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Abstract

We show that in quasi-logarithmic additive number systems A all partition sets have
asymptotic density, and we obtain a corresponding monadic second-order limit law for ad-
equate classes of relational structures. Our conditions on the local counting function p(n)

of the set of irreducible elements of A allow situations which are not covered by the density
theorems of Compton [6] and Woods [15]. We also give conditions on p(n) which are suffi-
cient to show the assumptions of Compton’s result are satisfied, but which are not necessarily
implied by those of Bell and Burris [2], Granovsky and Stark [8] or Stark [14].

1. Introduction and overview

1·1. Monadic second-order limit laws

A problem that is addressed in finite model theory is to determine the probability that a
finite structure, chosen randomly from a class K of structures, satisfies a given sentence ϕ

of some logic. In this paper, we examine this problem for classes K of finite relational struc-
tures and a monadic second-order logic, extending previous results of Bell and Burris [2],
Granovsky and Stark [8] and Stark [14].

We briefly introduce the notion of a monadic second-order limit law. Burris [4, chapter 6]
serves as main reference. For an introduction to logic and model theory we refer to Ebbing-
haus et al. [7] and Chang and Keisler [5], respectively. To construct our monadic second-
order logic and to introduce K, we start with a finite purely relational language L, a finite set
of relation symbols along with their arities. A finite L-structure S of size n is a pair (S,J),
where S is a finite set with n elements, the universe of S, and where J is an assignment of
the relation symbols of L to relations on S which preserves arity. Thus, S consists of an ap-
propriate interpretation J of the relation symbols of L in S. Two L-structures S1 = (S1,J1)

and S2 = (S2,J2) are isomorphic if there is a bijection f : S1 → S2, such that for each rela-
tion R1 of S1 and the corresponding relation R2 of S2 we have R1(x1, . . . , xk) if and only if
R2( f (x1), . . . , f (xk)) for all x1, . . . , xk ∈ S1. A first-order logic with language L consists,
in addition to the symbols of L, of logical symbols: parentheses, the connectives ∧ (and)
and ¬ (not), the quantifier ∀ (for all), a binary relation symbol ≡ (identity), and first-order
variables, which range over elements of structures. A first-order L-formula, that is, roughly
speaking, a “meaningful” combination of symbols, is defined inductively using prescribed
rules, starting with atomic formulas (cf. Ebbinghaus et al. [7, section 3]). A first-order
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268 BRUNO NIETLISPACH

L-sentence is a formula where each variable is bound by a quantifier. For each sentence
ϕ an L-structure will either satisfy or fail to satisfy ϕ. A monadic second-order logic with
language L extends the first-order logic by introducing unary relation variables. These range
over subsets of structures. Monadic second-order L-formulas are obtained by augmenting
the inductive definition of the first-order formulas by introducing U (v) as an atomic for-
mula for any unary relation variable U and any first-order variable v, and by defining (∀Uϕ)

to be a monadic second-order L-formula if ϕ is one.
Now fix a class K of finite L-structures. The notion of probability mentioned at the be-

ginning of this introduction is defined as the limit as n → ∞, if it exists, of the proportion
of isomorphy types of structures of size n in K that satisfy ϕ among all isomorphy types of
structures of size n in K. If this limit exists for all monadic second-order L-sentences, the
class K is said to have a monadic second-order (local) limit law.

In the context of a monadic second-order logic with a finite, purely relational language
L, Compton [6] introduced a method of proving such limit laws for K simply by analyzing
the growth rate of a(n), the number of isomorphy types of structures in K of size n. His
method relies on the notion of an adequate class of structures. A class K of L-structures is
adequate

(i) if it is closed under disjoint union,
(ii) if elements of K can be decomposed uniquely, up to commutativity and associativity,

into a disjoint union of K-indecomposable structures,
(iii) if the L-structure with empty universe is contained in K,
(iv) and if, up to isomorphism, K contains only finitely many structures of each size.

If K is adequate, the set of isomorphism types of structures in K can be endowed naturally
with the structure of an additive number system AK. For such a class K, the task of proving
the existence of a monadic second-order limit law is reduced to the proof the existence of
asymptotic density of partition sets in AK.

In the following subsection we briefly recall the basic definitions related to additive num-
ber systems that we use in the proofs in this paper, and that are needed to state Compton’s
results in their precise forms. For a comprehensive introduction to the theory of additive
number systems and Compton’s approach to logical limit laws, we refer to Burris [4].

1·2. Additive number systems, densities and partition sets

Let (A, +, 0) be a free commutative monoid, 0 ∈ A being the neutral element for the
operation +. An element of A \ {0} is called indecomposable element or component if it
can not be written as a sum of two non-zero elements from A. We denote the set of all
indecomposable elements of A by P . Let ‖·‖ : A → Z+ := {0, 1, 2, . . . } be an additive
norm on A. For each B ⊂ A and each n ∈ Z+ we define B(n) := {ω ∈ B : ‖ω‖ = n}, the
subset of all elements of B of norm n. This gives rise to a map b: Z+ → Z+ � {∞}, defined
by b(n) := |B(n)|, the (local) counting function of B. The generating series of B is denoted
by B(x) := ∑∞

n=0 b(n)xn . The counting functions of A and P are denoted by a(n) and p(n),
respectively. Note that a(0) = 1, since ‖·‖ is a norm and thus ‖ω‖ = 0 implies that ω = 0.

The tuple A := (A, +, 0, P, ‖·‖) is an additive number system, if (A, +, 0) is a free
commutative monoid, P the set of indecompsable elements of A, and ‖·‖ an additive norm
on A, such that A(n) is finite for all n ∈ N := {1, 2, 3, . . . }. The radius of convergence
ρ of A is the radius of convergence of the generating series A(x) := ∑∞

n=0 a(n)xn of A.
If P � �, which we assume from now on, then a(n) � 1 holds true for infinitely many
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Asymptotic density in quasi-logarithmic additive number systems 269

n, and we have 0 � ρ � 1 in this case. The number system A is reduced if gcd{n ∈ N :
p(n) > 0} = 1, which is equivalent to the property that a(n) > 0 for all n large enough (cf.
Burris [4, lemma 2·42 and theorem 2·52]).

For B ⊂ A, the limit

δ(B) := lim
n→∞
a(n)�0

b(n)

a(n)
,

provided it exists, is the (local) asymptotic density of B. If ρ > 0, we define the Dirichlet
density of B ⊂ A as the limit

∂(B) := lim
x→ρ−

B(x)

A(x)
,

again provided it exists. For every B ⊂ A and every m ∈ Z+ we set

m B :=
{

{0} if m = 0,

{b1 + · · · + bm : b j ∈ B} if m � 1,

and define

(� m)B :=
m⋃

j=0

j B and (� m)B :=
∞⋃

j=m

j B.

A set B ⊂ A is a partition set of A if there is a partition of P into non-empty pairwise
disjoint sets P1, . . . , Pk , and if there are non-negative integers m1, . . . , mk , such that

B = γ1 P1 + · · · + γk Pk,

where γi is of the form mi , (� mi ) or (� mi ) for all 1 � i � k. With these definitions, we
can state Compton’s results. The first is referred to as Compton’s density theorem.

