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Summary: For solvency purposes insurance companies need to calculate so-called best-estimate
reserves for outstanding loss liability cash flows and a corresponding risk margin for non-hedgeable
insurance-technical risks in these cash flows. In actuarial practice, the calculation of the risk margin
is often not based on a sound model but various simplified methods are used. In the present paper
we properly define these notions and we introduce insurance-technical probability distortions. We
describe how the latter can be used to calculate a risk margin for non-life insurance run-off liabilities
in a mathematically consistent way.

1 Market-consistent valuation

The main task of an actuary is to predict and value insurance cash flows. These predictions
and valuations form the basis for premium calculations as well as for solvency considera-
tions of an insurance company. As a consequence, and in order to be able to successfully
run the insurance business, actuaries need to have a good understanding of such insurance
cash flows. In most situations, insurance cash flows are not traded on deep and liquid
financial markets. Therefore valuation of insurance cash flows basically means pricing in
an incomplete financial market setting. Article 75 of the Solvency II Framework Directive
(Directive 2009/138/EC) states “liabilities shall be valued at the amount for which they
could be transferred, or settled, between two knowledgeable willing parties in an arm’s
length transaction”. The general understanding is that this amount should consist of two
components, namely the so-called best-estimate reserves for the cash flows and a risk
margin for non-hedgeable risks in these cash flows. We will discuss these two elements
in detail by giving an economically based approach how they can be calculated.

The calculation of the best-estimate reserves is fairly straightforward. Article 77
of the Solvency II Framework Directive says “the best estimate shall correspond to
the probability-weighted average of future cash-flows, taking account of time value of
money . . . the calculation of the best estimate shall be based upon up-to-date and credible
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information . . . ”. This simply means that the best-estimate reserves are a time value
adjusted conditional expectation of future cash flows, conditioned on the information that
we have collected up to today.

The calculation of the risk margin has led to more discussion as there is no general
understanding on how it should be calculated. The most commonly used approach is the
so-called cost-of-capital approach. The cost-of-capital approach is based on the reasoning
that a financial agent provides for every future accounting year the risk bearing capital
that protects against adverse developments in the run-off of the insurance cash flows.
Since that financial agent provides this yearly protection, a reward in the form of a yearly
price is expected. The total of these yearly prices constitutes the so-called cost-of-capital
margin which is then set equal to the risk margin. The difficulty with this cost-of-capital
approach is that in almost all situations it is not tractable. It involves path-dependent multi-
period risk measures; see Salzmann and Wüthrich [10]. In most interesting cases these
path-dependent multi-period risk measure loadings can not be calculated analytically,
nor can they be calculated numerically in an efficient way because they usually involve
large amounts of nested simulations. Therefore, various proxies are used in practice.
Probably the two most commonly used proxies are the proportional scaling proxy and
the split of total uncertainty proxy; see Salzmann and Wüthrich [10], Wüthrich [13] and
Articles TP.5.32 and TP.5.41 of QIS5 [9]. Related papers are Artzner and Eisele [1] and
Möhr [8].

In this paper we present a completely different, more economically based approach.
We argue that the risk margin should be related to the risk aversion of the financial
agent that provides the protection against adverse developments. This risk aversion can
be modeled using probability distortion techniques and this will lead to a mathematically
fully consistent risk margin.Under the proposed method, risk-adjusted values of insurance
cash flows are calculated as expected values after modifying (distorting) the probabilities
used. This kind of idea has been used in actuarial practice for a very long time, however
typically in the field of life insurance mathematics, corresponding to the construction of
first order life tables out of second order life tables. Second order life tables are expected
death/survival probabilities whereas for first order life tables a safety loading is added to
insure that the (life) insurance premium is sufficiently high.

We apply these ideas to the context of non-life insurance liabilities. We study the
run-off of outstanding loss liabilities in a chain ladder framework. Using probability
distortions, we develop so-called risk-adjusted chain ladder factors from the classical
chain ladder factors. These risk-adjusted factors have a surprisingly simple form and allow
for a natural inclusion of the risk margin into our considerations. Related literature to
these probability distortion considerations (and the related change-of-measure techniques
in financial mathematics) are, among others, Bühlmann et al. [2], Denuit et al. [4], Föllmer
and Schied [5], Tsanakas and Christofides [11], Wang [12] and Wüthrich et al. [14].

The paper is organized as follows. In the next section we define the Bayesian log-
normal chain ladder model for claims reserving. Within this model we then calculate
the best-estimate reserves as required by the solvency directive; see Section 3 below. In
Section 4 we introduce general insurance-technical probability distortions. An explicit
choice for the latter then provides the positive risk margin. Finally, in Section 5 we
provide a real data example that is based on private liability insurance data. We compare
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our numerical results to other concepts used in practice. All the proofs of the statements
are provided in the Appendix.

2 Model assumptions
We assume that a final time horizon n ∈ N is given and consider the insurance cash flow
valuation problem in discrete time t ∈ {0, . . . , n}. For simplicity we assume that the time
unit corresponds to years. We denote the underlying probability space by (�,G,P) and
assume that, on this probability space, we have two flows of information given by the
filtrations F = (Ft)t=0,...,n and T = (Tt)t=0,...,n . We assume F0 and T0 are the trivial
σ-fields. The filtration F corresponds to the financial market filtration and T corresponds
to the insurance-technical filtration. In order to keep the model simple, we assume that
these two filtrations are stochastically independent under the probability law P; see also
Section 2.6 in Wüthrich et al. [14]. Of course, this last assumption can be rather restrictive
in applications, however, we emphasize that it can be relaxed by expressing insurance
liabilities in the right financial units; see the valuation portfolio construction in Wüthrich
et al. [14].

