and extinction rates using approximate
Bayesian computation and allow for robustness analysis once maximum likelihood parameter estimations are available.
[Birth–death model; mass extinction; phylogenetic tree; rate shift; simulation.]

In order to test hypotheses on speciation and extinction
rates in phylogenetic trees, the phylogenetic trees are
compared with speciation and extinction models. For
simple models and simple questions, this can be done
analytically. For example, when assuming that the spe-
ciation and extinction rates remained constant through
time, the maximum likelihood speciation and extinc-
tion rates for a given tree can be calculated (Nee et al.
1994). Also, under this constant rate model, the distri-
bution of the γ statistic (Pybus and Harvey 2000) can
be calculated, which is used to test for departure from
the constant rate model (Day et al. 2008; Phillimore
and Price 2008; Cusimano and Renner 2010). For more
complicated models and/or more complex questions
toward the speciation and extinction rates, simulat-
ing trees under different models is often necessary, as
analytic results are not available.

Simulating trees under a given model might seem
straightforward. However, simulations become diffi-
cult when we want to condition on observing a certain
feature in the data, for example, a fixed number of
extant species. Until now, only few models can be sim-
ulated under such conditions. For instance, there is no
tool available, which simulates trees with a fixed num-
ber of species and has a mass extinction event at 65
Ma. The widely used program PHYLOGEN (Rambaut
2002) can stop simulations either after a fixed time (e.g.,
65 myr after the mass extinction) or once reaching a
certain number n of species, but PHYLOGEN cannot
condition on both. Therefore, analysis of empirical trees
cannot be based on a model, which takes into account
both the time of mass extinction and the number of
extant species. In common simulation tools, simula-
tions are stopped or mass extinctions happen once a
predefined number of species appears, see, for example
(Harvey et al. 1994; Crisp and Cook 2009). However,
such simulations do not reflect the underlying process,
namely events happening at predefined times in the
past, for example, 65 Ma. The bias of the usage of such

simulations is not clear. In the following, I will outline
what simulation tools are expected to do and what they
actually do. In Models and Algorithms section, I develop
methods that do simulations as expected and investigate
the bias of commonly used simulation tools.

Under most common models for speciation and
extinction, trees evolve perpetually, and therefore, trees
of all ages and number of leaves are possible. In partic-
ular, the expected age of the simulated trees is infinite.
As empirical trees are finite, the simulated trees have
to be conditioned on some aspect in order to com-
pare them with empirical trees. The five natural choices
are conditioning

(A) on the number of extant species or

(B) the time since the first species evolved or

(C) the time since the most recent common ancestor
(mrca) of the extant species evolved or

(D) the number of extant species and the time since the
first species evolved or

(E) the number of extant species and the time since the
most recent common ancestor of the extant species
evolved.

The choice of condition depends on which aspect we
want to emphasize on. I will discuss all five possibilities.

I call the trees consisting of the extant and the extinct
lineages complete trees. The trees resulting from delet-
ing all lineages that do not have extant descendants
are called reconstructed trees. Trees inferred from extant
species (i.e., not including any fossils) are therefore
always reconstructed trees.

Simulating trees under the natural Conditions (A)–(E)
turns out to be a nontrivial task. Standard software for
simulating trees consider the following neutral model, a
constant rate birth–death process (BDP): under this model,
all species have the same rates at all times—a con-
stant rate of speciation and a constant rate of extinction.
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The BDP with extinction rate zero is the pure birth Yule
model (Yule 1924).

The BDP can be extended to model mass extinction
events or shifts in rates in which case it is called episodic
birth–death process (EBDP). When considering an EBDP,
we distinguish between a forward and a backward
EBDP: under a forward EBDP, we specify the time of
mass extinction events or rate shifts after the time of
origin of the first species. Under a backward EBDP, we
specify the time of mass extinction events or rate shifts
prior to the present. In general, we define a model to be
a forward model when events are fixed at a certain time
after origin and a backward model when events are fixed
at a certain time before the present.

When conditioning on (A), the number of extant
species, it is not clear what value to take for the time
of origin of the process. Commonly, a uniform prior on
(0,∞) for the time of origin is assumed (where time
is measured such that today is zero and increasing go-
ing into the past)—in other words, each age of the tree
is equally likely; a uniform prior is assumed explic-
itly in Popovic (2004), Aldous and Popovic (2005), and
Gernhard (2008) and is assumed implicitly when using
the simple sampling approach (SSA) for simulating trees
under the Yule model (Hartmann et al. 2010).

