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A rigid triple of conjugacy classes in G;
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Abstract. We produce a rigid triple of classes in the algebraic group G in characteristic 5, and
use it to show that the finite groups G»(5") are not (2,5, 5)-generated.

1 Introduction

Let G be a connected simple algebraic group over an algebraically closed field K, and
let Cy,...,C, be conjugacy classes in G. Let C denote the s-tuple (Cy,. .., C;), and
define

Co={(x1,...,x)€Cy x -+ x Cy: x1X3...%x, = 1}.

Then G acts on Cy by componentwise conjugation. Following [8], we say that the
s-tuple C = (Cy, ..., Cy) is rigid in G if Cy is non-empty and G is transitive on Cy.

For G a classical group, there are many known examples of rigid tuples of classes,
such as Belyi triples and Thompson tuples, as defined in [9]. However we are not
aware of many examples in the literature for exceptional algebraic groups. In this
paper we produce a rigid triple of classes in the algebraic group G, in characteristic
5, and use it to answer a question raised in [5] concerning the generation of the finite
groups G,(5").

Let K =TFs, the algebraic closure of the field IFs of five elements, and let
G = G»(K). The conjugacy classes of G can be read off from [1]. We pick out two
of the classes. The first is the unique involution class: letting ¢ € G be an involution,
we have

Ce(t) = A1 4,

a central product of commuting SL;,’s, where A, (resp. A 1) is generated by long (resp.
short) root elements of G. The class #© has dimension 8.

Adopting the notation of [4, Table B, p. 4130], we see that G has three classes of
elements of order 5: the long and short root elements, and the class labelled G»(a;),
with representative

u = xp(1)x3445(1)
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where a, b are simple roots with a short and b long. The centralizer C(u) has con-
nected component Uy, a unipotent group of dimension 4, and the component group
Cg(u)/Cg(u)® = S3. The class u© has dimension 10.

Here is our main result. In part (iii), by a (2, 5, 5)-group we mean a group which is
generated by elements X, y, z of orders 2,5,5 satisfying xyz = 1.

Theorem. (i) The triple of classes C = (t%,u®, u%) is rigid in G = G>(K).

(i) Every triple of elements (x1, x2, x3) € Cy generates a subgroup of G isomorphic to
the alternating group Alts.

(iii) None of the groups G,(5") is a (2,5,5)-group for any n. Neither are SL3(5") or
SU3(5™).

Remarks. (1) Notice that dim¢9 +2dimu® = 28 = 2dim G,. This agrees with [8,
Corollary 3.2], which states that for any rigid tuple C = (Cy,..., Cs) in G, such that
Cre)(x1,...,x5) =0 for (xq,...,x;) € Co, we have

> dim G; =2dim G.
i=1

(We shall see that the subgroup Alts in (ii) of the theorem has zero centralizer in
L(G).)

(2) Part (iii) of the theorem answers one case of the conjecture posed in [5]. This
conjecture asserts that if (py, ps, p3) is a ‘rigid’ triple of primes for a simple algebraic
group X in characteristic p (meaning that the varieties of elements of orders dividing
D1, P2, p3 have dimensions adding up to 2dim X)), then there are only finitely many
values of n such that X (p") is a (pi, pa, p3)-group. The only rigid triple of primes for
exceptional groups is (2, 5,5) for G,. For this case part (iii) verifies the conjecture in
characteristic p = 5.

2 Proof of the theorem

Let G = G»(K) with K = IFs, and let #,u € G be as defined in the previous section. If
o is the Frobenius morphism of G induced by the map x — x> on K, then

To begin the proof, observe that u = x(1)x3,45(1) is a regular unipotent element
in the subgroup 4, =~ SL3(K) of G generated by the long root groups Xyp, X (34445)-
Hence u lies in an orthogonal subgroup Qs(5) = Alts of this 4,. Write A for this
Alts, so

ueAd < A4, <G. (1)
Also NAZ(A) = SO3(5) ~ Ss.
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We next calculate C(A4). Certainly this contains the centre {z) of 4,, and it also
contains an outer involution 7 in Ng(A42) = A4,.2 (since such an involution centralizes
an orthogonal group SO;3(K) in 4,). We claim that

Ce(A) =<{z,t) = Ss. (2)

To see this, take a Klein 4-subgroup E = {t1,5) < A. By viewing E inside
Cg(t) = A1 41, we see that E lies in a maximal torus 7, of G, and

C(;(E) < NG(TZ) = Tz.W(GQ).