THEOREM 1·1 (Compton [6]). Let A be a reduced additive number system with radius
of convergence 0 < ρ < 1. If there are constants K > 0 and C > 0, such that

a(n − k)

a(n)
� Cρk for all (k, n) with K � k � n, (1·1)

then all partition sets of A have asymptotic density which equals the Dirichlet density.

THEOREM 1·2 (Compton [6]). Let L be a finite, purely relational language, and let K be
an adequate class of finite L-structures. If all the partition sets of the additive number system
AK have asymptotic density, then K has a local monadic second-order limit law.

Woods’s density theorem, a modification of Compton’s first result, is used to prove mon-
adic second-order limit laws for classes of unary functions with additional unary predicates.

THEOREM 1·3 (Woods [15]). If there are constants c > 0, 0 < x < 1 and −∞ < µ < 1,
such that

p(n) = O(x−nn−1) and a(n) ∼ cx−nn−µ,

then all partition sets of A have asymptotic density which equals the Dirichlet density.
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270 BRUNO NIETLISPACH

1·3. Conditions on the component counting function

The first examples of additive number systems that satisfy the hypotheses of Compton’s
density theorem were provided by Knopfmacher et al. [10]. Their assumptions on the addit-
ive number system invoke the counting function p(n) of the set of irreducible elements rather
than a(n). These asymptotics were generalized by Bell and Burris [2] as a consequence of
the following general result.

THEOREM 1·4 (Bell and Burris [2]). Let S(x) := ∑∞
n=0 s(n)xn be a power series with

non-negative coefficients s(n) and let S�(x) := ∑∞
n=0 s�(n)xn, where s�(0) := 0 and

s�(n) := ∑
jk=n s( j)/k for n � 1, be its star transformation. Let T(x) := ∑∞

n=0 t (n)xn

be the exponentiation of S�(x). If there is a 0 < x < 1 with

lim
n→∞

s(n − 1)

s(n)
= x and lim inf

n→∞
ns(n)xn > 1,

then it follows that t (n − 1)/t (n) < x for all n large enough, and that

lim
n→∞

t (n − 1)

t (n)
= x .

In the context of additive number systems, Bell and Burris then derive the theorem below,
setting s(n) := p(n) and t (n) := a(n).

THEOREM 1·5 (Bell and Burris [2]). Let A be an additive number system with the prop-
erty that

lim
n→∞

p(n − 1)

p(n)
= x ∈ (0, 1) and lim inf

n→∞
np(n)xn > 1.

Then A is reduced with radius of convergence x and a(n) satisfies condition (1·1).

Bell and Burris also show that if, for some 0 < x < 1,

p(n) ∼ cx−nn−µ, (1·2)

where either (i) −∞ < µ < 1 and c > 0, or (ii) µ = 1 and c > 1, then their conditions
of Theorem 1·5 are satisfied. Granovsky and Stark [8] and Stark [14] have shown that some
weakenings of (1·2), cases (i) and (ii), also lead to the conclusions of Theorem 1·5.

THEOREM 1·6 (Granovsky and Stark [8]). Let A be an additive number system such that,
for constants c1, c2, r > 0, 0 < ε � r/3 and 0 < x < 1,

c1x−nn(2r)/3+ε−1 � p(n) � c2x−nnr−1 for all n ∈ N.

Then A is reduced with radius of convergence x, and a(n) satisfies condition (1·1).

THEOREM 1·7 (Stark [14]). Let A be an additive number system such that

1 < inf
n∈N

np(n)xn � sup
n∈N

np(n)xn < ∞,

where 0 < x < 1. Then A is reduced with radius of convergence x, and a(n) satisfies
condition (1·1).

1·4. Quasi-logarithmic additive number systems

In this paper we consider a different weakening of condition (1·2), case (ii). We require
that there are constants 0 < x < 1 and θ > 0, such that the sequence np(n)xn , n ∈ N,
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Asymptotic density in quasi-logarithmic additive number systems 271

converges to θ “in an averaging sense”, and such that “not too few” of the values p(n) are
strictly positive. These conditions are made precise in Subsection 2·2 as condition C1(θ) and
C2. They allow the counting function p(n), for n large enough, to be, for example, of the
form

p(n) ∼ x−nn−1, (1·3)

p(n) = �(1 + cos n)x−nn−1�, (1·4)

p(n) = (1/2 + (log n)−1)x−nn−1 + O(1), (1·5)

p(n) = �θn x−nn−1�, (1·6)

where, in (1·6), θn converges on some set I := {a + kb, a + kb + 1 : k ∈ Z+}, with a ∈ Z+
and b ∈ N, and where θn := 0 for n ∈ N \ I . Note that (1·3) is referred to as the classical
abstract prime number theorem (cf. Knopfmacher and Zhang [11, section 3]).

If A is an additive number system where, for some 0 < x < 1, np(n)xn , n ∈ N, satisfies
conditions C1(θ) and C2, the elements of A(n) = {ω ∈ A : ‖ω‖ = n} are quasi-logarithmic
multisets of total weight n, as introduced in Nietlispach [13]. We then refer to A as a (x, θ)-
quasi-logarithmic additive number system. We show that, in a quasi-logarithmic additive
number system, all partition sets have asymptotic density which equals the Dirichlet density
(Theorem 3·1), and obtain a monadic second-order limit law for adequate classes K of fi-
nite relational structures whose associated additive number system AK is quasi-logarithmic
(Corollary 3·4).

To prove Theorem 3·1, we first show in Section 2 that an (x, θ)-quasi-logarithmic additive
number system satisfies

a(n) ∼ cx−nnθ−1
(n), (1·7)

where c > 0 is a constant, and 
(n) is a specific slowly varying function (see (2·13) and
(2·14)). By definition, a function 
: N → R is slowly varying (at infinity) if

lim
n→∞


(�λn�)

(n)

= 1 for all λ > 0.

Such a function satisfies (cf. Bingham et al. [3, proposition 1·3·6 and lemma 1·9·6])

lim
n→∞

nε
(n) = ∞ and lim
n→∞

n−ε
(n) = 0 for any ε > 0, (1·8)

and

lim
n→∞


(n − 1)


(n)
= 1. (1·9)

The proof of (1·7) relies on probabilistic methods. We consider the vector of component
counts (

C (n)

1 , . . . , C (n)

n

) : A(n) −→ Z
n
+,

where A(n) = {ω ∈ A : ‖ω‖ = n} and where C (n)

i (ω) is the number of components
in ω ∈ A(n) of norm i , as a random vector on A(n) endowed with the uniform probability
measure. Then its distribution is compared with the distribution of an associated sequence of
independent Z+-valued random variables Z1, . . . , Zn , conditioned on Tn := ∑n

i=1 i Zi = n.
It is shown in Nietlispach [13] using coupling arguments that, under C1(θ) and C2, the
unconditioned distribution of Tn satisfies

P[Tn = n] ∼ ρθ(1)n−1, (1·10)

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004107000862
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:48:57, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004107000862
https:/www.cambridge.org/core


272 BRUNO NIETLISPACH

where ρθ is the density function of the Dickman distribution with parameter θ > 0 (cf.
Arratia et al. [1, section 4·2] for an account of this distribution). Indeed, condition C2 is
required only for the coupling arguments. We then use (1·10) to derive (1·7). In Section 3
we show that, if θ > 1, the local counting function a(n), given as in (1·7), satisfies the
requirements of Compton’s density theorem. To prove Theorem 3·1 in the case 0 < θ � 1,
we give an extension of Woods’s density theorem to situations where a(n) has the form
(1·7), by extending the underlying Tauberian theorem of Woods [15].