In the following, I list the standard simulation
packages that attempt to simulate under the EBDP:

• PHYLOGEN (Rambaut 2002): This package simu-
lates trees with n species under the forward EBDP
by starting with a single species and stopping
when n species are first reached. I call this simula-
tion approach the simple sampling approach (SSA).
Later periods with n species are disregarded, so
the tree simulation is stopped too early. I dis-
cuss the resulting problems below. For the Yule
model, the SSA works correctly, see Hartmann
et al. (2010).

Conditioning on the time since origin is done by
PHYLOGEN for the forward and backward EBDP
as expected: the process is started with one species
and stopped after a fixed time. So Condition (B)
is handled correctly with PHYLOGEN. By simu-
lating two trees under (B) with both trees having
extant species and then joining the two trees at
the origin, the resulting tree is sampled under
Condition (C).

• GEIGER (Harmon et al. 2007): This R-package
simulates BDP trees by starting with two species
and stopping either when (1) first n species are
reached or when (2) time t has elapsed. Under both
conditions, we do not sample from the intended
distribution.

Under (1), as we stop when first n species ex-
isted, we disregard later periods when n species
existed. Approach (1) and the SSA differ in one as-
pect, namely under (1), we start with two species,
whereas under the SSA, we start with one species.

Under (2), we condition on the time since two
species existed. We clearly do not simulate under
Condition (B). However, we also do not simulate
under Condition (C): one or both the species with
which we started might not have extant descen-
dants. So the time since the most recent common
ancestor of the extant species might be shorter.

• CASS (Stadler 2006–2009): Using the theory on
point processes, I found an efficient way to simu-
late trees with n species under the BDP (Gernhard
2008). The simulated trees are reconstructed trees.
Unfortunately, complete trees cannot be inferred
by this approach.

• TreeSample (Hartmann 2007): In a previous paper
(Hartmann et al. 2010), we introduced a general
simulation approach (GSA). This approach sam-
ples trees with n species correctly under forward
models. The forward models need to have the
property that the species number eventually be-
comes bigger or smaller than n. Models where
species number fluctuate between some value
a and b with a < n < b cannot be simulated.

In summary, PHYLOGEN samples under the forward
and backward EBDP conditioning on (B) or (C) cor-
rectly. Furthermore, if only considering the simulated
trees with n final species obtained in the case (B) or (C),
PHYLOGEN samples correctly conditioning on (D) or
(E). The latter is a very slow approach though. CASS
samples reconstructed trees under the BDP condition-
ing on (A) correctly but cannot sample complete trees.
TreeSample samples correctly from a big class of models
(including the forward EBDP) conditioning on (A). Note
that no method can sample from the backward EBDP
under (A). For an overview, see Table 1.

In this paper, I close the obvious gap by providing
a method for efficiently sampling complete and recon-
structed trees under the backward EBDP conditioning
on (A). Furthermore, for the BDP, I provide a very fast
method to simulate reconstructed trees under (A), (D),
or (E) allowing for incomplete taxon sampling. I also
improve the GSA for correctly sampling trees with
n species from trees generated by the SSA under any

TABLE 1. Overview over the available simulation tools: specifica-
tion of which software can simulate under which models

Program Yule BDP Forward Backward
EBDP EBDP

PHYLOGEN A, B, C B, C B, C B, C
GEIGER A, C

CASS A Ar
TreeSample A A A

TreeSim A, B, C, D, E A, B, C, Dr, Er A, B, C A, B, C

Note: An algorithm for simulating under (B) or (C) can be used for
simulating under (D) or (E) by only considering realizations with n
extant species. The (D) and (E) in the table indicate the availability of
faster algorithms than using an algorithm for simulating under (B) or
(C). The subscript r indicates that the approach is only available for
simulating reconstructed trees but not complete trees



678 SYSTEMATIC BIOLOGY VOL. 60

forward model. The algorithms are provided in the
R-package TreeSim (Stadler 2010).

Using the developed simulation tools, I investigate
lineages-through-time (LTT) plots (Harvey et al. 1994)
of birth–death models with mass extinction events and
show that they do not differ significantly from LTT plots
with rate shifts.

MODELS AND ALGORITHMS

Backward Models: The Backward EBDP

In this section, I define the backward EBDP formally.
Time today is set to t0= 0. Mass extinction and rate shift
events in the past are at times t1 < t2 < ∙ ∙ ∙ < tm. Each
species at time t with ti < t < ti+1 (i ∈ {0, 1, . . . ,m},
where tm+1 :=∞) has a constant rate λi of speciating and
a constant rate μi of going extinct. At a mass extinction
event at time ti, the fraction ρi of species survives, the
surviving set is chosen uniformly at random.

