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ABSTRACT

Tandem repeats (TRs) represent one of the most
prevalent features of genomic sequences. Due to
their abundance and functional significance, a
plethora of detection tools has been devised over
the last two decades. Despite the longstanding
interest, TR detection is still not resolved. Our
large-scale tests reveal that current detectors
produce different, often nonoverlapping inferences,
reflecting characteristics of the underlying algo-
rithms rather than the true distribution of TRs in
genomic data. Our simulations show that the
power of detecting TRs depends on the degree of
their divergence, and repeat characteristics such as
the length of the minimal repeat unit and their
number in tandem. To reconcile the diverse predic-
tions of current algorithms, we propose and
evaluate several statistical criteria for measuring
the quality of predicted repeat units. In particular,
we propose a model-based phylogenetic classifier,
entailing a maximum-likelihood estimation of the
repeat divergence. Applied in conjunction with the
state of the art detectors, our statistical classifica-
tion scheme for inferred repeats allows to filter out
false-positive predictions. Since different algorithms
appear to specialize at predicting TRs with certain
properties, we advise applying multiple detectors
with subsequent filtering to obtain the most
complete set of genuine repeats.

INTRODUCTION

Tandem repeats (TRs) are consecutive sequence dupli-
cates abundant in both coding and noncoding genomic

sequences. Short TRs of DNA, known as microsatellites,
have been discovered by accident in human samples (1),
and since have been used successfully as markers in foren-
sics and for genetic profiling (2). Although most TRs are
found in noncoding sequences, mounting evidence
suggests their substantial presence in protein coding
genes: at least in 14% of proteins in all kingdoms of life,
and of much higher frequency in eukaryotes (3).
Moreover, a high incidence of TRs has been observed in
proteins with fundamental biological functions, and those
related to infectious and neurodegenerative diseases (4–9).
Virulence and resistance conferring genes may also be
encoded by sequences with repeats (10–14). Proteins
with TRs are often involved in multiple binding,
facilitating protein–protein interactions. Repeat lengths
vary from homorepeats (one repeated amino acid, e.g.
polyQ tracts in the Huntington disease gene) to long
repeats with multiple domains >150 aa (e.g. the cytoskel-
etal protein titin, see 4). TRs are usually thought to be
rapidly evolving. Yet, mutations in protein TRs are
known to have important implications for protein
function (15).
Due to wide applications of TRs as genetic markers, as

well as their functional and medical importance, the char-
acterization of TR properties in species and populations is
of importance. Moreover, detection of genomic TRs rep-
resents an integral part of sequence assembly and is one of
its most challenging algorithmic parts (16). Consequently,
a vast number of algorithms for TR detection (TR
detectors or TRDs) have been developed over the last
two decades (for reviews, see 15,17,18).
The prerequisite to TR prediction is having a clear TR

definition, ideally described as a mathematical model (19).
Genuine TRs can be then distinguished from random
sequences by contrasting a TR model with a model
describing random sequences. A biologically meaningful
TR model is based on the TR generating mechanisms.
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Expansion or contraction of short TRs is mainly thought
to be due to replication slippage (20,21) and asymmetric
recombination (22). For long protein TRs, the process of
TR gain and loss is likely to be similar for gene families
(14,23). In both scenarios, consecutive sequence copies
(TR units) trace back to a common ancestral sequence—
this is the TR definition we use in this article. However,
note that for some protein TRs, alternative evolutionary
scenarios have been proposed (24,25).
TRDs developed for nucleic sequence typically describe

TRs phenomenologically by means of typological expres-
sions (e.g. 26–28). Frequently, TRs are implicitly defined
by the search algorithm in combination with a scoring
function (e.g. 29–33). For some TRDs, neither an
explicit nor implicit TR model describes the nature of
the TR generating process, and thus lack a clear biological
interpretation.
The main aim of a TRD algorithm is to detect TRs that

concur with the assumed TR model. Recent or highly
conserved TRs are easier to detect as they are separated
by only few mutation or indel events. In contrast, it is
much more challenging to detect TRs that have diverged
over a long period of time or due to strong diversifying
selective pressure. Therefore, the best TRD algorithms
strive to identify the most complete set of TR units in a
given sequence, even when TRs lost much of their
sequence similarity during the course of evolution.
Exhaustive algorithms use dynamic programming,

referred to as sequence self-alignment (SSA) in this
context. For DNA, such TRDs include STAR (34) and
TRed (35), while for amino acid sequences they include
RADAR (36), TRUST (30) and HHrepID (32). Heuristic
ab initio TRD algorithms do not guarantee to find
all putative TRs with respect to their TR model.
In return, heuristic search methods, such as seed exten-
sion, or seed-and-extend (SE; 37), have a reduced
runtime complexity compared with exhaustive methods.
For DNA, heuristic ab initio TRDs include TRF (26),
mreps (29) and SciRoKo (38), while XSTREAM (31)
and T-REKS (33) predict TRs in both DNA and amino
acid sequences.
Despite the effort that went to develop the current

wealth of TRD algorithms, we found that TR predictions
can be very incoherent, even when considering only the
best competing TRDs. In the human proteome (Ensembl
v.64; 39) a total of 270 396 TRs are predicted in 92 012
protein entries by HHrepID (109 475) T-REKS (35 056),
TRUST (58 419) and XSTREAM (67 446). Of these,
89.0% were found by only one TRD, 9.8% by two
TRDs, 0.9% by three and merely 0.2% by all four
TRDs. Although some discrepancies were previously
reported (17,19), our analyses suggest that predictions
vary not only quantitatively but also qualitatively.
Indeed, even when TRs are predicted for the same
protein, predictions from different TRDs may vary in
terms of the predicted minimal TR unit, its length, TR
number and the total region covered by TRs. For
example, Figure 1a shows differences in TR predictions
for the breast cancer anti-estrogen resistance protein
BCAR1.