Our density theorem for quasi-logarithmic additive number systems holds true in situ-
ations which are not covered by the results obtained so far:

(i) an (x, θ)-quasi-logarithmic additive number system with parameter θ < 1 is not
covered by Compton’s density theorem;

(ii) if in addition the slowly varying function 
(n) does not converge to a positive con-
stant, the form of the counting function a(n) in (1·7) yields additive number systems
to which Woods’s density theorem does not apply either;

(iii) if we have an (x, θ)-quasi-logarithmic additive number system such that θ > 1 and
lim infn→∞ np(n)xn � 1, then the requirements of Compton’s density theorem are
true, but p(n) does not satisfy the conditions of Theorems 1·5, 1·6 or 1·7.

2. Asymptotics of the local counting function a(n)

2·1. A conditioning relation for component counts

Let A be an additive number system. For each n ∈ N with A(n) � � we endow the
finite set A(n) with the uniform distribution. Let C (n)

i (ω) be the number of indecomposable
elements of norm i in the unique decomposition of ω ∈ A(n). Clearly,

∑n
i=1 iC (n)

i (ω) = n, so
that the random variables C (n)

1 , . . . , C (n)

n are not independent. However, the joint distribution
of these random variables can be expressed as a conditional joint distribution of independent
random variables. To do so, let 0 < x < 1 and let {Zi(x)}i∈N be a sequence of mutually
independent random variables, where Zi(x) has the negative binomial NB(p(i), 1 − xi)-
distribution for each i such that p(i) > 0,

P[Zi(x) = k] :=
(

p(i) + k − 1

k

)
xik(1 − xi )p(i) for k ∈ Z+,

and where Zi(x) := 0 for each i with p(i) = 0. Then we define

Tn(x) :=
n∑

i=1

i Zi(x) for all n ∈ N, (2·1)

and set T0(x) := 0. We use the following conditioning relation for the vector of component
counts of multisets ω ∈ A(n).

LEMMA 2·1 (Arratia et al. [1]). Let n ∈ N with a(n) > 0 and let 0 < x < 1. If P[Tn(x) =
n] > 0, we have

L
(
C (n)

1 , . . . , C (n)

n

) = L(Z1(x), . . . , Zn(x) | Tn(x) = n). (2·2)

To express the counting function a(n) in terms of p(1), . . . , p(n), we introduce a new
sequence {Z �

i (x)}i∈N of independent random variables as follows. Let Z �
i (x) := Zi(x) if
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Asymptotic density in quasi-logarithmic additive number systems 273

p(i) > 0, and let Z �
i (x) be negative binomially NB(1, 1 − xi)-distributed if p(i) = 0. We

define

T �
n (x) := Tn−1(x) + nZ �

n(x) for each n ∈ N. (2·3)

LEMMA 2·2. Let n ∈ N have a(n) > 0, and let 0 < x < 1. If P[Tn(x) = n] > 0, we have

a(n) = P[T �
n (x) = n]

xn(1 − xn)p(n)∨1

n−1∏
i=1

(1 − xi)−p(i) − δn, (2·4)

where δn := 1{p(n) = 0}.

Proof. Fix n ∈ N with a(n) > 0, and 0 < x < 1. Assume that P[Tn(x) = n] > 0. We
distinguish two cases, p(n) > 0 and p(n) = 0.

(i) First, assume that p(n) > 0. The conditioning relation (2·2) and the independence of
the random variables Z1(x), . . . , Zn(x) yield

p(n)

a(n)
= P[C (n)

n = 1]
= P[(Z1(x), . . . , Zn−1(x), Zn(x)) = (0, . . . , 0, 1)|Tn(x) = n]

= P[Zn(x) = 1]
P[Tn(x) = n]

n−1∏
i=1

P[Zi(x) = 0]

= p(n)xn(1 − xn)p(n)

P[Tn(x) = n]
n−1∏
i=1

(1 − xi )p(i),

and this implies equation (2·4), since T �
n (x) = Tn(x) and δn = 0.

(ii) Now, assume that p(n) = 0. Here, P[T �
n (x) = n] � P[Z �

n(x) = 1] > 0, since Z �
n(x) ∼

NB(1, 1−xn). We define a new additive number system, A� := (A�, +�, 0�, P�, ‖·‖�)

say, as the direct sum of A and an auxiliary additive number system that contains only
one indecomposable element, which has norm n. Let a�(n) be the counting function
of A�, and p�(n) that of P�. By construction we have a�(n) = a(n)+1, p�(i) = p(i)
for i � n, and, p�(n) = p(n)+1 = 1. We endow A�(n) with the uniform probability
measure, and consider random variables C�(n)

i that count the number of components
of norm i in the sum decomposition of elements in A�(n). Lemma 2·1 yields

L
(
C�(n)

1 , . . . , C�(n)

n

) = L(Z1(x), . . . , Zn−1(x), Z �
n(x)|T �

n (x) = n),

where Z �
n(x) ∼ NB(1, 1−xn), since p(n) = 0. We argue much as in i), and conclude

that

1

a(n) + 1
= p�(n)

a�(n)
= p�(n)xn(1 − xn)p�(n)

P[T �
n (x) = n]

n−1∏
i=1

(1 − xi )p(i)

= xn(1 − xn)

P[T �
n (x) = n]

n−1∏
i=1

(1 − xi )p(i).

This yields equation (2·4), and finishes the proof.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004107000862
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:48:57, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004107000862
https:/www.cambridge.org/core


274 BRUNO NIETLISPACH

2·2. Conditions C1(θ) and C2

To examine the limiting behaviour of the local counting function a(n) given as in (2·4),
it is first necessary to establish the asymptotic behaviour of P[T �

n (x) = n], as n → ∞.
We therefore formalize conditions C1(θ) and C2 from Subsection 1·4 on the component
counting function p(i). We start with an arbitrary non-negative sequence {θi }i∈N, instead of
{i p(i)xi }i∈N.

Definition 2·3. Given a constant θ � 0 and a sequence {mn}n∈N of positive integers such
that mn → ∞ and mn = o(n), a sequence {θi }i∈N of non-negative real numbers satisfies
C1(θ, {mn}n∈N) if

θsup := sup
i∈N

θi < ∞

and

θ̃ (n)

max := max
j∈Jn

∣∣∣ 1

mn

mn∑
i=1

θ jmn+i − θ

∣∣∣ n→∞−−−→ 0, (2·5)

where Jn := { j ∈ Z+ : 0 � j � �n/mn�}. If (2·5) holds true for every sequence {mn}n∈N as
above, we say that {θi }i∈N satisfies condition C1(θ).

