A rigid triple of conjugacy classes in $\boldsymbol{G}_{\mathbf{2}}$

Martin W. Liebeck, Alastair J. Litterick and Claude Marion
(Communicated by R. M. Guralnick)

Abstract

We produce a rigid triple of classes in the algebraic group G_{2} in characteristic 5, and use it to show that the finite groups $G_{2}\left(5^{n}\right)$ are not $(2,5,5)$-generated.

1 Introduction

Let G be a connected simple algebraic group over an algebraically closed field K, and let C_{1}, \ldots, C_{s} be conjugacy classes in G. Let \mathbf{C} denote the s-tuple $\left(C_{1}, \ldots, C_{s}\right)$, and define

$$
\mathbf{C}_{0}=\left\{\left(x_{1}, \ldots, x_{s}\right) \in C_{1} \times \cdots \times C_{s}: x_{1} x_{2} \ldots x_{s}=1\right\}
$$

Then G acts on \mathbf{C}_{0} by componentwise conjugation. Following [8], we say that the s-tuple $\mathbf{C}=\left(C_{1}, \ldots, C_{s}\right)$ is rigid in G if \mathbf{C}_{0} is non-empty and G is transitive on \mathbf{C}_{0}.

For G a classical group, there are many known examples of rigid tuples of classes, such as Belyi triples and Thompson tuples, as defined in [9]. However we are not aware of many examples in the literature for exceptional algebraic groups. In this paper we produce a rigid triple of classes in the algebraic group G_{2} in characteristic 5 , and use it to answer a question raised in [5] concerning the generation of the finite groups $G_{2}\left(5^{n}\right)$.

Let $K=\overline{\mathbb{F}}_{5}$, the algebraic closure of the field \mathbb{F}_{5} of five elements, and let $G=G_{2}(K)$. The conjugacy classes of G can be read off from [1]. We pick out two of the classes. The first is the unique involution class: letting $t \in G$ be an involution, we have

$$
C_{G}(t)=A_{1} \tilde{A}_{1},
$$

a central product of commuting SL_{2} 's, where A_{1} (resp. $\tilde{A_{1}}$) is generated by long (resp. short) root elements of G. The class t^{G} has dimension 8 .

Adopting the notation of [4, Table B, p. 4130], we see that G has three classes of elements of order 5: the long and short root elements, and the class labelled $G_{2}\left(a_{1}\right)$, with representative

$$
u=x_{b}(1) x_{3 a+b}(1)
$$

where a, b are simple roots with a short and b long. The centralizer $C_{G}(u)$ has connected component U_{4}, a unipotent group of dimension 4 , and the component group $C_{G}(u) / C_{G}(u)^{0} \cong S_{3}$. The class u^{G} has dimension 10 .

Here is our main result. In part (iii), by a $(2,5,5)$-group we mean a group which is generated by elements x, y, z of orders $2,5,5$ satisfying $x y z=1$.

Theorem. (i) The triple of classes $\mathbf{C}=\left(t^{G}, u^{G}, u^{G}\right)$ is rigid in $G=G_{2}(K)$.
(ii) Every triple of elements $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{C}_{0}$ generates a subgroup of G isomorphic to the alternating group Alt_{5}.
(iii) None of the groups $G_{2}\left(5^{n}\right)$ is a $(2,5,5)$-group for any n. Neither are $\operatorname{SL}_{3}\left(5^{n}\right)$ or $\mathrm{SU}_{3}\left(5^{n}\right)$.

Remarks. (1) Notice that $\operatorname{dim} t^{G}+2 \operatorname{dim} u^{G}=28=2 \operatorname{dim} G_{2}$. This agrees with [8, Corollary 3.2], which states that for any rigid tuple $\mathbf{C}=\left(C_{1}, \ldots, C_{s}\right)$ in G, such that $C_{L(G)}\left(x_{1}, \ldots, x_{s}\right)=0$ for $\left(x_{1}, \ldots, x_{s}\right) \in \mathbf{C}_{0}$, we have

$$
\sum_{i=1}^{s} \operatorname{dim} C_{i}=2 \operatorname{dim} G
$$

(We shall see that the subgroup Alt_{5} in (ii) of the theorem has zero centralizer in $L(G)$.)
(2) Part (iii) of the theorem answers one case of the conjecture posed in [5]. This conjecture asserts that if $\left(p_{1}, p_{2}, p_{3}\right)$ is a 'rigid' triple of primes for a simple algebraic group X in characteristic p (meaning that the varieties of elements of orders dividing p_{1}, p_{2}, p_{3} have dimensions adding up to $2 \operatorname{dim} X$), then there are only finitely many values of n such that $X\left(p^{n}\right)$ is a $\left(p_{1}, p_{2}, p_{3}\right)$-group. The only rigid triple of primes for exceptional groups is $(2,5,5)$ for G_{2}. For this case part (iii) verifies the conjecture in characteristic $p=5$.