The striking differences observed for TRDs call for a
rigorous statistical evaluation of FP and false-negative
rates. Ideally, a TRD is exhaustive with respect to all
TRs concurring with the TR model, while keeping the
number of false predictions to a minimum. The crux of
TRD benchmarking at this point lies in the absence of a
comprehensive and unbiased TR test set. Frequently,
TRDs were benchmarked on a set of real sequences
(e.g. 17,19) ranging from short DNA regions and single
proteins to complete genomes and proteomes. This
approach does not allow to distinguish true-positive
(TP) and false-positive (FP) predictions, as the complete
set of TRs in the data is not known. Alternatively, TRD
performances were compared with TR databases
(e.g. 27,40). However, these benchmarks then reflect the
agreement of the assessed TRD with the algorithm used to
assemble the database, rather than the performance
properties of this TRD in general. Additionally, the com-
parison of numbers of predictions (absolute hits) that is
typically chosen as benchmarking criterion (17,19,33–36)
is uninformative about the prediction accuracy of TR
features, providing no means to verify if and how well
the predicted TR coincides with the true TR.

We propose a statistical framework for benchmarking
both accuracy and sensitivity of TRDs. Using model-
based simulation with and without TRs, we evaluate
several state of the art TRD implementations and propose
a statistical framework to assess the quality of predicted
TRs in order to filter out the FP predictions. In this
context, we analyse the classification power of current
similarity based, and newly introduced model-based TR
scoring functions.

The new framework can be used to reconcile the
often-conflicting predictions of current TRD algorithms.
Finally, we illustrate the proposed methods on the human
proteome, providing the most complete and accurate set
to date of human proteins annotated with TRs.

MATERIALS AND METHODS

To evaluate predictions by TRDs and functions for TR
scoring, we assume that sequence data are either generated
in terms of a null hypothesis H0 of random sequence evo-
lution or an alternate hypothesis H1 capturing TR evolu-
tion. We then simulated two sets of sequence data—with
and without TRs. The ‘negative’ set based on H0 con-
tained sequences without TRs was used: (i) to assess the
rate of FP predictions of TRDs and (ii) to set thresholds
controlling the FP rate for TR scoring functions. The
‘positive’ set based on H1 contained simulated TRs and
was used to (i) assess the rate of TP predictions of TRDs
as well as the accuracy of predicted TR units and (ii) to
assess the TP rate of TR scoring functions for a given
significance threshold.

Negative sequence set

DNA and protein sequences without TRs were simulated
by drawing single characters from a (k�1)-th order
Markov model based on the empirical k-mer frequencies
found in the human genome (Ensembl v.64; 39). For both
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DNA and protein sequences, the k-mer size was k� 3
which is below the minimal length of a potential full TR
region, to ensure that no TRs are hidden in a k-mer.
Compared with simulating single characters, simulating
k-mers conserves local character correlations (41).

Positive sequence set

Our positive dataset included simulated DNA and protein
sequences comprised of TRs of repeat unit length l and
repeat unit count n, where l varied from 1 to 25 characters
and n varied from 2 to 15 units. (As can be observed from
the results, this range allowed us to fully explore the
capacities of the TRDs.) At this point, H1 may be repre-
sented by any probabilistic model M1 that adequately
describes the evolution of observed TR units as
originating from a single ancestral repeat unit some t
time ago (Figure 1d). We first simulated such an ancestral
repeat unit of a given size l, and then evolved it under a
Markov substitution process along the given TR duplica-
tion history represented as a tree with n leaves using ALF
(42). Point mutations were modeled by instantaneous sub-
stitution rates according to the TN93 model (43,44) for
DNA, and the LG model for protein sequences (45). To
evaluate the effects of divergence of repeat units on both
the TRDs and scoring functions, we simulated sequences
with increasing degree of TR divergence: 40, 80 and 120
PAM units. In addition, indel events were simulated for
two sets of sequences with the most divergent TRs. Just
like the point mutation, indels were distributed assuming
exponential waiting times. The indel length followed the
Zipfian distribution (46,47). Simulation parameters are
detailed in Supplementary Methods 1.

Although the dynamics of TR evolution is still poorly
understood, it is reasonable to assume that the history of
repeat expansion and contraction can be modeled by a
tree, similar to the process of gene gain and loss. For sim-
plicity, we assumed an ultrametric star tree to describe the

TR duplication history. A star tree implies that the time
between the duplication events was negligible compared
with the time that passed since the first duplication
event—imitating a sudden duplication burst. This model
generates independently evolved and therefore
uncorrelated repeat units. For sequences of the highest
simulated TR divergence (120 PAM), we simulated an
additional set of sequences according to a non-star phyl-
ogeny, which was randomly generated under the birth–
death process (48). Note that both models still assume
the repeat units to be clearly delimited entities. However,
the duplicated repeat unit may shift and several repeat
units may duplicate as one, leading to duplication histories
in which different sites within a TR can have different
phylogenies that are restricted according to the order of
the repeat units (49). The positive set does neither reflect
these mechanisms nor contain multiple and nested TRs
and unrelated flanks, and thus cannot be used to test the
detection quality with respect to these cases.

Quality and error statistics of TR prediction

Prediction FP rate
The false positive rate per sequence or ‘FP rate per
sequence’ was computed as FP=ðFPþ TNÞ, where FP is

the count of sequences where at least one TR was pre-

dicted falsely in the negative set of FP+ TN sequences,
with the count of true negatives TN. Ideally, the FP rate
should not exceed the nominal level (e.g. 1%). Note that
the prediction accuracy or specificity is given by

1� FP=ðFPþ TNÞ.

To provide finer details of the FP landscape, we
also computed the ‘FP rate per potential repeat’ as a
function of the predicted TR unit length lp and count
np as cFPðlp; npÞ=ðx� lp � np þ 1Þ, where cFP is the count

of specific TRs in a sequence of length x (Figure 1b).