For details on the following examples of sequences that satisfy condition C1(θ) we refer
to Nietlispach [13].

Example 2·4.
(i) Let {θi }i∈N converge to some η > 0 on the infinite set I := {i ∈ N : θi > 0}. Let

{mn}n∈N be a sequence as in Definition 2·3. We define

ln( j) := |{1 � i � mn : θ jmn+i = 0}| for all n ∈ N and j ∈ Z+,

and we assume that there is a 0 � x < 1, such that

max
j∈Jn

∣∣∣ ln( j)

mn
− x

∣∣∣ n→∞−−−→ 0.

Then {θi }i∈N satisfies condition C1(θ, {mn}n∈N) with θ := (1 − x)η.
(ii) If {θi }i∈N is the integer skeleton of a non-negative function with rational period, or of

a non-negative function with irrational period p and bounded variation on a closed
interval of length p, then {θi }i∈N satisfies condition C1(θ) for some θ � 0.

(iii) Starting with sequences as in (i) or (ii), more complicated examples can be construc-
ted by noting that, if two sequences {θi }i∈N and {θ ′

i }i∈N satisfy C1(θ, {mn}n∈N) and
C1(θ

′, {mn}n∈N), respectively, then by the triangle inequality their sum satisfies con-
dition C1(θ + θ ′, {mn}n∈N). Moreover, if θi � θ ′

i for all i ∈ N and θ � θ ′, then
{θi − θ ′

i }i∈N satisfies C1(θ − θ ′, {mn}n∈N).

The following lemma plays an important role in establishing properties of quasi-
logarithmic additive number systems.

LEMMA 2·5. Let {θi }i∈N satisfy condition C1(θ, {mn}n∈N). Then


(n) := exp

(
n∑

i=1

θi − θ

i

)
, n ∈ N,
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is slowly varying at infinity. Furthermore, if mn � n, we have uniformly

max

{

(n)


(l)
,


(l)


(n)

}
� (χ1mn)

θsup

( n

l ∨ 1

)θ̃
(n)
max

for 0 � l < n, (2·6)

where χ1 := 2eζ(2)+2, and

max

{

(n)


(l)
,


(l)


(n)

}
� χ

θsup

2

(n

l

)θ̃
(n)
max

for mn � l < n, (2·7)

where χ2 := 4eζ(2)+1; ζ is the Riemann Zeta function.

Proof. To show that 
 is a slowly varying function, we use the notation θ̃ (n, j) :=
m−1

n

∑mn

i=1 θ jmn+i for n ∈ N and j ∈ Z+. Let 0 < λ < 1. Since mn = o(n), we find non-
negative integers an, bn and rn, sn < mn , such that �λn� = anmn + rn and n = bnmn + sn .
Note that an → ∞, bn → ∞ and an/bn → λ. Now 1 � an < bn for all n large enough. For
these n it follows that

n∑
i=�λn�+1

θi − θ

i
=

bn−1∑
j=an

mn∑
i=1

θ jmn+i − θ

jmn + i
+

sn∑
i=1

θbnmn+i − θ

bnmn + i
−

rn∑
i=1

θanmn+i − θ

anmn + i

=
bn−1∑
j=an

mn∑
i=1

(
θ jmn+i − θ̃ (n, j)

)(
1

jmn + i
− 1

jmn

)
︸ ︷︷ ︸

U

+
bn−1∑
j=an

mn∑
i=1

θ̃ (n, j) − θ

jmn + i

+
sn∑

i=1

θbnmn+i − θ

bnmn + i
−

rn∑
i=1

θanmn+i − θ

anmn + i
,

where the term U uses
∑mn

i=1(θ jmn+i − θ̃ (n, j)) = 0. Since |θ jmn+i − θ̃ (n, j)| � θsup, and

l∑
i=k+1

1

i
� log(l/k) for 1 � k < l, (2·8)

we conclude that∣∣∣∣∣
n∑

i=�λn�+1

θi − θ

i

∣∣∣∣∣ � θsup

bn−1∑
j=an

1

j2
+ θ̃ (n)

max

bnmn∑
i=anmn+1

1

i
+ θsupsn

bnmn
+ θsuprn

anmn

� θsup

bn−1∑
j=an

1

j2
+ θ̃ (n)

max log(bn/an) + θsup

bn
+ θsup

an

n→∞−−−→ 0.

This entails that

lim
n→∞


(�λn�)

(n)

= lim
n→∞

exp

(
−

n∑
i=�λn�+1

θi − θ

i

)
= 1

for all 0 < λ < 1. It follows from Bingham et al. [3, theorem 1·4·1] that 
 is slowly varying.
Inequalities (2·6) and (2·7) are proved with similar arguments. We write l = amn + r

and n = bmn + s, with non-negative integers a, b and r, s < mn , and we apply (2·8) and∑n
i=1 1/ i � log n + 1 in the calculations below.
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If a < b we obtain∣∣∣∣∣
n∑

i=l+1

θi − θ

i

∣∣∣∣∣ � θsup

b−1∑
j=a+1

1

j2
+ θ̃ (n)

max

n∑
i=l+1

1

i

+ θsup

s∑
i=1

1

bmn + i
+ θsup

mn−r∑
i=1

1

amn + r + i

� θsup

b−1∑
j=a+1

1

j2
+ θ̃ (n)

max

n∑
i=l+1

1

i
+ θsup

2mn∑
i=mn+1

1

i
+ θsup

mn∑
i=1

1

i

� θsupζ(2) + θ̃ (n)

max(log(n/(l ∨ 1)) + 1) + θsup log 2 + θsup(log mn + 1).

If a = b it follows that ∣∣∣∣∣
n∑

i=l+1

θi − θ

i

∣∣∣∣∣ � θsup(log mn + 1).

This yields (2·6).
If l � mn , we have a � 1 and thus

mn−r∑
i=1

1

amn + r + i
�

2mn∑
i=mn+1

1

i
� log 2,

from which we conclude (2·7). This finishes the proof.

We turn to the second condition, C2. As before, let {θi }i∈N be a sequence of non-negative
integers. This condition generalizes the idea that there is an ε > 0, such that we find either

(i) two arithmetical progressions { jr} j∈N and { js} j∈N, where s < r are coprime, such
that θ ju > ε for all j ∈ N and u ∈ {r, s},

(ii) or arithmetical progressions { jr} j∈N and { jr − s} j∈N, where s < r are coprime, such
that θ jr > ε and θ jr−s > ε for all j ∈ N.

We relax assumptions (i) and (ii) by allowing “gaps” to appear within the arithmetical
progressions. We therefore consider the following auxiliary definition.