Note that ρi = 1 corresponds to a rate shift from λi,μi
to λi−1,μi−1. At time t0, that is, today, a fraction ρ0 of all
extant species is sampled uniformly at random. The pa-
rameters of the EBDP are summarized as λ=(λ0, . . . , λm),
μ = (μ0, . . . ,μm), ρ = (ρ0, . . . , ρm), t = (t0, . . . , tm). In
the following, the EBDP is conditioned on obtaining
a fixed number n of sampled extant species. Further-
more, assume that the time of origin tor of the process is
not known. We assume a uniform prior on (0,∞) (i.e.,
each tor is equally likely), as done in Popovic (2004),
Aldous and Popovic (2005), and Gernhard (2008). Note
that a uniform prior is usually implicitly assumed: for
example, when simulating a tree under the BDP with-
out extinction (which is a Yule process; Yule 1924), the
common algorithm starts with one species and stops
just before the (n + 1)th species appears. We showed in
Hartmann et al. (2010) that this simple sampling
algorithm samples n-species Yule trees by implicitly
assuming a uniform prior for the time of origin.

A naive algorithm of sampling trees with n extant
species under the backward EBDP is to explicitly sim-
ulate the model in the following way. Start with an
initial species at the random time tor in the past. Note
that as we cannot sample tor from (0,∞), we sample tor
from (0,C), where C is chosen so large that the proba-
bility of a tree being older than C and having n extant
species is negligible small. Let the species then evolve
according to the parameters λ,μ, ρ, t. Stop after time tor
has elapsed, that is, at t0 = 0. If the resulting tree has
n sampled extant species, this tree is included into our
sample of trees. We proceed until we have the required
number of simulated trees. This approach is obviously
correct as it simulates the model by explicitly following
the model definition. But the approach is very slow as
we will often end up with a number different from n.
The probability of simulating a tree with n species using
this approach is (Gernhard 2008, proof of lemma 3.1),

p(n) =
λn−1

nC

(
1− e−(λ−μ)C

λ− μ e−(λ−μ)C

)n

.

For example, for n = 100 species, λ = 0.02,μ = 0.01, and
C= 200, we have p(100) = 1.3× 10−6, meaning that only
each millionth tree has 100 species. In the following,
I will provide a much more efficient way of simulating
trees with n species under the EBDP process. To ob-
tain a tree with n extant species, we simulate the EBDP
backward in time with the following EBDP backward
algorithm.

EBDP backward algorithm:

(1) We start at time t = 0 with i = 0 and the number
of species N = n. The current tree τ consists of N
isolated vertices.

(2) The total number of species is N ← round(N/ρi).
We add round(N/ρi) − N isolated vertices to the
tree τ at time t.

(3) We draw from the exponential distribution with
parameter (λi + μi)N the waiting time w.

(4) If t+w > ti+1, increment i by 1, add the edge length
ti+1 − t to each species in the tree alive at t, set t←
ti+1 and go to (2).

(5) Add the length w to each species in the tree alive
at t. Set t← t + w.

(6) The event at time t is with probability μi/(λi + μi)
an extinction event and with probability λi/(λi+μi)
a speciation. If we sample an extinction event, we
set N ← N + 1 and add a new species (isolated ver-
tex at time t) to the tree (forward in time, a species
went extinct). If we sample a speciation event and
N > 1, we pick two species uniformly at random
and coalesce their lineages (forward in time, this is
a speciation event). If we sample a speciation event
and N = 1, we set N ← 0.

(7) If N > 0 go to (3). Otherwise: return the tree with
probability 1/λi∑m

j=0 1/λj
. If no tree is returned, go to (1).

In the Appendix, I establish that the EBDP backward
algorithm samples trees correctly from the distribution
on n-species trees under the backward EBDP. For the
special case of a BDP, we can do the simulation of recon-
structed trees much faster as I show in the next section.

BDP with Stochastic Sampling of Extant Species

The BDP with stochastic sampling of extant species
is a birth–death process with speciation rate λ, extinc-
tion rate μ, and each extant species is included into the
final tree with probability ρ. Under the EBDP, we as-
sumed sampling of the fraction ρ of extant species. Note
that the approach below only holds for the stochastic
sampling scheme as the approach assumes that species
are sampled independently from each other. Further
note that, on the other hand, it is not clear how to al-
ter the EBDP backward algorithm in order to allow for
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stochastic sampling, as we do not know the probability
of having m species prior to the mass extinction, given
we have k ≤ m species after the mass extinction.

In Hartmann et al. (2010), we simulated trees under
the BDP with stochastic sampling and with sampling
of a constant fraction. The resulting trees cannot be dis-
tinguished, so there is no bias induced by using one
sampling scheme instead of the other. A mass extinc-
tion event is another incomplete sampling event. Using
an inductive argument, the tree ancestral to the mass
extinction event is not biased by the sampling scheme
(stochastic or constant fraction).