This measure accounts for the fact that a single TR can

(b) (c) (d)

(a)

Figure 1. An example of conflicting TR predictions. (a) TR detections of seven TRDs on the protein sequence and the coding sequence of BCAR1
(breast cancer anti-estrogen resistance 1 isotope 6; ENSP00000440370; ENST00000535626). TRF and TRed predicted no TRs in the sequence.
For all other TRDs, the predictions differ in location, size and unit prediction and are partly contradicting. Some of the predicted TRs may be
FP predictions, others TPs. One of the TRs predicted by T-REKS is shown in (b), with np = 3 repeat units and a predicted repeat unit length
ignoring insertions of lp = 9. (c,d) Was the TR predicted correctly? (c) Did the predicted TR units evolve through unit duplication and are
correlated for this reason? (d) Or did they evolve independently? This is an equivalent case to repeat unit duplication when the repeat units
lose their correlation due to strong subsequent divergence. When models for both cases are defined, a statistical test can help to filter out
false-positively predicted TRs.
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be predicted to start at x � lp � np+1 different locations
inside the sequence.
By definition, the true repeat unit length l is the length

of the ancestral repeat unit. However, insertions increase
and deletions decrease the repeat unit length with time. To
evaluate predicted TRs, we distinguished between the two
with a parsimonious heuristic: we assumed a deletion
when there are less or equal gaps compared with charac-
ters in a column. Otherwise, we assumed insertion, and did
not account for this column in the predicted repeat unit
length lp.

Prediction TP rate, coverage and greediness
The TR prediction power or sensitivity or ‘TP rate per
sequence’ was computed as TP=ðTPþ FNÞ, where TP is
the count of TR sequences predicted at least once and
FN is the count of TR sequences where no TR was pre-
dicted in the positive set. Note that a prediction was
counted as true (TP) only if at least one pair of homolo-
gous characters in the inferred alignment of TR units was
also found in the true alignment of TR units. Thus, our
measure of power is more strict compared with the simple
counts of prediction on a positive set as previously used
(17,19,31,33,34,35), but is still rather liberal, so that the
resulting TP rates should be interpreted as upper bounds.
To further assess the quality of TR prediction we

computed additional quality statistics: the ‘TP rate per
character’ and the ‘greediness’. The ‘TP rate per character’
or ‘coverage’ of the TR prediction measured the predicted
TR unit length compared with the total length of the true

TR and was computed as xTP=ðxTP+xFNÞ, where xTP is the

number of characters correctly predicting a true TR and

xFN is the number of characters in a detected true TR that
should have been predicted but were not. Note that xTP+
xFN = l � n is the size of the simulated TR. The greediness
of the TR prediction was computed as the ratio of the
predicted to the true TR unit length, and so reflects
whether the predicted TR unit was predicted correctly or
tended to be longer (or shorter) than the true minimal
repeat unit. This measure was developed since we
observed cases where TRDs detected several consecutive
minimal units as one. Although such behavior of a TRD
algorithm could also reflect the true evolutionary struc-
ture, the ideal TRD should be capable of disentangling
the original minimal TR unit, as the knowledge of the
minimal repeat unit is of interest to facilitate e.g. struc-
tural predictions.

Evaluated TRDs

The evaluated implementations included all available
standalone ab initio TRDs that first, detect divergent TR
units with substitutions and indel events and second,
predict all repeat units rather than only the TR containing
region. Phobos v3.3.15, TRed v2.1, TRF v4.04, T-REKS
v1.3 (DNA mode) and XSTREAM v1.72 were used to
predict TRs in DNA sequences and HHrepID v1.1.0,
T-REKS v1.3, TRUST v1.0 and XSTREAM v1.72 to
predict TRs in protein sequences (Table 1). Specifically,
TRUST does not distinguish internal repeats from TRs.
We arbitrarily classified TRUST predictions that were

further apart than 20 amino acids as non-TRs and dis-
carded them. Furthermore, TR predictions of any TRD
that were not part of the input sequence were discarded
prior to all analyses.

All TRDs were evaluated with respect to their FP rate
(1–accuracy or 1–specificity) on the negative data, and
with respect to their TP rate (power or sensitivity),
coverage and greediness on sequences with simulated
TRs (the positive dataset).

Statistical framework for TR scoring

The more diverged a TR, the harder it is to distinguish
from random sequence. In order to validate detected TRs,
TRD algorithms rely on various scoring functions that
measure their quality. For example, simple parsimony
approaches can be used to measure the similarity of TR
units, such as the Hamming distance that counts the
number of pairwise substitutions (e.g. 50), and the edit
distance that counts the sum of pairwise substitutions
and indels (e.g. 35). Alternatively, the similarity of
putative TRs may be assessed with scoring functions
used by alignment algorithms: such approaches weight
different types of changes to account for global molecular
biases as reflected in empirical substitution matrices (e.g.
30,36). Some TRD algorithms including the latter measure
the pairwise similarity of only the neighboring repeat units
(e.g. 26,35), while others score the similarity in multiple
alignments of putative TR units (e.g. 31,33,38). Here, we
will focus on the latter, as they allow for a phylogenetic
interpretation. Note that for a TR with two repeat units
only, pairwise and multiple alignment scoring functions
coincide.

Few TRDs attempt to control the prediction accuracy
by defining thresholds based on the distribution of the TR
scoring function values on negative (TR free) data. For
example, Biegert and Söding (32) approximated the true
distribution on negative data with an empirically fitted
extreme value distribution. Others commonly use fixed
values of the TR scoring function based on an empirically
derived threshold (27,31,33,50) independent of the TR
unit length l and the number of TR units n. However,
the meaning of a score depends on these parameters,
and the TR score threshold for significance testing must
be adjusted accordingly.

We analyzed the properties of several TR scoring func-
tions, as judged by the quality of separation of true and
false TRs according to a chosen significance threshold. To
this end, we established TR score thresholds so to control
for the ‘FP rate per repeat’ at 5%. This was done either
by simulation or analytically as a function of l, n and
the indel structure. With a fixed FP rate, the ‘TP rate
per repeat’ TP=ðTPþ FNÞ (also sensitivity, classification
power) on the positive sequence set measures the binary
classification power of a TR scoring function.

Below, we describe adapted versions of two commonly
used similarity-based scoring functions and derive their
exact score distributions on random sequences. Based on
these scores, the accuracy of the TR prediction can be
controlled exactly and at low computational cost.
Ideally, however, a TR scoring function should capture
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the properties of TR evolution. We therefore introduce a
phylogenetic approach to computing TR scores based on
explicit hypothesis testing using the likelihood ratio test
(LRT) that contrasts the model for the evolutionary origin
of putative TR units to the scenario where the putative
TRs were observed by random chance.