Definition 2·6. Let u ∈ N, N ∈ Z+ and ε > 0. A set

Bj (N , u) := {N + ju + 1, N + ju + 2, . . . , N + ( j + 1)u}, where j ∈ Z+,

is a (ε, N , u)-good block, if θN+( j+1)u > ε. The set Bj (N , u) is called a (ε, N , u, v)-good
block if it is a (ε, N , u)-good block, and if there is a v ∈ N, v < u, such that θN+( j+1)u−v > ε.

Now we can state condition C2 in its general form, which includes a third case, (iii), in
addition to the general forms of (i) and (ii).

Definition 2·7. Let {θi }i∈N be a sequence of non-negative integers. The sequence satisfies
condition C2, if one of the following properties holds true:

(i) there is a constant ε > 0, coprime natural numbers s < r , and non-negative integers
Nr , Ns , with the property that for each u ∈ {r, s} there are runs of (ε, Nu, u)-good
blocks Bj (Nu, u) in N, such that the length of each such run is larger than the length
of the longest gap between two consecutive runs of (ε, Nu, u)-good blocks;
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(ii) we find a constant ε > 0, coprime natural numbers s < r , and a non-negative integer
N , with the property that there are runs of (ε, N , r, s)-good blocks Bj (N , r) in N,
such that the length of each such run is larger than the length of the longest gap
between two consecutive runs of (ε, N , r, s)-good blocks;

(iii) there exists some ε > 0, such that θi > ε for every odd i ∈ N.

A quasi-logarithmic additive number system A is defined by imposing the conditions
C1(θ) and C2 on the component counting function p(n) as follows.

Definition 2·8. An additive number system A is called (x, θ)-quasi-logarithmic for con-
stants 0 < x < 1 and θ > 0 if the sequence {np(n)xn}n∈N satisfies conditions C1(θ) and C2.
The constants x and θ are unique if they exist.

Remark 2·9. Note that we require that θ > 0 in contrast to the definition of condition
C1(θ), where θ = 0 is allowed.

The additive number systems defined by (1·3), (1·4), (1·5) and (1·6) in Subsection 1·4 are
indeed quasi-logarithmic. We show this for (1·4). It follows in this case that we have for all
i ∈ N

i p(i)xi = 1 + cos i − iεi(x)xi � 0 for suitable 0 � εi (x) < 1.

The sequence {1 + cos i}i∈N satisfies condition C1(1) as in Example 2·4 (ii). Condition C2 is
satisfied in the form of Definition 2·7 (ii). Indeed, we can choose ε > 0 small enough such
that 1 + cos i � ε for at most one i every two periods, so that Definition 2·7 (ii) holds true
with (ε, 0, 2, 1)-good blocks Bj (0, 2) = {2 j + 1, 2 j + 2}. Since 0 < x < 1, {iεi (x)xi}i∈N

converges to 0. Thus, {i p(i)xi }i∈N satisfies condition C1(1) by Example 2·4 (iii), and also
condition C2.

Example 2·10 (Mapping patterns). Consider the set Map(n) of all mappings from the set
{1, . . . , n} to itself. A mapping f corresponds to a labelled digraph with edges (i, f (i)),
1 � i � n, where every vertex has outdegree 1. The connected components are directed
cycles of rooted labelled trees. In a mapping pattern we consider the underlying topology
of such graphs. That is, we consider equivalence classes of mappings f under the relation
defined by

f ∼ g :⇔ There is a permutation π ∈ Sn such that f ◦ π = π ◦ g.

This gives rise to an additive number system A := (A, +, 0, P, ‖·‖), where A(n) :=
Map(n)/∼ for all n ∈ N, + is the disjoint union of graphs, 0 is the empty graph, P is
the set of connected graphs, and ‖·‖ gives the number of vertices in a graph. Meir and Moon
[12] showed that

p(n) = (2n)−1x−n + O
(
n−3/2x−n

)
where x ≈ 0.3383.

Example 2·11 (Multisets of aperiodic necklaces). Words of length n over a fixed alphabet
of size q form equivalence classes under rotation, called necklaces. They correspond to 2-
regular graphs with coloured beads. Consider the set Neckq(n) of all necklaces of aperiodic
words of size n over an alphabet of size q. This construction yields naturally an additive
number system A := (A, +, 0, P, ‖·‖) by setting P(n) := Neckq(n) for all n ∈ N. We
define +, 0 and ‖·‖ as in Example 2·10. It follows that (cf. Arratia et al. [1, example 2·12],
Knopfmacher and Zhang [11, section 3·1·1])

p(n) = n−1x−n + O
(
n−1x−n/2

)
where x = 1/q.
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278 BRUNO NIETLISPACH

Example 2·12.

(i) Every additive arithmetical semigroup, a terminology used by Knopfmacher and
Zhang [11] for additive number systems, that satisfies the “classical” abstract prime
number theorem (1·3), that is

p(n) ∼ x−nn−1 for some 0 < x < 1, (2·9)

is a (x, 1)-quasi-logarithmic additive number system. Knopfmacher and Zhang [11,
sections 1·1 and 3·1] give an exhaustive list of explicit additive arithmetical semig-
roups that satisfy (2·9). All of these examples satisfy (2·9) in the form

p(n) = x−nn−1 + O
(

x−n/2n−1
)
.

(ii) An additive arithmetical semigroup where the “non-classical” abstract prime number
theorem first examined by Indlekofer et al. [9] (cf. also Knopfmacher and Zhang [11,
section 5]),

np(n)xn = 1 + (−1)n+1 + o(1) for some 0 < x < 1,

holds true, is a (x, 1/2)-quasi-logarithmic additive number system.
(iii) What is more, Knopfmacher and Zhang [11, examples 3·8·1 and 3·8·6] consider two

analytical examples of additive arithmetic semigroups. Both are examples of (x, 1)-
quasi-logarithmic additive number systems; the first satisfies

p(n) =
{

2x−nn−1 + O(1) if n is odd

1 if n is even
for some 0 < x < 1,

the second

p(n) = x−nn−1 + O(1) for some 0 < x < 1.

Remark 2·13. Additional quasi-logarithmic additive number systems can be constructed,
by “perturbing” the additive number systems considered in Examples 2·10, 2·11 and 2·12.
Components can be “deleted”, or additional instances of a component can be introduced
(e. g. by colouring).

2·3. Asymptotic behaviour of a(n) under C1(θ) and C2

Recall the definition of the random variables Tn(x) in (2·1) and T �
n (x) in (2·3).

LEMMA 2·14. Let A be an (x, θ)-quasi-logarithmic additive number system. We have

P[T �
n (x) = n] ∼ P[Tn(x) = n] ∼ ρθ(1)n−1, (2·10)

where ρθ is the density of the Dickman distribution with parameter θ .