In Stadler (2009), it is shown that the birth–death
process with stochastic sampling (parameters λ,μ, and ρ)
is equivalent to the birth–death process with com-
plete sampling and speciation and extinction rates λ′ =
ρλ,μ′=μ−λ(1−ρ). So the fast birth–death point process
approach of Hartmann et al. (2010) for simulating trees
can be applied after a transformation of the parameters
such that the transformed sampling rate is ρ′ = 1. The
fast approach simulates trees for Conditions (A), (D),
and (E) (Hartmann et al. 2010) and is implemented into
TreeSim.

Forward Models

Trees with Condition (A) can be simulated under a
forward model using the GSA. The idea of the GSA is to
sample trees with n species correctly from trees, which
were simulated by the SSA (Hartmann et al. 2010). Trees
are simulated using the SSA under a forward model un-
til a number m >> n of species is reached or all species
are extinct (this might happen as extinction of a tree has
a positive probability under birth–death models). The
number m is chosen to be sufficiently large, such that the
chance of returning back to n species is negligible small
(if there is no such m for the considered model, the GSA
approach does not work).

Then, the GSA does the following: for each tree τ sim-
ulated by the SSA, we determine how many trees with n
species we want to sampled from τ—the number is pro-
portional to the total time during which the tree τ has n
species. For each n species tree to be sampled from τ, we
choose a point in time uniformly at random where τ had
n species. The tree τ is cut off at this point in time and
becomes our sampled tree with n species. We show in
Hartmann et al. (2010) that this approach actually sam-
ples trees under Condition (A). This approach is imple-
mented into the package TreeSample.

By sampling several trees with n species from one
tree τ, we produce for small sample sizes a bias: we
get the pattern subtending the root of τ several times.
I therefore changed the method such that either one or
no trees are sampled from τ. The probability of sam-
pling is proportional to the time for which τ had n
species. This improved GSA method is implemented
in my R-package TreeSim—it takes as input a sample
of trees generated by the SSA and outputs a correct
sample of trees with n species under the considered
model.

IMPLEMENTATION

All methods presented in this paper are implemented
in my R-package TreeSim (Stadler 2010), which is avail-
able on CRAN (http://cran.r-project.org/) and my
home page (http://www.tb.ethz.ch/people/tstadler).
The trees produced by the algorithms are in the for-
mat defined in the standard phylogenetic R-package
APE (Paradis et al. 2004). The simulated trees can there-
fore be used directly for further analysis in R or can be
written into a Nexus file using an APE function. The
package simulates trees with Conditions (A)–(E) under
the backward EBDP, forward EBDP, and the BDP.

For simulating under Condition (B) (respectively (C)),
we start with the origin (respectively mrca) and simulate
for the required time. We do the same for (D) (respec-
tively (E)) and then only consider realizations that yield
the right number of species. For Condition (A) under the
backward EBDP, I implemented the method presented
in Backward Models: The Backward EBDP section. The
TreeSim package samples trees with Condition (A)
under a forward model using the GSA explained in
Forward Models section, given we have trees simulated
under the forward model using the SSA (the SSA for
the forward EBDP is implemented in PHYLOGEN). For
the BDP, I implemented the much faster approach for
(A), (D), and (E) as described in BDP with Stochastic
Sampling of Extant Species section.

APPLICATION OF THE SIMULATION ALGORITHMS

When using molecular data to infer phylogenies, we
obtain reconstructed trees. A reconstructed phylogeny
not only provides insight on relationships but also en-
ables us to test evolutionary hypotheses on speciation
and extinction rates (Harvey et al. 1994; Pybus and
Harvey 2000). In the following, I investigate whether
we can detect mass extinction events in reconstructed
phylogenetic trees. In a complete phylogeny, we clearly
see when mass extinction events happen: the LTT plot
drops significantly at the time of a mass extinction
event (see Fig. 1). It is, however, unclear to what ex-
tent we can detect mass extinction events in LTT plots of
reconstructed phylogenies.

Previous studies detected, using simulation appro-
aches as implemented in PHYLOGEN, that a mass
extinction event produces an antisigmoid LTT curve
(Harvey et al. 1994; Crisp and Cook 2009). Crisp and
Cook (2009) reveal that this antisigmoid curve is also
“sometimes” produced under a model with constant
rates interrupted by a phase of stasis (meaning almost
no speciation and extinction).