TR scoring functions based on similarity
The similarity-based TR scoring functions rely on a simi-
larity measure for homologous characters found in differ-
ent TR units, as implied by their pairwise or multiple
alignments. Assuming the independence of sites, the simi-
larity Si is calculated separately for each column i in the
multiple TR unit alignment, and the overall similarity is
computed as an average similarity over the length of the
TR unit alignment l:

S ¼
1

l

Xl
i¼1

Si: ð1Þ

The column similarity could be defined in a number of
different ways: for example, based on the percentage
identity of characters or using the Shannon entropy.
Besides the latter (Sentropy), we focused on two similarity
measures that compute the column scores Si based on the
parsimony principle. The first measure Sdiff assesses the
column similarity Si by the number of different elements
observed in a column, normalized by the maximum
possible number of different elements in a column. Sdiff

measures the number of substitutions assuming that every
substitution occurred exactly once. The second measure
Smax assumes that the most frequent element in a
column is the ancestral character and uses its frequency
as the column similarity measure Si. See the Appendix for
mathematical formulations of these measures. The Smax

measure is applied in XSTREAM as ‘consensus
matching’ (31) and in T-REKS as ‘Psim’ (33). Other
TRD methods such as mreps (29), Phobos (http://www
.ruhr-uni-bochum.de/spezzoo/cm/cm_phobos.htm) and
SciRoKo (38) apply related similarity measures.

In order to control the ‘FP rate per repeat’ applying a
scoring function, we need to know its distribution under
the null model M0. This distribution inherently depends

on the length and number of putative repeat units that are
being scored. In the best case scenario, the analytical ex-
pression for the score distribution is known, making the
calculation of p-values straightforward and fast. Indeed,
for the scoring function Sdiff and Smax, we derived a poly-
nomial algorithm to calculate the exact score distribution
under the null model. Since the overall similarity score S is
the mean of column scores Si over the TR unit alignment
length l, the probability distribution of S is the l-times
convolution of column score distributions:

pðSÞ ¼
X
S1

X
S2

:::
X
Sl�1

ð
Yl�1
i¼1

pniðSiÞÞ � pnlðS�l�
Xl�1
i¼1

SiÞ; ð2Þ

where pni(Si) is the probability of score Si for the ith
column. The derivations of the distribution of Si for
Smax and Sdiff under M0 is described in the appendix.
Note that the expression (2) is applicable to columns of
different lengths ni. Therefore, exact distributions can also
be derived for TRs that have accumulated indels. The
exact distributions of Sdiff and Smax were used in all sub-
sequent analyses.
If the theoretical distribution of a scoring function such

as Sentropy is not known or cannot be expressed analytic-
ally, Monte Carlo simulations can be used to empirically
estimate the desired distribution. This however requires
time-consuming computation, especially when the distri-
bution is dependent on the dimensions of the TRs being
scored.

TR scoring functions based on phylogenetic models
Scoring functions that measure similarity based on simple
counts do not take into account the complexities of mo-
lecular sequence evolution. For example, they do not
account for hidden (multiple) substitutions, or evolution-
ary biases in mutation and character composition. Thus,
using a Markov model of character substitution to
describe TR evolution and to score the putative repeats
should facilitate both more accurate and more powerful
TR prediction.
We propose a phylogenetic TR scoring based on clas-

sical hypothesis testing in the frequentist framework: the

Table 1. Evaluated TR detectors

TRD Algorithmic principle Scoring function Scoring threshold Benchmark dataset

DNA Phobos (unpublished) Smax with linear
gap penalties

Fixed

TRed (35) SSA Pairwise SSA score Fixed Real sequence
TRF (26) SE Pairwise SSA score Fixed Real sequence

both T-REKS (33) SE Smax Fixed Previous TR predictions,
simulated and real sequence

XSTREAM (31) SE Smax Fixed Real sequence

AA HHrepID (32) HMM-SA HMM-SA score Significance on EVD fitted
on sequence database

Real sequence

TRUST (30) SSA Profile-sequence
alignment score

Significance on EVD fitted
on shuffled sequence

Real sequence

TRDs analysed in this article: their algorithmic principle, the scoring function used as final filtering criterium, how statistical significance of the score
was established (if at all), and lastly the type of benchmarking datasets used. HMM-SA, hidden Markov model self alignment; EVD, extreme value
distribution; typically the Gumbel distribution.
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fit of a putative TR by the null model M0, which repre-
sents the null hypothesis H0 of random sequence
(Figure 1c) is compared with the fit by M1, representing
the alternate hypothesis H1 of TR evolution (Figure 1d).
The null hypothesis postulates that the putative TR units
arose by random chance rather than from a common an-
cestral TR unit. In terms of M1, this enforces a constraint
on the age of the last common TR unit ancestor: t = 1.
That is, the repeat units lose all their initial correlations
over the long divergence times, and the reached steady-
state frequencies can be described by M0. However, reject-
ing M0 leads to the conclusion that t<1 and so the TR
units have a shared ancestry.
Here, we implemented and tested the statistical

properties of the phylogenetic TR scoring using a simple
model of TR evolution. Given the often short TR unit
lengths and thus low information content with respect to
the TR evolution, simpler models should be preferred.
Therefore, we assumed an ultrametric star phylogeny to
describe the divergence of TR units from the ancestral
unit. The mutation process was described by Markov
models of substitution: the K80 model for DNA sequences
(51) and the LG model for proteins (45). The null hypoth-
esis was then described by the same model but with branch
lengths being equal to infinity (Figure 1d). Thus, the al-
ternative model has only one additional parameter, the
distance t since the origin of the common ancestral TR
unit. Here, we assumed the frequentist framework for hy-
pothesis testing using a LRT. Under the alternative model,
the log-likelihood for a putative TR with n repeat units of
length l can be written as follows:

lnL1 ¼ ln
Yl
i¼1

X
r2R

�r
Yn
j¼1

pr!xijðtÞ; ð3Þ

where r is a putative root character from the sequence
alphabet R, xij the character in the TR at site i and
repeat unit j, �x the steady-state frequency of character
x and finally px!y(t) the transition probability from char-
acter x to y given a distance t. Under the null model, the
probability transitions over an infinite branch length
become equal to the stationary frequencies of a target
state, and so the log-likelihood of a putative TR becomes

lnL0 ¼ ln lim
t!1
L1 ¼ ln

Yl
i¼1

X
r2R

�r
Yn
j¼1

�xij

¼ ln
Yl
i¼1

Yn
j¼1

�xij
X
r2R

�r ¼ ln
Yl
i¼1

Yn
j¼1

�xij :