Proof. Let θi := i p(i)xi , i ∈ N. Under our assumption on A, {θi }i∈N satisfies conditions
C1(θ) and C2. Since 0 < x < 1 and

iEZi(x) = θi

(1 − xi )
� θi for i ∈ N,

the sequence {iEZi(x)}i∈N satisfies these conditions as well. Under condition C2 on
{iEZi(x)}i∈N we can invoke the local approximation theorem for the Dickman distribution
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Asymptotic density in quasi-logarithmic additive number systems 279

Pθ in Nietlispach [13] to conclude that

lim
n→∞

nP[Tn(x) = kn] = ρθ(1), (2·11)

for every integer sequence kn ∼ n. Note that we have Tn(x) = T �
n (x), if p(n) > 0, and

P[T �
n (x) = n] = P[Tn−1(x) = n](1 − xn) + P[Tn−1(x) = 0]xn(1 − xn),

if p(n) = 0. Now (2·10) follows from (2·11), since 0 < x < 1, and so nxn → 0.

THEOREM 2·15. Let A be an (x, θ)-quasi-logarithmic additive number system. Then A
is reduced. We have

a(n) ∼ cx−nnθ−1
(n), (2·12)

where

0 < c := ρθ(1)eθγ

(
lim

n→∞

n∏
i=1

(
exi

(1 − xi )
)−p(i)

)
< ∞, (2·13)

γ being Euler’s constant and ρθ the density of the Dickman distribution, and


(n) := exp

(
n∑

i=1

i p(i)xi − θ

i

)
, n ∈ N (2·14)

is slowly varying at infinity. In particular, x is the radius of convergence of A.

Proof. Let θi := i p(i)xi for i ∈ N. By assumption, {θi }i∈N satisfies condition C2,
which implies that A is reduced. This is clear under condition C2 (iii). Under condition
C2 (i) and (ii) there are natural numbers j, k, l, m (not necessarily pairwise distinct) with
θ j , θk, θl, θm > ε, or equivalently p( j), p(k), p(l), p(m) > 0, such that j − k = r and
l − m = s, where gcd(r, s) = 1. Now, if we had g := gcd( j, k, l, m) > 1, then g > 1 would
be a divisor of both r and s, which contradicts the assumption that r and s are coprime.
Hence, gcd{n ∈ N : p(n) > 0} = gcd( j, k, l, m) = 1, so that A is reduced.

Since A is reduced, a(n) > 0 for all n ∈ N large enough. Moreover, (2·10) entails that
P[Tn(x) = n] > 0 for all n ∈ N large enough. Therefore, we can invoke Lemma 2·2 and
write

a(n) + δn = P[T �
n (x) = n]

xn(1 − xn)p(n)∨1−p(n)

n∏
i=1

(1 − xi )−p(i)

for every n ∈ N large enough. Since 0 < x < 1, we have

lim
n→∞

(1 − xn)p(n)∨1−p(n) = 1.

Since also θsup < ∞, the product
∏n

i=1(e
xi
(1 − xi)

)−p(i)
converges to some constant 0 <

c′ < ∞, as n → ∞, and it follows that
n∏

i=1

(1 − xi)−p(i) ∼ c′ exp

(
n∑

i=1

p(i)xi

)

= c′ exp

(
n∑

i=1

θ

i

)
exp

(
n∑

i=1

i p(i)xi − θ

i

)

∼ c′eθγ nθ 
(n).
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Then we obtain, invoking (2·10), that

a(n) + δn ∼ cx−nnθ−1
(n),

where c := c′eθγ ρθ (1) > 0. Finally, (2·12) follows from

lim
n→∞

δn

x−nnθ−1
(n)
= 0.

The slow variation of 
(n) is immediate from Lemma 2·5 and, since 
(n) is slowly vary-
ing, we conlude from (2·12) and (1·9) that

lim
n→∞

a(n − 1)

a(n)
= x,

so that x is the radius of convergence of A.

3. Asymptotic density in quasi-logarithmic additive number systems

3·1. A density theorem and a logical limit law

Now we can state and prove our main result, a density theorem for quasi-logarithmic
additive number systems.

THEOREM 3·1. Let A be an (x, θ)-quasi-logarithmic additive number system. Then all
partition sets of A have asymptotic density which equals the Dirichlet density.

Proof. We treat the cases 0 < θ � 1 and θ > 1 separately. For the first case we use
Proposition 3·8 below, an extension of Woods’s density theorem, whereas for the second
case we invoke Compton’s density theorem.

First, assume that 0 < θ � 1. Here, from Theorem 2·15, the requirements of Proposi-
tion 3·8 hold true with ρ := x , µ := 1 − θ and θi := i p(i)xi , i ∈ N. Hence, all partition sets
of A have asymptotic density which equals the Dirichlet density.

Now, let θ > 1. Theorem 2·15 implies that 0 < x < 1 is the radius of convergence of A.
We show that there are constants C, K > 0, such that (1·1) holds true with ρ := x . Then
Theorem 1·1 implies that all partition sets of A have asymptotic density which equals the
Dirichlet density.

Let k = n. It follows from (2·12) and because a(0) = 1, that

a(0)

a(n)
∼ 1

cnθ−1
(n)
xn.

Since 
(n) is slowly varying by Theorem 2·15, and θ > 1, (1·8) yields nθ−1
(n) → ∞.
Since A is reduced, by Theorem 2·15, there is a K0 > 0 such that a(n) � 1 for all n � K0.
It follows that, for some c1 > 0,

a(0)

a(n)
� c1xn for all n � K0.

If 0 � k < n, (2·12) implies that, for some c2 > 0,

a(n − k)

a(n)
� c2

(
n − k

n

)θ−1

(n − k)


(n)
xk for all n � K0. (3·1)

Since, by assumption, {θi }i∈N satisfies condition C1(θ, {mn}n∈N) for every sequence {mn}n∈N
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Asymptotic density in quasi-logarithmic additive number systems 281

of positive integers with mn → ∞ and mn = o(n), we choose {mn}n∈N such that there is a
K1 > K0 with

mn � n(θ−1)/(θ−1+2θsup) for all n � K1. (3·2)

Then we choose K > K1 such that

θ − 1 − θ̃ (n)

max � θ − 1

2
for all n � K . (3·3)

Let n � K . If n − mn < k < n, we conclude from (3·1), using (2·6), (3·3) and (3·2), that

a(n − k)

a(n)
� c2χ

θsup

1 mθsup
n

(
n − k

n

)(θ−1)/2

xk

� c2χ
θsup

1 mθsup
n

(mn

n

)(θ−1)/2

xk

� c2χ
θsup

1 xk .

If 0 � k � n − mn , we obtain from (3·1), using (2·7) and (3·3), that

a(n − k)

a(n)
� c2χ

θsup

2

(
n − k

n

)(θ−1)/2

xk � c2χ
θsup

2 xk .

Now (1·1) follows with K as above, C := max{c1, c2χ
θsup

1 , c2χ
θsup

2 } and ρ := x . This
proves the theorem.

Remark 3·2. Compton’s density theorem cannot be applied if θ < 1. Indeed, it follows
from (2·12) that there is a constant c′ > 0, such that

a(1)

a(n)
� c′ 1

nθ−1
(n)
xn−1 for all n ∈ N,

and nθ−1
(n) → 0 by (1·8), since θ < 1. Thus, assumption (1·1) of Theorem 1·1 is violated.