2 Proof of the theorem

Let $G=G_{2}(K)$ with $K=\overline{\mathbb{F}}_{5}$, and let $t, u \in G$ be as defined in the previous section. If σ is the Frobenius morphism of G induced by the map $x \mapsto x^{5}$ on K, then

$$
G=\bigcup_{n=1}^{\infty} G_{\sigma^{n}}=\bigcup_{n=1}^{\infty} G_{2}\left(5^{n}\right)
$$

To begin the proof, observe that $u=x_{b}(1) x_{3 a+b}(1)$ is a regular unipotent element in the subgroup $A_{2} \cong \mathrm{SL}_{3}(K)$ of G generated by the long root groups $X_{ \pm b}, X_{ \pm(3 a+b)}$. Hence u lies in an orthogonal subgroup $\Omega_{3}(5) \cong$ Alt ${ }_{5}$ of this A_{2}. Write A for this Alt_{5}, so

$$
\begin{equation*}
u \in A<A_{2}<G \tag{1}
\end{equation*}
$$

Also $N_{A_{2}}(A)=\mathrm{SO}_{3}(5) \cong S_{5}$.

We next calculate $C_{G}(A)$. Certainly this contains the centre $\langle z\rangle$ of A_{2}, and it also contains an outer involution τ in $N_{G}\left(A_{2}\right)=A_{2} .2$ (since such an involution centralizes an orthogonal group $\mathrm{SO}_{3}(K)$ in A_{2}). We claim that

$$
\begin{equation*}
C_{G}(A)=\langle z, \tau\rangle \cong S_{3} . \tag{2}
\end{equation*}
$$

To see this, take a Klein 4-subgroup $E=\left\langle t_{1}, t_{2}\right\rangle<A$. By viewing E inside $C_{G}\left(t_{1}\right)=A_{1} \tilde{A}_{1}$, we see that E lies in a maximal torus T_{2} of G, and

$$
C_{G}(E) \leqslant N_{G}\left(T_{2}\right)=T_{2} \cdot W\left(G_{2}\right) .
$$

Since $W\left(G_{2}\right) \cong D_{12}$ has order coprime to $p=5$, it follows that $C_{G}(E)$ consists of semisimple elements. But also $C_{G}(A) \leqslant C_{G}(u)=U_{4} \cdot S_{3}$, where U_{4} is a connected unipotent group. Consequently $C_{G}(A)$ is isomorphic to a subgroup of S_{3}, and hence (2) holds.

Call a triple of elements $\left(a_{1}, a_{2}, a_{3}\right)$ in A^{3} a $(2,5,5)$-triple if a_{1}, a_{2}, a_{3} have orders $2,5,5$ respectively, and $a_{1} a_{2} a_{3}=1$. A simple calculation using the character table of Alt_{5} shows that the number of $(2,5,5)$-triples in A^{3} is 120 , and these are permuted transitively by $N_{A_{2}}(A) \cong S_{5}$.

Now let \mathbf{C} denote the triple of classes $\left(t^{G}, u^{G}, u^{G}\right)$, and define \mathbf{C}_{0} as in the Introduction. Fix any $q=5^{n}$, so $G_{\sigma^{n}}=G_{2}(q)$, and let $\mathbf{C}_{0}(q)=\mathbf{C}_{0} \cap G_{2}(q)^{3}$. Next we show that

$$
\begin{equation*}
\left|\mathbf{C}_{0}(q)\right|=\left|G_{2}(q)\right| . \tag{3}
\end{equation*}
$$

To prove this we require the character table of $G_{2}(q)$, given in [2]. Since $C_{G}(u)=U_{4} \cdot S_{3}$, Lang's theorem shows that $u^{G} \cap G_{2}(q)$ splits into three $G_{2}(q)$-classes with representatives denoted in [2] by u_{3}, u_{4}, u_{5} and having respective centralizer orders $6 q^{4}, 2 q^{4}, 3 q^{4}$. For $x, y, z \in G_{2}(q)$ let $a_{x, y, z}$ be the class algebra constant of the classes with representatives x, y, z. From the character table (and using CHEVIE [3] to assist with the calculations) we find that for $i, j \in\{3,4,5\}$,

$$
a_{t, u_{i}, u_{j}}= \begin{cases}q^{4} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