ð4Þ

Maximized log-likelihoods under each of the nested
models were used to construct the LRT statistic
2ðlnL1 � lnL0Þ, and its significance can be tested by
comparing with the �1

2-distribution at a fixed significance
level. However, this approach is valid only asymptotically
(i.e. when the amount of data approaches infinity) and
breaks down practically for short TRs low in information
about their sequence evolution. For this reason, we
established the LRT statistic distribution empirically by

Monte Carlo simulations. Gaps were treated as ambiguity
characters.

Using both the negative and positive simulated sets we
evaluated the statistical properties of our proposed phylo-
genetic TR scoring compared with the similarity-based
functions. To test the influence of model violations, we
also investigated the robustness of our star tree assump-
tion by conducting tests on TR data where repeat units
have been evolved on a phylogeny generated under a
birth–death process (as described above).

Clearly, more elaborate models can be included into this
framework. However, the model complexity has to be
sensibly balanced with the amount of data to which the
models are to be fitted. Furthermore, while the presented
frequentist framework uses the LRT, other model selec-
tion criteria, such as the Akaike information criterion and
the Bayesian information criterion, can be used.

RESULTS AND DISCUSSION

Evaluation of TRDs

FP rates and TP rates for seven different TRDs were
systematically evaluated on the negative and the positive
sequence set, the latter consisting of concatenated
simulated TRs (Results in Figure 3, Table 2 and
Supplementary Material). In general, TR detection
accuracy, power and prediction quality vary strongly
between TRDs. The prediction power depends heavily
on the TR unit length and the number of repeat units.
Moreover, as larger divergences distort sequence similar-
ity, the power of TRDs also decreases for larger evolu-
tionary distances.

The paradigm underlying a TRD algorithm is reflected
in the essential patterns of predicted TRs. TRDs based on
SE such as T-REKS, TRF and XSTREAM predomin-
antly predict very short TRs, often with high numbers of
repeat units. Accordingly, they showed higher TP rates
and coverage for very short TRs, but their predictive
power and coverage breaks down for diverged TRs
(Figure 3a and b, and Table 2). Interestingly in this
regard, the widely used TRF (currently >1700 citations)
detects only fractions of slightly diverged TRs, and almost
no TRs with a divergence above 40 PAM. TRDs based on
SSA such as HHrepID and TRUST on the other hand
tend to predict TRs with fewer but longer repeat units.
Generally, model-based TRDs had the highest power to
detect divergent TRs or repeats with few copies, and
overall outperform SE algorithms in terms of TR
coverage. The bias of the algorithmic paradigm is
carried over to the greediness of TR unit predictions
also. SSA algorithms frequently merge multiple TR units
so to constrain the total number of repeat units, whereas
SE-based algorithms tend to constrain the repeat unit
length (Figure 3c).

Besides the algorithm paradigm, seemingly minor heur-
istic assumptions influence the TRD characteristics signifi-
cantly. For example, some TRDs implemented upper and
lower boundaries for the repeat unit length and the total
repeat length (e.g. TRed defaults to a minimal total repeat
length of 20; cf. Figure 3). Other algorithmic decisions

10010 Nucleic Acids Research, 2012, Vol. 40, No. 20

http://nar.oxfordjournals.org/cgi/content/full/gks726/DC1


lack such a direct interpretation, but still shape the char-
acteristic specificity of a TRD algorithm. For instance, to
reduce the TRD greediness, some TRDs have included
heuristics to check for smaller repeat units. Others try to
extend the TR to improve prediction coverage as a subse-
quent step to TR detection. One difficulty is that most
often, multiple overlapping variations of a TR prediction
all result in a sufficiently high score. To decrease redun-
dancy and thus improve user-convenience most TRDs
(TRF is one exception) restrict their predictions to one
of these overlapping TR predictions. All in all, each
analyzed TRD exhibited highly unique prediction charac-
teristics. Extending the analysis of predicted TRs to
consider additional characteristics (e.g. the local
sequence content, the TR position in the sequence or
gap patterns) would presumably expose even more vari-
ability between TRDs.

The specificity characteristics of a TRD can be inter-
preted as a prior for its TR detection on real data. With
false predictions in up to 86% of all simulated sequences
dependent on the TRD, the number of FP predictions is
easily underestimated. Consequently, to correct for this
bias, the FP rate of a TRD for a particular type of TR
should be subtracted from the predicted frequencies on
real data. However, this does not allow for a fully com-
prehensive insight into the true distribution of TRs in real
data, but rather only into the true distribution of TRs
constrained by the set of TRs detected by a TRD in the
first place. For example, we performed this procedure on
the human proteome data. Indeed, even after accounting
for the specific FP rates, predicted rates for different TRD
still differ—due to differences in detection power by dif-
ferent algorithms (cf. Figure 2). The characteristic
behavior of a TRD strongly shapes the predicted TR dis-
tribution results, overriding the genuine TR signal in the
data. Such ambiguity in TR prediction demonstrates the
need for a clear statistical framework for distinguishing
genuine TRs from false TR predictions. The next section
of this article addresses this problem.

Performance of TR scoring functions in filtering FP
predictions

The objective of a TR scoring function is to separate true
TRs from TR-free sequence. Scoring thresholds were set
according to H0 for each TR scoring function separately
(see ‘Materials and Methods’ section), so to control the
‘FP rate per repeat’ at 5%. Next, we compared the classi-
fication power of four scoring functions—three of which
are similarity-based and one model-based—for TRs with
different minimal repeat unit lengths, copy numbers, di-
vergences and duplication histories (Figure 4).

Overall, the analyzed similarity scoring functions
perform highly similarly. For just two TR units (n = 2),
they share the same classification power as there are just
two possible column formations—same character or dif-
ferent character—and thus no column formations that
similarity functions could treat differently.