However, in both studies, the rate shift, the mass ex-
tinction, or the termination of the simulation happened
when a predefined number of species was first reached.
For example, once the simulation reached 700 species,
then a mass extinction happened and 97% of the species
died. In Crisp and Cook (2009), mass extinction events
could also happen at a specified time after origin (but
not at a specified time before present). The study of
Crisp and Cook (2009) used the package PHYLOGEN

http://www.tb.ethz.ch/people/tstadler
http://cran.r-project.org/
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summarized above. Both studies could not allow for
events at fixed times before the present.

The methodology introduced in this study is the first
to allow for fixed times of rate changes and mass ex-
tinction events, while ensuring that the final tree has
the desired number of species. I simulated trees with a
mass extinction event and trees with a phase of stasis
using the parameter combinations as in Crisp and Cook
(2009) but being able to control the time of mass ex-
tinction/rate shift. In the next section, I use the same
parameters as in Crisp and Cook (2009) to investi-
gate the biases introduced by the different simulation
approaches.

Speciation Model with Mass Extinction and Speciation
Model with a Stasis Phase Produce the Same LTT Plots

First, I investigated the shape of LTT curves under a
model of constant rates (λ = 0.3,μ = 0.15, as in Crisp
and Cook 2009), interrupted by a mass extinction event
at 25 timesteps ago. I simulated 50 phylogenies on 350
extant species using the EBDP backward algorithm. The
mass extinction severity was varied: I sampled the frac-
tion 0.5, 0.4, 0.3, 0.2, 0.1, 0.03, 0.01 as well as all the extant
species at 25 timesteps ago. For each parameter combi-
nation, I calculated the average LTT plot, which is the
LTT plot calculated by computing the average number
of lineages over all 50 simulated trees at each timepoint
(thus mimicking a mean age chronogram obtained in
dating analyses). The average LTT plots of the simulated
complete and reconstructed trees are shown in Figure 1.
The plots follow an antisigmoid curve. To investigate
the impact of incomplete extant species sampling, I re-
did the simulations with ρ0 = 0.5, that is, the trees have

FIGURE 1. LTT plots with a mass extinction event at 25 timesteps
ago; complete sampling of extant species: average LTT plot of 50 sim-
ulated phylogenies (gray: complete—i.e., phylogenies including ex-
tinct species, black: reconstructed—i.e., phylogenies including only
the extant species) with 350 extant species under the backward EBDP
(λ = (0.3, 0.3),μ = (0.15, 0.15), t = (0, 25)). The mass extinction in-
tensity was varied from bottom to top: ρ = (1, 1) (no mass extinc-
tion), ρ= (1, 0.5), ρ= (1, 0.4), ρ= (1, 0.3), ρ= (1, 0.2), ρ= (1, 0.1), ρ=
(1, 0.03), ρ = (1, 0.01). Recall that ρ = (1, x) means that all extant
species are sampled, and the fraction x of species alive prior to the
mass extinction survived the mass extinction.

700 extant species at present, but only 350 species are
sampled uniformly at random. The average LTT plot is
shown in Figure 2. Again, antisigmoid curves are recov-
ered, which are very similar to those in Figure 1.

Second, I simulated trees under a model with a stasis
period. I used the same speciation and extinction rates
as in Crisp and Cook (2009) (λ = 0.3,μ = 0.15 before
and after stasis and λ = 0.05,μ = 0.025 during stasis).
The length of the stasis period was set to 20. The end of
the stasis period was at 25 time units ago. I simulated
50 trees on 700 species and then sampled 350 species
uniformly at random. The LTT plots show a plateau
between 25 and 45 timesteps ago.

Importantly, in my simulations, the LTT plots from
the trees under the stasis model are indistinguishable
from the trees under the mass extinction model (where
97% of species went extinct at 25 timesteps ago; see
Fig. 3). This makes the conclusions of Crisp and Cook
(2009) even stronger: Crisp and Cook (2009) find that
the LTT plots of a model with mass extinction mostly
have a antisigmoid shape, whereas the LTT plots of a
stasis model only sometimes have an antisigmoid shape
(fig. 4 in their paper). They therefore concluded that,
for their considered legume data having an antisigmoid
LTT plot, the process with a stasis period cannot be
ruled out. I show here that, as the two processes pro-
duce exactly the same LTT plots, each process is equally
likely to produce the observed pattern of legume di-
versification. The reason that Crisp and Cook (2009)
only sometimes observed the stasis plateau is that the
length of the stasis period was not fixed but was vari-
able, and the variable duration of stasis was very short
(the length of the stasis period was defined as the time
during which the tree grew from 20 to 25 species).