Since W(G,) = Dj, has order coprime to p =35, it follows that Cg(E) consists of
semisimple elements. But also Cg(A4) < Cg(u) = Us.S3, where Uy is a connected uni-
potent group. Consequently Cg(A) is isomorphic to a subgroup of S3, and hence (2)
holds.

Call a triple of elements (a;,ay,a3) in A° a (2,5, 5)-triple if a1, ay, a3 have orders
2,5,5 respectively, and ajaras = 1. A simple calculation using the character table of
Alts shows that the number of (2,5, 5)-triples in 4° is 120, and these are permuted
transitively by Ny, (A4) = Ss.

Now let C denote the triple of classes (%, u“ u%), and define C as in the Intro-
duction. Fix any ¢ = 5", s0 G,» = G»(q), and let Cy(g) = Co N G»(¢)>. Next we show
that

1Co(q)| = |Ga(q)]- (3)

To prove this we require the character table of G,(g), given in [2]. Since
Cs(u) = Uy.S3, Lang’s theorem shows that u¢ N Ga(g) splits into three G, (q)-classes
with representatives denoted in [2] by us, us, us and having respective centralizer
orders 6¢*, 2¢*, 3¢*. For x, y,z € G1(q) let ay,, - be the class algebra constant of the
classes with representatives x, y, z. From the character table (and using CHEVIE [3]
to assist with the calculations) we find that for i, j € {3,4, 5},

4 B {q4 ifi=j
P 00 i i £
It follows that

5
1 1 1
C :E O e LTI R Pe
| O(q)| — |u1 |af.luuy q| Z(q)| 2q4+3q4+6q4 | Z(Q)‘,

proving (3).
At this point we can complete the proof of the theorem. Define C; to be the
set of triples (xi,x2,x3) € Co such that <{xj,xz,x3) is a G-conjugate of 4. Since o
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centralizes 4, it acts on C,. Moreover, G acts transitively on C|: for if (x1, x2, x3) and
(1, ¥2,»3) are triples in C;), with {x1,x2,x3> = 4, {1, y2,y3> = A9, then (x1, X2, x3)
and (y1, y2, )/3)"’7l are (2,5,5)-triples in 43, and hence by the observation two para-
graphs above, they are conjugate by an element of Ng(A4).

Now we apply Lang’s theorem in the form of [7, (I,2.7)] to the transitive action
of G on Cj. By (2), a point stabilizer is C5(4) = S;. Hence Lang’s theorem shows
that the set Cj(¢) = CyN Ga(q)’ splits into three G, (g)-orbits, of sizes |G(g)|/r for
r=2,3,6, and so

G0 = |Gl (5+ 5+ ¢) = (o)l

It follows by (3) that C;(¢g) = Co(g). Hence

= as") = U 65" = 6.

n=1 n=1

Therefore G is transitive on Cy and every triple in Cy generates a conjugate of 4.

This completes the proof of parts (i) and (ii) of the theorem. Finally, for part (iii),
suppose that G,(5"), SL3(5") or SU3(5") is (2,5, 5)-generated, with corresponding
generators xj, Xa, x3. Now L(Gy) | 4, is the sum of L(A,) and two irreducible 3-
dimensional 4>-modules (see for example [6, (1.8)]), and hence Cy (g, (x1,x2,x3) = 0.
(It also follows that Cyg,)(Alts) = 0; see Remark 1 in the Introduction.) At this
point, the first argument in the proof of [8, (3.2)] shows that the generators xi, x», x3
must lie in classes of dimensions summing to at least 2dim G, = 28, hence in the
classes 19, 1%, uC. But this is impossible by part (ii) of the theorem.
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