As expected, the correct classification is easier the more
information a TR contains about its duplication history.
This could mean longer units, more duplications or lower

levels of divergence. For these TRs, the choice of a
TR scoring function from the analyzed set is of little
relevance to TR classification power. Hence, the scoring
function can be chosen based on its computational cost,
especially for large-scale projects. In this regard, the simi-
larity scores Sdiff and Smax with the presented exact

(a)

(b)

Figure 2. Predictions of four TRDs on the human proteome. (a)

Logarithmic count of TR predictions. All TRDs capture the
abundant Zn finger motive, resulting in a strong spike for TRs with
a TR unit length of 28 aa. (b) Maximum-likelihood estimates of diver-
gences t (formula 3) of the predicted TRs, measured in expected sub-
stitutions per site.
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derivation of thresholds are more attractive than
model-based scoring. One application would be the
rapid adjusting of the scoring function thresholds on
data with global character content variation, as frequently
observed in genomic data.
For less informative TRs (due to short or few TR units

or deeper unit divergence), model-based LRT scores sig-
nificantly improve the TR classification power compared
with similarity scores (Figure 4). The advantage was main-
tained for different TR divergences and phylogenies

relating repeat units. However, note that the models
underlying the TR simulation and the model-based
scoring are highly similar, even when the true evolution
is described by a bifurcating tree instead of a star phyl-
ogeny. Despite this, when the true evolutionary history of
TR units (birth–death bifurcating trees) violated the as-
sumptions of the star tree, no reduction in power of the
classification was observed, showing good robustness
properties of the model-based scoring. However, it is
possible that the advantage of our model-based scoring
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Figure 3. FP and TP TR prediction on simulated DNA and amino acid sequence data for seven commonly used TRDs. (a) Logarithmic ‘FP rates
per repeat’ as a function of the TR unit length (�20) and the TR unit count (�15). The test set consisted of 200 000 sequences of length 1000,
simulated by drawing random 3-mers from the human genome and proteome from Ensembl archive 64. Note that XSTREAM was primarily
intended as a protein TRD and the strong permissiveness on DNA data is a result of fixed scoring function thresholds in combination with the much
smaller nucleic alphabet leading to higher sequence similarity by chance. (b) ‘TP rates per repeat’. (c) TRD greediness (defined as the ratio of
predicted TR unit length over simulated TR unit length). Values �1 signify greedy aggregation of TR units and values �1 indicate that the TR units
were predicted only partly, or that characters were predominantly predicted to stem from independent insertion events. For (a) and (b), each test set
consisted of 1000 simulated TRs. For sequence simulation, the TN93 model with equal nucleic frequencies (DNA) and the LG model (AA),
respectively, were applied to ultrametric star trees. Indel events are simulated by a symmetric birth–death process with Zipfian distributed length
�50 chars and an average of 0.02 indel events per site. Results are shown for three different TR divergences (40, 80 and 120 in PAM units) for
nongappy TRs and additionally for gappy highly diverged TRs (120 PAM).
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is lower if TR data exhibit other strong violations of as-
sumptions. For example, some simple TR duplication
histories may not be describable by an evolutionary tree,
as the repeated unit shifts from duplication event to du-
plication event (49). Exploring the limits of robustness
properties for this classifier is beyond the scope of this
article. Here, a simple star tree model of TR evolution
was used, so that the scoring is still applicable to TRs
with very short and few repeat units. Moreover, at
present, there is little clarity about the true mechanisms
of TR evolution.

The effect of filtering the predicted TRs according to the
presented model-based LRT scores on TP rates and FP

rates varies between TRDs and also sequence types
(results in Table 2). Predictions of some TRDs such as
Phobos are hardly influenced at the tested 1% significance
level. Consequently, the TRs they detect concur with the
TR evolution model that the scoring function is based on.
For HHrepID and T-REKS on the other hand, the FP
rate decreased significantly after the filter was applied,
whereas the TP rate remained almost constant. As
expected, fewer long TRs of low divergence were falsely
filtered, in contrast to short TRs of high divergence.
There are two possible explanations for a false rejection

of a true TR. Either, the chosen scoring function is
not capable of a correct classification by design.

Figure 4. ‘TP rate per repeat’ of four TR scoring functions on simulated DNA and amino acid TRs. The test set consisted of gap-free TRs simulated
under three different TR divergences (40, 80 and 120 PAM units) assuming a star phylogeny and additionally for highly diverged TRs (120 PAM)
assuming a birth–death phylogeny. Results are shown for TRs with copy numbers 2, 3 and 5 for a range of TR unit lengths between 1 and 20
characters. Each test set consisted of 10 000 simulated TRs. DNA and amino acid sequences were simulated with the TN93 model and the LG
models, respectively. Scoring function thresholds were chosen to control the FP classification rate at 5% on random sequences with character
frequencies estimated from the Ensembl 64 assembly of the human genome and proteome. For n = 2 results for all similarity based classifiers are
identical. For n=3 the results are the same for Smax and Sdiff. The sudden changes in classification power for these cases are due to the very coarse
distribution of possible scores so that no threshold score sets the significance level to exactly 5%. For the model based classifier ’phylo’, the LRT
statistic was used as the scoring function.