DISCUSSION

Incorrect Simulation Algorithms Produce a Bias

Phylogenetic trees are frequently simulated with
PHYLOGEN using SSA. The SSA has the advantage

FIGURE 2. Average LTT plot of the reconstructed simulated
trees as in Figure 1, but with incomplete extant species sampling
(ρ0 = 0.5).
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FIGURE 3. Comparison of model with mass extinction and model
with stasis period: LTT plots of 50 simulated reconstructed phy-
logenies with 350 extant species under the backward EBDP (λ =
(0.3, 0.3),μ = (0.15, 0.15), t = (0, 25)), with mass extinction intensity
set to ρ1 = 0.03 and extant species sampling proportion ρ0 = 0.5, are
shown in light red. The corresponding average LTT plot is dark red.
LTT plots under a model with a stasis period (λ = (0.3, 0.05, 0.3),μ =
(0.15, 0.025, 0.15)), and no mass extinction but incomplete extant
species sampling (ρ = (0.5, 1, 1)), are shown in light green. The cor-
responding average LTT plot is dark green.

of being much faster and easier to implement than the
correct approaches presented here. However, the SSA
produces a bias on trees under the simple BDP model;
therefore, it is necessary to use the more complex ap-
proach presented here. In Hartmann et al. (2010), we
analyzed how much bias the incorrect SSA approach
induces on the simulated trees under a BDP model. We
compared the reconstructed trees under the BDP simu-
lated with the SSA to the reconstructed trees simulated
with a correct approach using TreeSample. We found
that in the SSA trees, speciation times were up to a
3-fold younger. Furthermore, in the SSA trees with high
extinction rates, the initial slope of the LTT plots were
steeper. Such biases may lead to wrong conclusions.
For example, by simulating traits under a gradual trait
evolution model on simulated BDP trees, we found no
correlation between trait variance and tree age using
SSA, whereas we found a correlation using the correct
approach. This shows the importance of using correct
simulation tools.

Furthermore, my simulations show that reconstructed
trees with mass extinction events in the past look like
reconstructed trees with a stasis period. This suggests
that we may not be able to distinguish, based on the re-
constructed tree, between a mass extinction and a model
with constant rates interrupted by a stasis period.

Parameter Tuning Such That Simulations and Empirical
Trees Coincide is Easy with the New Simulation Approach

An LTT plot of an empirical phylogenetic tree may
potentially reveal a lot about the past speciation and ex-
tinction rates (Harvey et al. 1994). In a period of con-
stant rates, the slope of the LTT plot is the net speciation

rate λ − μ. A slope uplift in the LTT plot, with a con-
stant slope before and after the uplift, corresponds to an
increase in rates. An antisigmoid curve prior to the up-
lift is produced by a mass extinction event at the uplift.
I showed in this study that a model where constant rates
are interrupted by a period of stasis produces the same
antisigmoid curve.

As a mass extinction event and a model with a sta-
sis period both yield an antisigmoid curve, we cannot
estimate all parameters in an EBDP model simultane-
ously from only a reconstructed phylogeny—we need
to specify a priori if we assume a mass extinction or rate
shifts. In order to justify the choice between mass extinc-
tion and rate shifts, inferences from paleontological and
paleoclimatic studies may need to be introduced, with
emphasis on the time of the LTT upturn.

Given we decided on the model with mass extinction
(or on the model with stasis period) for an empirical
tree with an antisigmoid LTT plot, the goal is to tune
the model parameters such that simulations yield the
same trees as the empirical tree. Without being able to
both change the rates at given timepoints in the simu-
lations and conditioning on the final number of species,
it is hard to tune the parameter combinations such that
the simulated trees match with empirical trees on their
LTT plots. With the simulation approach in this paper,
we can fix the time of rate changes and mass extinction
events and therefore the adjustment becomes easy: al-
tering λ and μ changes the slopes, whereas altering the
mass extinction intensity (respectively the length of the
stasis period) changes the length of the plateau.

Note that the ratio μ/λ only influences the LTT plot in
the very recent past (Harvey et al. 1994) (the “pull of the
present” effect) and cannot be estimated reliable from
a single empirical observation due to large stochastic
variations (Rabosky 2010). Therefore, this setting plays
a minor role toward the simulated trees.