An immediate consequence of Theorem 3·1 and Example 2·12 is the following result on
additive number systems that satisfy an abstract prime number theorem.

COROLLARY 3·3. Let A be an additive number system which satisfies an abstract prime
number theorem in the form

p(n) ∼ x−nn−1 or np(n)xn = 1 + (−1)n+1 + o(1),

for some 0 < x < 1. Then all partition sets of A have asymptotic density which equals the
Dirichlet density.

As a consequence of Theorem 3·1 and Theorem 1·2 we obtain the following logical limit
law.

COROLLARY 3·4. Let L be a finite, purely relational language, and let K be an adequate
class of finite L-structures, such that the additive number system AK is quasi-logarithmic.
Then K has a monadic second-order limit law.

The additive number systems from Examples 2·10 and 2·11, and also the explicit ex-
amples mentioned in Example 2·12 (i) and (iii) are covered by Woods’s density theorem
already. In these cases, the slowly varying function 
(n) defined in (2·14), with x := 1/q
and θ := 1, converges to a positive constant.
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For an additive number system whose counting function p(n) satisfies (1·6) neither
Compton’s nor Woods’s density theorem holds true. Nonetheless, all partition sets have
asymptotic density, as can be seen in the following example.

Example 3·5. Let A be an additive number system, where, for some 0 < x < 1, p(n)

satisfies (1·5), that is

p(n) = (1/2 + (log n)−1)x−nn−1 + O(1) for all n ∈ N, n � 2.

We have

θn(x) := np(n)xn n→∞−−−→ 1/2,

so that A is (x, θ)-quasi-logarithmic with θ := 1/2. By Theorem 3·1, all partition sets of
A have asymptotic density which equals the Dirichlet density. It follows from Remark 3·2
that A does not satisfy the assumptions of Theorem 1·1. What is more we have, for some
K > 0,∣∣∣∣∣

n∑
i=1

θi (x) − θ

i
− log log n

∣∣∣∣∣�
∣∣∣∣∣

n∑
i=1

θi (x) − θ

i
−

n∑
i=2

1

i log i

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=2

1

i log i
− log log n

∣∣∣∣∣�K.

This yields


(n) := exp

(
n∑

i=1

θi (x) − θ

i

)
� log n,

so that (2·12) entails with θ = 1/2 that

a(n) � x−nn−1/2
(n) � x−nn−1/2 log n.

Thus, A does not satisfy the requirements of Theorem 1·3 either.

3·2. Extending Woods’s results

We prove an extension of a Tauberian theorem of Woods [15] and obtain a extension of
Theorem 1·3 in this way.

LEMMA 3·6 (Extension of Woods’s Tauberian theorem). Let S(x) := ∑∞
n=0 s(n)xn,

T(x) := ∑∞
n=0 t (n)xn be two power series, and let R(x) := ∑∞

n=0 r(n)xn be the Cauchy
product of S(x) and T(x), that is

r(n) :=
∑

j+k=n

s( j)t (k) for all n ∈ Z+.

If S(ρ) converges absolutely at ρ for some 0 < ρ � 1, and if for some c > 0 and 0 � µ < 1

s(n) = O(ρ−nn−1), (3·4)

t (n) ∼ cρ−nn−µ
(n), (3·5)

where


(n) := exp

(
n∑

i=1

θi − θ

i

)
, n ∈ N,

and {θi }i∈N is a non-negative sequence that satisfies condition C1(θ), then

lim
n→∞

r(n)

t (n)
= S(ρ) = lim

x→ρ−

R(x)

T(x)
. (3·6)
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Remark 3·7. In contrast to our assumptions, Woods [15] requires that t (n) ∼ cρ−nn−µ

for some constants c > 0 and −∞ < µ < 1.

Proof of Lemma 3·6. We mimic the proof of Woods’s Tauberian theorem, as found in
Burris [4, appendix E].

The second equality in (3·6) is immediate from the fact that S(ρ) converges absolutely,
and that, from (3·5) and the slow variation of 
(n), ρ is the radius of convergence of T(x).
In this case R(x) is equal the usual product S(x) · T(x) for all 0 � x < ρ, and S(x) is
continuous on [0, ρ].

To prove the first equality of (3·6) we consider a change of variable ρx �→ x . Then we
have ρ = 1, and we have to show that

lim
n→∞

∣∣∣∣S(1) − r(n)

t (n)

∣∣∣∣ = 0.

We introduce

Rn :=
∑
k>

√
n

|s(k)| and Mn := n
√

Rn + √
n.

Note that Rn → 0, since S(1) converges absolutely, and that Mn → ∞ and n − Mn >
√

n
for all n ∈ N large enough. We also have

Mn = o(n) and n Rn = o(Mn).

For all n large enough for n − Mn >
√

n to hold we consider∣∣∣∣S(1) − r(n)

t (n)

∣∣∣∣ �
∣∣∣∣∣S(1) −

∑
0�k�n

s(k)

∣∣∣∣∣ +
∣∣∣∣∣ ∑

0�k�n

s(k) − r(n)

t (n)

∣∣∣∣∣
�

∣∣∣∣∣S(1) −
∑

0�k�n

s(k)

∣∣∣∣∣︸ ︷︷ ︸
U1(n)

+
∑

0�k�√
n

∣∣∣∣s(k)

(
1 − t (n − k)

t (n)

)∣∣∣∣︸ ︷︷ ︸
U2(n)

+
∑

√
n<k�n

|s(k)|
︸ ︷︷ ︸

U3(n)

+
∑

√
n<k�n−Mn

|s(k)| t (n − k)

t (n)︸ ︷︷ ︸
U4(n)

+
∑

n−Mn<k�n

|s(k)| t (n − k)

t (n)︸ ︷︷ ︸
U5(n)

.

The first and third expression, U1(n) and U3(n), converge to zero, since S(1) is absolutely
convergent by assumption.

If f is a function on N and A ⊂ N, we use arg maxk∈A f (k) to denote the value k ∈ A for
which f is maximal. To bound U2(n), let

kn := arg max
0�k�√

n

∣∣∣∣1 − t (n − k)

t (n)

∣∣∣∣ = o(n).

Note that 
(n) is slowly varying at infinity, by Lemma 2·5. Then we obtain from (3·5), with
ρ = 1, that

t (n − kn)

t (n)
∼

(
n

n − kn

)µ

(n − kn)


(n)

n→∞−−−→ 1
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Invoking the absolute convergence of S(1) once more, we conclude that

U2(n) �
(∑

k�0

|s(k)|
)∣∣∣∣1 − t (n − kn)

t (n)

∣∣∣∣ n→∞−−−→ 0.