Table 2. FP and FN prediction rates for most commonly used TRDs

Negative sequence set:
FP rate per sequence

Positive sequence set: TP rate per TR

Short, recent TRs Long, recent TRs Long, diverged TRs

Default Filtered Default Filtered Default Filtered Default Filtered

DNA Phobos 0.889 0.889 0.482 0.482 0.047 0.047 0.037 0.037
T-REKS 0.419 0.398 0.037 0.037 0.033 0.032 0.002 0.002
TRed 0.000 0.000 0.013 0.013 0.005 0.005 0.000 0.000
TRF 0.001 0.001 0.001 0.001 0.009 0.009 0.000 0.000
XSTREAM 1.000 1.000 0.949 0.931 0.828 0.673 0.792 0.612

AA HHrepID 0.821 0.681 0.066 0.064 0.997 0.997 0.490 0.410
T-REKS 0.104 0.098 0.053 0.053 0.277 0.277 0.001 0.000
TRUST 0.497 0.494 0.001 0.001 1.000 1.000 0.661 0.633
XSTREAM 0.392 0.391 0.853 0.850 0.152 0.142 0.020 0.000

FP and TP rates of TR detection on simulated negative and positive datasets. The parameters for short TRs were l=2, n=15 and for long TRs
l=15 and n=3. Recent TRs have an average evolutionary distance of 40 PAM, diverged TRs of 120 PAM, respectively. Results are shown before
and after filtering according to a 1% significance level on the model-based LRT score as a function of l and n.
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Alternatively, a poor representation of the true TR by the
predicted TR (i.e. wrong TR units, location, alignment of
units) hampers the correct classification. The commonly
inferior quality of the predicted TR unit alignment often
is a consequence of gap misplacement. Thus, the
TRD prediction quality can be significantly improved by
an improved alignment of multiple TR units. Inclusion
of a sophisticated gap model into the alignment algorithm
seems promising in this regard (cf. 52). Analogously,
conceiving gap-aware scoring functions would
improve the TR filtering. For now, the integration of
gap models in TR scoring (e.g. as applied in sequence
simulation, see 53) instead of mere gap penalization as is
common practice in sequence alignment remains an open
challenge.

CONCLUSION

The abundance of proteins with TRs in all domains of life
is sparking interest for more profound research on the
topic. The major prerequisite is a reliable detection of
TRs. Here, we have shown that the size, frequency and
age of TRs detected by existing tools reflect algorithmic
specificities rather than data characteristics. The discrep-
ancy between programs is so strong that an understanding
of the applied tool is crucial for the interpretation of the
results. This emphasizes the importance of choice of a
TRD tool. SE approaches detect more short TRs but
miss many long repeats, whereas self-alignment algo-
rithms are better at detecting TRs with longer units.
Here, the profile-based algorithm HHrepID does not
differ significantly from the other SSA-based TRDs.
However, the full-featured version of HHrepID is specif-
ically devised to incorporate information from multiple
sequence alignments into TR detection, which the pre-
sented benchmark does not include.
Despite algorithmic improvements over the last years,

none of the current TRDs warrants an exhaustive detec-
tion and the quest for an optimal TRD is far from
resolved—leaving room for upcoming developments.
Ideally, future TRDs should meet a number of basic re-
quirements. Most importantly, a firm formulation of the
assumed TR model alleviates the understanding of the set
of TRs detected by a tool. Similarly, the applied criterion
for TR scoring should be well defined. A reliable scoring
function should achieve the best possible separation
between genuine TRs from TR-free sequence data under
the assumed model. Defining a score cutoff for signifi-
cance testing is another important issue that we have
addressed here. As demonstrated, scoring functions
based on an explicit model of TR units (even if simple)
have excellent potential to outperform the similarity-based
scoring functions, particularly for TRs where the predic-
tion problem is more difficult. For the phylogenetic
model-based scoring proposed here, the hypothesis
testing through a LRT makes the scoring of a putative
TR unit alignment straightforward. In addition, LRT
offers the most powerful statistical test—a property we
have capitalized upon and which we have demonstrated
in our simulations. Third, a thorough description of the

search algorithm is necessary for both users and devel-
opers so to enable the independent evaluation of algorith-
mic properties with regard to the TR search and scoring
criteria, the algorithmic complexity and thus computa-
tional cost. More particularly, this should also include
descriptions of specific algorithmic details such as heuris-
tics for the treatment of overlapping redundant TRs, TR
extension and search boundaries. Finally, we suggest that
the presented statistical framework may be used to
validate properties of new TRDs or extensions of
existing algorithms, since it includes a detailed sensitivity
and specificity analysis, scrutinizing not only the false
positive and false negative prediction error rates but also
more detailed ‘qualitative’ properties of TR prediction.

At current, the most complete set of TR predictions can
be assembled through an integration of often highly
distinct sets predicted by different TRDs into a
meta-TRD. In particular for coding sequence, detections
of DNA, protein and in future codon TRD can be
merged. Also, the variability of TR predictions under
diverse parameters settings for a single TRD algorithm
(see 17) might prove useful to further increase the
overall true prediction rate. It would be necessary to
analyze the dependency of TR predictions on
TRD-specific parameters in this context. Indeed, a mere
decrease of internal TRD score thresholds does not neces-
sarily result in increased TP rates for the TRDs analyzed
here (data not shown).

A simple collection of predicted TRs is of little meaning,
as FP rates vary across TRDs as much as across the at-
tributes of TRs, i.e. their repeat unit length and copy
count. The current lack of calibration of the applied
scoring functions can be replaced by a filtering step after
the integration of all predictions to homogeneously
control the overall FP rate. Given its high power, the
proposed phylogenetic model-based scoring enables the
highest possible filtering quality. On the other hand, simi-
larity scores perform equivalently for longer, or less
diverged TRs and are applicable at a low computational
cost due to our analytical derivation of their exact thresh-
olds. Hence, we propose to filter predicted TRs with either
model-based scoring functions only, or a combination of
model-based and calibrated similarity-based scoring func-
tions. Together with a post-detection FP filtering step, the
meta-TRD approach would allow to combine the advan-
tages of different types of TRD algorithms to enable a
more extensive prediction coverage while still controlling
the FP rate at a given nominal level.

To illustrate this idea, we annotated the human
proteome with TRs using the proposed procedure. The
predicted distribution of TRs on the human proteome is
shown in Figure 2a. Approximately 66% of all human
proteins contain predicted TRs filtered at a 1% signifi-
cance level. This high value may indicate that duplication
of genetic segments is more prominent than we previously
thought. Sequence segments of common ancestry diverge
either neutrally or by diversifying selective pressure, grad-
ually loosing their sequence and structure similarity. TRs
of specific units lengths were predicted particularly often,
such as homorepeats (1 aa), or the abundant Zn finger
motive (28 aa). Besides these strong peaks, most predicted
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TRs have a repeat unit length of 2–10 aa, concurring with
the TRD characteristics. This means that repeats within
this range are particularly densely predicted, including
both false and true positives. Further gap-aware filtering
may potentially help to label part of these predictions
as FPs.