Parameter Estimation

The presented parameter tuning approach is a
“visual” approach for fitting the model to the empir-
ical data. The simulation tools developed in this paper
provide the first step toward implementing an approxi-
mate Bayesian computation (ABC) approach (Marjoram
et al. 2003) for estimating rates under the EBDP model.
An ABC approach samples from the approximate pos-
terior distribution of parameters in the following way.
Initial parameters are proposed and a tree is simulated
under the parameters. Based on a summary statistic, it
is decided if the simulated tree matches the empirical
data well. If so, the parameters are added to the poste-
rior. A new set of parameters is proposed, for the next
simulation. This procedure is iterated until a sufficiently
large posterior set of parameters is obtained. Overall, an
ABC approach requires a fast algorithm for simulating
trees with n species. Furthermore, it requires a robust
statistic, which determines if a parameter combination
is added to the posterior distribution.
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As it is hard to evaluate which statistics in an ABC
analysis are “robust” or “good,” and an ABC analysis
is very time consuming, it would be preferable to have
a likelihood function for the backward EBDP model. A
likelihood function allows to calculate the maximum
likelihood speciation and extinction rates and the mass
extinction or rate shift times for a given empirical phy-
logenetic tree. The likelihood function also allows to do
a Bayesian inference to obtain the posterior distribution
of speciation and extinction rates.

There are attempts to derive a likelihood function for
models with rate shifts (Paradis 1997, 1998; Rabosky
2006). However, the method proposed by Paradis (1997)
looks at shifts through a sliding window without allow-
ing for mass extinctions. Therefore, the method detects
two shifts in a antisigmoid curve, although there might
have been a mass extinction without a shift. Also, the
approach detects a rate shift at the time when the “pull
of the present” effect appeared. Paradis (1998) can de-
tect different rates in different clades but cannot detect
changes in rates at one time in the whole tree. Rabosky
(2006) looks at rate shifts but assumes that the tree be-
fore a rate shift is independent of the tree after a rate
shift. This is an invalid assumption though as extinction
after the rate shift influences the reconstructed tree prior
to the rate shift. In particular, a mass extinction event
influences the LTT plot prior to the event significantly—
an antisigmoid curve is produced. A challenge will be
to derive a closed-form likelihood expression under
the EBDP. The simulation algorithm presented here is
crucial for investigating the power of such a maximum
likelihood approach.

Assumptions and Limitations of the EBDP Model

I introduce the EBDP as a general model, which ac-
counts for rate shifts and mass extinction events. The
main assumptions of the model are as follows: (1) speci-
ation rates and extinction rates are constant in the time
intervals between the rate shift events, (2) species are
indistinguishable (Aldous 2001), meaning that they all
have the same rates and sampling probabilities, and
(3) mass extinction affects all species in the same way.

Models have been proposed where speciation and
extinction rates are more complex than under Assump-
tion (1). For example, extinction rates might be heritable
(Rabosky 2009b) or speciation rates might be density
dependent (Rabosky and Lovette 2008). Such varia-
tions may introduce tree imbalance or a LTT plot with
an initial steep slope followed by a flat slope. Antisig-
moid LTT plots cannot be explained under these models
alone. It is highly debated if and how speciation and ex-
tinction rates indeed change, see, for example, Rabosky
(2009a). The EBDP model serves as a null model toward
testing more complex scenarios.

Assumption (2), namely species are indistinguish-
able with respect to speciation and extinction rates and
sampling probability, is relaxed by models with trait-
specific speciation and extinction rates (Maddison 2007;
FitzJohn et al. 2009). However, such models do not

produce antisigmoid plots. The assumption that all ex-
tant species have the same probability of being sampled
might be violated due to biased sampling. For example,
species are often collected such that they are representa-
tive of the morphologic and geographic variation in the
taxon sampled. Different sampling schemes can easily
be incorporated into the EBDP model: we first simulate
the complete trees and then apply the desired sampling
procedure to the complete tree. In this paper, I only con-
sider the sampling scheme under which each species
has the same probability of being sampled, as this al-
lowed me to compare my results with the Crisp and
Cook (2009) study. Furthermore, my goal was to detect
mass extinction events, and I did not want to make the
LTT plots more complicated by introducing sampling
artifacts.

Last, I assumed Assumption (3), that is, that each
species is affected by mass extinction in the same ran-
dom way. At fine scales (species within families, within
local communities), there is indication that mass ex-
tinctions happen randomly among lineages (Heard and
Mooers 2002). On coarser scales, the EBDP model with
random mass extinctions can be used as a null model to
test for more complex scenarios.

My model allows to fix both the time of rate shifts and
the mass extinctions in the past and the number of sam-
pled species. I believe that this assumption meets the
a priori knowledge of biologists about their empirical
data better than the assumption made implicitly by pre-
vious simulation tools, namely that changes occur once
a certain number of species is first reached.
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APPENDIX

I show in the following that obtaining a tree τ with
the EBDP backward algorithm has the same probability
density as obtaining the tree τwith the naive algorithm.
Because the naive algorithm is correct as it simulates
the model by exactly following the model definition,
I establish that the EBDP backward algorithm is correct.