It follows that

$$
\left|\mathbf{C}_{0}(q)\right|=\sum_{i=3}^{5}\left|u_{i}^{G_{2}(q)}\right| \cdot a_{t, u_{i}, u_{i}}=q^{4}\left|G_{2}(q)\right|\left(\frac{1}{2 q^{4}}+\frac{1}{3 q^{4}}+\frac{1}{6 q^{4}}\right)=\left|G_{2}(q)\right|,
$$

proving (3).
At this point we can complete the proof of the theorem. Define \mathbf{C}_{0}^{\prime} to be the set of triples $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{C}_{0}$ such that $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ is a G-conjugate of A. Since σ
centralizes A, it acts on \mathbf{C}_{0}^{\prime}. Moreover, G acts transitively on \mathbf{C}_{0}^{\prime} : for if $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)$ are triples in \mathbf{C}_{0}^{\prime}, with $\left\langle x_{1}, x_{2}, x_{3}\right\rangle=A,\left\langle y_{1}, y_{2}, y_{3}\right\rangle=A^{g}$, then $\left(x_{1}, x_{2}, x_{3}\right)$ and $\left(y_{1}, y_{2}, y_{3}\right)^{g^{-1}}$ are $(2,5,5)$-triples in A^{3}, and hence by the observation two paragraphs above, they are conjugate by an element of $N_{G}(A)$.

Now we apply Lang's theorem in the form of $[7,(\mathrm{I}, 2.7)]$ to the transitive action of G on \mathbf{C}_{0}^{\prime}. By (2), a point stabilizer is $C_{G}(A)=S_{3}$. Hence Lang's theorem shows that the set $\mathbf{C}_{0}^{\prime}(q)=\mathbf{C}_{0}^{\prime} \cap G_{2}(q)^{3}$ splits into three $G_{2}(q)$-orbits, of sizes $\left|G_{2}(q)\right| / r$ for $r=2,3,6$, and so

$$
\left|\mathbf{C}_{0}^{\prime}(q)\right|=\left|G_{2}(q)\right| \cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)=\left|G_{2}(q)\right| .
$$

It follows by (3) that $\mathbf{C}_{0}^{\prime}(q)=\mathbf{C}_{0}(q)$. Hence

$$
\mathbf{C}_{0}=\bigcup_{n=1}^{\infty} \mathbf{C}_{0}\left(5^{n}\right)=\bigcup_{n=1}^{\infty} \mathbf{C}_{0}^{\prime}\left(5^{n}\right)=\mathbf{C}_{0}^{\prime}
$$

Therefore G is transitive on \mathbf{C}_{0} and every triple in \mathbf{C}_{0} generates a conjugate of A.
This completes the proof of parts (i) and (ii) of the theorem. Finally, for part (iii), suppose that $G_{2}\left(5^{n}\right), \mathrm{SL}_{3}\left(5^{n}\right)$ or $\mathrm{SU}_{3}\left(5^{n}\right)$ is $(2,5,5)$-generated, with corresponding generators x_{1}, x_{2}, x_{3}. Now $L\left(G_{2}\right) \downarrow A_{2}$ is the sum of $L\left(A_{2}\right)$ and two irreducible 3dimensional A_{2}-modules (see for example [6, (1.8)]), and hence $C_{L\left(G_{2}\right)}\left(x_{1}, x_{2}, x_{3}\right)=0$. (It also follows that $C_{L\left(G_{2}\right)}\left(\mathrm{Alt}_{5}\right)=0$; see Remark 1 in the Introduction.) At this point, the first argument in the proof of [8, (3.2)] shows that the generators x_{1}, x_{2}, x_{3} must lie in classes of dimensions summing to at least $2 \operatorname{dim} G_{2}=28$, hence in the classes t^{G}, u^{G}, u^{G}. But this is impossible by part (ii) of the theorem.

References

[1] B. Chang. The conjugate classes of Chevalley groups of type (G_{2}). J. Algebra 9 (1968), 190-211.
[2] B. Chang and R. Ree. The characters of $G_{2}(q)$. In Convegno di gruppi e loro rappresentazioni, INDAM, Rome, 1972, Sympos. Math. XIII (Academic Press, 1974), pp. 395-413.
[3] M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer. CHEVIE-A system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras. Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175-210.
[4] R. Lawther. Jordan block sizes of unipotent elements in exceptional algebraic groups. Comm. Algebra 23 (1995), 4125-4156.
[5] C. Marion. On triangle generation of finite groups of Lie type. J. Group Theory 13 (2010), 619-648.
[6] G. M. Seitz. Maximal subgroups of exceptional algebraic groups. Mem. Amer. Math. Soc. 90 (1991), no. 441.
[7] T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on algebraic groups and related topics, Lecture Notes in Math. 131 (Springer-Verlag, 1970), pp. 167-266.
[8] K. Strambach and H. Völklein. On linearly rigid tuples. J. Reine Angew. Math. 510 (1999), 57-62.
[9] H. Völklein. Rigid generators of classical groups. Math. Ann. 311 (1998), 421-438.

Received 6 May, 2009; revised 13 January, 2010
Martin W. Liebeck Department of Mathematics, Imperial College, London SW7 2AZ, U.K. E-mail: m.liebeck@imperial.ac.uk

Alastair J. Litterick, Department of Mathematics, Imperial College, London SW7 2AZ, U.K. E-mail: alastair.litterick05@imperial.ac.uk
Claude Marion, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
E-mail: claude.marion@epfl.ch