Furthermore, for protein TRs the concordance between
sequence TRs, structure and ultimately function is of par-
ticular interest. For example, Biegert and Söding (32) use
the similarity of the structural alignment to the predicted
TR alignment as the TRD benchmarking criterion.
Sequence TRs reflected in structural repeats are often
preserved due to selection on the protein structure.
However, some repeats do not constitute modules with
important function, and thus diverge losing sequence
and structural similarity. However, the common ancestry
of minimal units for such repeats may still be detected.
Figure 2b shows the distribution of maximum-likelihood
divergence estimates (t in formula 3) for TRs predicted by
different TRDs on the human proteome. The average pre-
diction divergence ranges from 0.07 (XSTREAM) to 0.97
(TRUST) expected substitutions per site. It is easy to
imagine that divergences as high as 0.5–1 would typically
lead to a loss of structural similarity. However, a large-
scale study would be necessary to explore how well
sequence divergence correlates with sequence–structure
concordance and with selective pressures acting on the
repeat region. Still, the prerequisite to such large-scale
studies is a comprehensive and trustworthy set of TR
predictions.

Until a fully model-based and exhaustive TRD is avail-
able, the proposed meta-TRD results in the most
complete, controlled way of annotating TRs. Large-scale
analyses of TRs predicted using this approach over a
range of samples will unravel patterns of TR evolution,
casting light on the involved mechanisms and their
dynamics. At this, breaking up the hitherto strong but
to some degree artificial separation of nucleic and
protein TRs, crystallizing in redundant naming conven-
tions for the same TR, constricted detection tools and
databases, can optimize the efforts. Ultimately, the
assembly of genomewide TR predictions will enrich our
knowledge of TR evolution and function, and will lead
toward identifying global but also specific biological
trends for TR regions.
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APPENDIX

Exact distribution of column scores for Smax and
Sdiff on random sequence data

Assume that random sequence data are described by
independent draws of n symbols (nucleotides or amino
acids) from an alphabet of size m with probabilities �1 to
�m according to the null model M0. In the case of
nucleotides, we have m=4, whereas m=20 in the case
of amino acids; the probabilities �1, . . ., �m represent the
natural abundance of nucleotides in DNA and amino
acids in proteins, respectively. Under this assumption,
the frequencies X1, . . ., Xm of the m characters in a
column of length n form a multinomial distribution.

In this framework, the normalized column scores for
Smax and Sdiff can be expressed as

Smax ¼
maxk Xk

n
; Sdiff ¼

jfk j Xk � 1gj

minfn;mg
:

An efficient method for calculating the distribution
function of the random variable maxkXk was
presented in (54); for the calculation of jfkjXk � 1}j,
we developed a new method based on the ideas published
there.

For a random vector (X1, . . .,Xm) with multinomial
distribution with probabilities (�1, . . .,�m) and sum
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P
k Xk ¼ n, we define the following quantities for

1� k�m:

Yk :¼
Xk
i¼1

Xi; Rk :¼
Xk
i¼1

1fXi�1g ¼ jfij1 � i � k;Xi � 1gj:

Our goal is to calculate the distribution of Rm, the number
of non-zero components of (X1, . . ., Xm).

For 1� k�m, let T (k) denote the matrix Try
(k):=

P[Rk= r,Yk= y]; the index r ranges from 0 to minfn,m},
y ranges from 0 to n. Since Ym= n by assumption, we

have P[Rm= r]=P[Rm= r,Ym= n]=Trn
(m): the distri-

bution of Rm is given by the last column of the matrix

T (m).
In the following, we present our dynamic programming

approach to iteratively calculate the matrices T (k). We
have

Tð1Þry ¼

ð1� �1Þ
n; if r ¼ 0, y ¼ 0,

n
y

� �
�y1ð1� �1Þ

n�y; if r ¼ 1, y � 2,

0; otherwise.

8><
>:

For k � 2, the matrices T(k) comply with the recursion
property

TðkÞry ¼ P½Rk ¼ r;Yk ¼ yjRk�1 ¼ r;Yk�1 ¼ y�Tðk�1Þry

þ
Xy�1
t¼r�1

P½Rk¼r;Yk¼yjRk�1¼r�1;Yk�1¼ t�T
ðk�1Þ
r�1;t :

Note that Rk is completely determined by Rk�1, Y k�1 and
Yk: we have Rk=Rk�1 if Sk=Sk�1, and Rk=Rk�1+1
otherwise. Hence, we find

P½Rk;YkjRk�1;Yk�1� ¼ R½YkjRk�1;Yk�1�:

Furthermore, Rk�1 can be written as a function of
Y1, . . .,Yk�1; since the conditional distribution of Yk

given Y1, . . .,Yk�1 is a function of Yk�1 alone (55), we
can further simplify

R½YkjRk�1;Yk�1� ¼ R½YkjYk�1�:

Using the stochastic matrices Q(k) introduced by (54),

Qty
(k):= P[Yk= yjYk�1= t] for 0 � t,y � n, we can finally

rewrite the recursion property for T (k) as follows:

TðkÞry ¼ QðkÞyy T
ðk�1Þ
ry þ

Xy�1
t¼r�1

Q
ðkÞ
ty T

ðk�1Þ
r�1;t : ð1Þ

The entries of the matrices Q(k) can be calculated as

Q
ðkÞ
ty ¼

n�t
y�t

� �
ð��kÞ

y�t
ð1� ��kÞ

n�y; if y � t,

0; otherwise.

(

(54,55), where ��k stands for the conditional probability

��k :¼ �k=
Pm

j¼k �j; using the convention 0
0

� �
:¼ 1, we

make sure that Qnn
(k)=1. Furthermore, we use the

convention 00:= 1; this ensures that the matrix Q(m)

only has non-zero entries in the last column (that is, for
y= n) and corresponds to the constraint Ym= n. As a
consequence, also TðmÞry ¼ 0 if y< n.
As stated before, the distribution of Rm is determined

by the last column of T(m). The calculation of any matrix
T (k) using Equation (1) needs O(n3) multiplications;
consequently the calculation of the distribution of Rm

has complexity O(n3m).
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