I will first derive the probability density of obtaining
a fixed n-species-tree τ with the EBDP backward algo-
rithm. The events happening in a tree are speciation,

FIGURE A1. EBDP tree: tree that evolved under an EBDP model
with m=2 mass extinction events at times t1 and t2. The events (speci-
ation or extinction or mass extinction) are numbered increasing going
back in time, and the length of the time interval between event j and
j + 1 is Δj.

extinction, and mass extinction/rate shift. We order all
events occurring in tree τ timewise, starting at t0 with
event number 1 and the origin being event number M
(see Fig. A1). Let the time interval between event j and
j + 1 have length Δj, j ∈ {1, . . . ,M − 1}. Note that M
corresponds to the event of the origin appearing. Let nj

be the number of species in interval Δj, and let λ̃j, μ̃j be
the speciation and extinction rate in interval Δj. Now,
to obtain the density of a fixed tree, we have to multiply
the probabilities of having the correct events (speciation,
extinction, and rate shift) and multiply the probability
densities of observing all the interval lengths between
events, going back in time.

Let event j + 1 be a speciation event. The probability
density of observing interval length Δj between event j
and j + 1 and observing event j + 1 is (combining (3) and
(6) in the algorithm),

λ̃j

λ̃j + μ̃j
(λ̃j + μ̃j)e

−(λ̃j+μ̃j)njΔj .

Note that the origin of the tree is considered by the back-
ward algorithm as a speciation event.

Similarly, when event j + 1 is an extinction event,
the probability density of observing interval length Δj
between event j and j + 1 and observing event j + 1 is
(combining (3) and (6) in the algorithm),

μ̃j

λ̃j + μ̃j
(λ̃j + μ̃j)e

−(λ̃j+μ̃j)njΔj .

For j + 1 being a mass extinction/rate shift event, the
probability density of observing interval length Δj be-
tween event j and j + 1 is the probability that nothing
happens between j and j + 1,

e−(λ̃j+μ̃j)njΔj .

http://cran.r-project.org/web/packages/TreeSim/index.html.
http://cran.r-project.org/web/packages/TreeSim/index.html.
http://www.tb.ethz.ch/people/tstadler
http://www.tb.ethz.ch/people/tstadler
http://tree.bio.ed.ac.uk/software/
http://www.tb.ethz.ch/people/tstadler
http://www.tb.ethz.ch/people/tstadler
http://cran.r-project.org/web/packages/geiger/index.html.
http://cran.r-project.org/web/packages/geiger/index.html.
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Furthermore, as we choose the species undergoing an
event uniformly at random, each tree is equally likely,
given the sequence of the M events with the interval
lengths Δj. Therefore, the probability density of the
tree τ is,

fbackward(τ)∝
1/λ̃M∑m
j=0 1/λj

M−1∏

j=1

e−(λ̃j+μ̃j)njΔj

M∏

j=2

j: spec. event

λ̃j

M−1∏

j=2

j: ext. event

μ̃j

∝
M−1∏

j=1

e−(λ̃j+μ̃j)njΔj

M−1∏

j=2

j: spec. event

λ̃j

M−1∏

j=2

j: ext. event

μ̃j.

For calculating the probability density of obtaining
tree τ under the naive algorithm, we go from the past
to the present. Recall that we have a uniform prior for
the origin of the tree. For now, let the prior be defined on
(0,C). With probability density 1/C, we sample the right
time of origin. Then, we calculate the probability den-
sity of observing interval length Δj followed by the right
event. Let event j be a speciation event. The probability
density of observing interval length Δj and observing
event j is,

λ̃j

λ̃j + μ̃j
(λ̃j + μ̃j)e

−(λ̃j+μ̃j)njΔj .

Analogue, when event j is an extinction event, the
probability density of observing interval length Δj and
observing event j is,

μ̃j

λ̃j + μ̃j
(λ̃j + μ̃j)e

−(λ̃j+μ̃j)njΔj .

For j being a mass extinction/rate shift event, the prob-
ability density of observing Δj is the probability that
nothing happens between j and j + 1,

e−(λ̃j+μ̃j)njΔj .

Furthermore, as we choose the species undergoing an
event uniformly at random, each tree is equally likely,
given the sequence of the M events with the interval
lengths Δj. Therefore, the probability density of the tree
τ is,

fnaive(τ) ∝
1
C

M−1∏

j=1

e−(λ̃j+μ̃j)njΔj

M−1∏

j=2

j: spec. event

λ̃j

M−1∏

j=2

j: ext. event

μ̃j

∝ fbackward(τ).

This shows that for all C, in particular C→∞, the tree τ
has the same chance of being simulated under the naive
and the backward algorithm. This establishes the cor-
rectness of the EBDP backward algorithm.