To bound U4(n) from above, a similar argument is used. We introduce

k ′
n := arg max√

n<k�n−Mn

t (n − k)

t (n)

and conclude that

U4(n) � Rn
t (n − k ′

n)

t (n)
. (3·7)

Since n − k ′
n � Mn → ∞, we obtain from (3·5) with ρ = 1 that

t (n − k ′
n)

t (n)
∼

(
n

n − k ′
n

)µ

(n − k ′

n)


(n)
. (3·8)

From the representation theorem for slowly varying sequences (cf. Bingham et al. [3, the-
orem 1·9·7]) it follows that


(n − k ′
n)


(n)
∼ exp

⎛
⎝−

n∑
i=n−k ′

n+1

δ(i)

i

⎞
⎠ �

(
n

n − k ′
n

)ε(n)

, (3·9)

where δ(i) → 0 and ε(n) := supi�Mn
|δ(i)| → 0. Using inequalities (3·8) and (3·9) together

with (3·7) we conclude that, for some constant c1 > 0,

U4(n) � c1 Rn

(
n

n − k ′
n

)µ+ε(n)

� c1 Rn

(
n

Mn

)µ+ε(n)

.

By assumption we have 0 � µ < 1. Since ε(n) → 0, we have µ � µ + ε(n) < 1 for all
n ∈ N large enough. For these n we have

U4(n) � c1 R1−µ−ε(n)
n

(
n Rn

Mn

)µ+ε(n)

. (3·10)

Recall that Rn → 0 and n Rn = o(Mn). Therefore, the right-hand side of (3·10), and thus
U4(n), converges to zero for every 0 � µ < 1.

To bound U5(n), we rewrite this expression as

U5(n) =
∑

0�k<Mn

|s(n − k)| t (k)

t (n)
� |s(n − k ′′

n )|
t (0)

t (n)
+ |s(n − k ′′

n )|
∑

1�k<Mn

t (k)

t (n)
, (3·11)

where

k ′′
n := arg max

0�k<Mn

|s(n − k)| = o(n).

Under assumption (3·4), with ρ = 1, we have |s(n−k ′′
n )| ∼ 1/n, so that, since 
(n) is slowly

varying and therefore n1−µ
(n) → ∞ for all 0 � µ < 1,

|s(n − k ′′
n )|

t (0)

t (n)
∼ t (0)

n1−µ
(n)

n→∞−−−→ 0. (3·12)
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Furthermore, it follows from (3·5) that, for some constant c2 > 0,

|s(n − k ′′
n )|

∑
1�k<Mn

t (k)

t (n)
� c2

1

n

∑
1�k<Mn

(n

k

)µ 
(k)


(n)
. (3·13)

By assumption {θi }i∈N satisfies condition C1(θ, {mn}n∈N) for every sequence {mn}n∈N of pos-
itive integers with mn → ∞ and mn = o(n). Here, we choose a sequence {mn}n∈N defined
by

mn :=
⌊(

n

Mn

)(1−µ)/(2(θsup∨1))
⌋

∨ 1 for all n ∈ N.

Since Mn = o(n) and 0 < (1 − µ)/(2(θsup ∨ 1)) < 1 we have mn → ∞ and mn = o(n) as
required. Now invoke (2·6) with this choice of {mn}n∈N. We obtain for all n ∈ N, such that
Mn � n,


(k)


(n)
� χ

θsup

1

(
n

Mn

)(1−µ)/2 (n

k

)θ̃
(n)
max

for all 1 � k < Mn .

Combining this result with (3·13) implies that

|s(n − k ′′
n )|

∑
1�k<Mn

t (k)

t (n)
� c2χ

θsup

1

1

n1−µ−θ̃
(n)
max

(
n

Mn

)(1−µ)/2 ∑
1�k<Mn

1

kµ+θ̃
(n)
max

.

Since 0 � µ < 1 and θ̃ (n)

max → 0 we have µ � µ + θ̃ (n)

max < 1 for all n ∈ N large enough, and
for these n ∑

1�k<Mn

1

kµ+θ̃
(n)
max

� M1−µ−θ̃
(n)
max

n

1 − µ − θ̃ (n)

max

holds true. Hence, we conclude that

|s(n − k ′′
n )|

∑
1�k<Mn

t (k)

t (n)
� c2χ

θsup

1

1 − µ − θ̃ (n)

max

(
Mn

n

)(1−µ)/2−θ̃
(n)
max

. (3·14)

The right-hand side of (3·14) converges to zero since Mn = o(n) and θ̃ (n)

max → 0. Finally,
combining (3·11) with (3·12) and (3·14) yields U5(n) → 0, which proves the proposition.

PROPOSITION 3·8 (Extension of Woods’s density theorem). Assume that A is an addit-
ive number system such that, for some 0 < ρ � 1, c > 0 and 0 � µ < 1,

p(n) = O(ρ−nn−1), (3·15)

a(n) ∼ cρ−nn−µ
(n), (3·16)

where


(n) := exp

(
n∑

i=1

θi − θ

i

)
, n ∈ N,

and {θi }i∈N satisfies condition C1(θ). Then all partition sets of A have asymptotic density
which equals the Dirichlet density.

Proof. It follows from a(n) ∼ cρ−nn−µ
(n) and the slow variation of 
(n) that ρ

is the radius of convergence of A. The remainder of the proof is exactly the same as
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the proof of Woods’s density theorem in Burris [4, appendix E], so we only give a
short outline. Recall the definition of the asymptotic density δ and Dirichlet density ∂ in
Subsection 1·2.

If ρ = 1 then Burris [4, theorem 4·2] states that a(n − 1)/a(n) → 1, as n → ∞, is
sufficient for all partition sets to have asymptotic density, which agrees with the Dirichlet
density on these sets.

Now let 0 < ρ < 1, and let B be a partition set. Note that the Dirichlet density ∂(b) exists
by Burris [4, theorem 3·40]. If ∂(B) = 0, then the asymptotic density δ(B) is zero as well
(cf. Burris [4, corollary 5·7]).

It remains to prove the theorem in the case where ∂(B) > 0. Here, Lemma 3·6 is applied
with special forms of the power series S(x) = ∑∞

n=0 s(n)xn and T(x) = ∑∞
n=0 t (n)xn ,

namely

S(x) := B̄ � [1/A
]
(x) and T(x) := A(x),

where A(x) is the generating series of the additive number system A, [1/A](x) is the power
series expansion of 1/A(x), B̄(x) := ∑∞

n=0 b̄(n)xn is the generating series of a special
partition set B̄, constructed from B (cf. Burris [4, p. 92]), and � denotes the Cauchy product.
In this special case, the conclusion (3·6) of Lemma 3·6 translates into

lim
n→∞

b̄(n)

a(n)
= S(ρ) = lim

x→ρ

B̄(x)

A(x)
,

which means that δ(B̄) = ∂(B̄). But δ(B̄) = δ(B) and ∂(B̄) = ∂(B), by Burris [4,
lemma 5·12].

The assumptions of Lemma 3·6 hold true with our choices of S(x) and T(x). Indeed,
since t (n) = a(n) for all n ∈ N, (3·16) immediately yields (3·5), and Burris [4, p. 278–279]
proves that (3·15) implies (3·4). What is more, it follows from Burris [4, corollary 5·11 and
p. 10 above] that S(ρ) converges absolutely.

Acknowledgements. I thank Andrew Barbour for many helpful comments and sugges-
tions, and a referee for many careful and constructive suggestions.

REFERENCES
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