This independent decoupling into financial variables adapted to F and insurance-
technical variables adapted to T implies that we can replicate expected insurance cash
flows in terms of default-free zero coupon bonds; see Assumption 5.1 and Remark 5.2
in Wüthrich et al. [14]. This is in-line with Article 77 of the Solvency II Framework
Directive, but needs to be questioned if we have no independent decoupling into financial
and insurance-technical variables.

Insurance cash flows are denoted by Xi, j , where i ∈ {1, . . . , I} are the accident years
of the insurance claims (origin years) and j ∈ {0, . . . , J} are the development years
of these insurance claims (payment delays). We assume that all claims are settled after
development year J and that I ≥ J + 1. With this terminology, cash flow Xi, j is paid in
accounting year k = i + j . This provides the accounting year cash flows (over all accident
years i ∈ {1, . . . , I})

Xk =
∑

i+ j=k

Xi, j =
I∧k∑

i=1∨(k−J )

Xi,k−i =
J∧(k−1)∑

j=0∨(k−I )

Xk− j, j .

We denote the total cash flow by X = (X1, . . . , Xn) and the outstanding loss liabilities
at time t < n are given by

X(t+1) = (0, . . . , 0, Xt+1, . . . , Xn).

Thus, our aim is to model, predict and value this outstanding loss liability cash flow X(t+1)

for every t < n. For the modeling of the cash flow X we use the following Bayesian chain
ladder model.

Model 2.1 (Bayesian log-normal chain ladder model) We assume n = I + J and

• Tt = σ
{

Xi, j ; i + j ≤ t, i = 1, . . . , I, j = 0, . . . , J
}

for all t = 1, . . . , I + J;

• conditionally, given � = (�0, . . . ,�J−1) and σ = (σ0, . . . , σJ−1), we have
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– Xi, j are independent for different accident years i;

– cumulative payments Ci, j = ∑ j
l=0 Xi,l satisfy

ξi, j+1
def.= log

(
Ci, j+1

Ci, j
− 1

)∣∣∣∣
Ti+ j ,�,σ

∼ N
(
� j , σ

2
j

)

for j = 0, . . . , J − 1 and i = 1, . . . , I;

• σ > 0 is deterministic and � j , j = 0, . . . , J − 1, are independent with

� j ∼ N
(
φ j , s2

j

)
,

with prior parameters φ j and s j > 0, and

• (X1,0, . . . , X I,0) and � are independent.

We assume that the insurance-technical filtration T is generated by the insurance cash
flows Xi, j . This suggests that this is the only insurance-technical information available to
solve the cash flow prediction problem. Moreover, since we have assumed independence
between F and T we know that the time value adjustments of cash flows need to be done
with default-free zero coupon bonds. This immediately implies that the best-estimate
reserves for the outstanding loss liabilities at time t < n are given by

Rt
(
X(t+1)

) =
∑

k≥t+1

E [ Xk| Tt] P(t, k) =
∑

k≥t+1

∑

i+ j=k

E
[

Xi, j
∣∣ Tt

]
P(t, k), (2.1)

where P(t, k) is the price at time t of the default-free zero coupon bond that matures
at time k. This definition of best-estimate reserves provides the necessary martingale
framework for the joint filtration of F and T (under the measure P) which in these terms
provides an arbitrage-free pricing framework; for more details see Chapter 2 in Wüthrich
et al. [14].

We have chosen a Bayesian Ansatz in the assumptions of Model 2.1. The advantage
of a Bayesian model is that the parameter uncertainty is, in a natural way, included in
the model, and parameter estimation is canonical using posterior distributions. Moreover,
we have chosen an exact credibility model (see Bühlmann and Gisler [3, Chapter 2])
which has the advantage that we obtain closed form solutions for posterior distributions.
However, our analysis is by no means restricted to the Bayesian log-normal chain ladder
model. Other models can be solved completely analogously, but in some cases one has to
rely on simulation methods such as the Markov Chain Monte Carlo (MCMC) simulation
methodology.

3 Best-estimate reserves calculation
In formula (2.1) we have defined the best-estimate reserves. In this section we calculate
these best-estimate reserves explicitly for Model 2.1. We assume that t ≥ I , which
implies that at time t all initial payments Xi,0 have been observed for accident years



Risk margin for a non-life insurance run-off 303

i ∈ {1, . . . , I}. For i + j > t we then obtain, using the tower property for conditional
expectations (note that we also condition on the model parameters �),

E
[

Xi, j
∣∣ Tt,�

] = Ci,t−i

⎛

⎝
j−2∏

l=t−i

(
exp

{
�l + σ2

l /2
}

+ 1
)
⎞

⎠ exp
{
� j−1 + σ2

j−1/2
}

. (3.1)

For a proof, we refer to Lemma 5.2 in Wüthrich and Merz [15]. Formula (3.1) implies
that we would like to do Bayesian inference on �, given the observations Tt . That is, we
would like to determine the posterior distribution of � at time t. This then provides the
Bayesian predictor

E
[

Xi, j
∣∣ Tt

] = Ci,t−iE

⎡

⎣

⎛

⎝
j−2∏

l=t−i

(
exp

{
�l + σ2

l /2
}

+ 1
)
⎞

⎠ exp
{
� j−1 + σ2

j−1/2
}
∣∣∣∣∣∣
Tt

⎤

⎦ .

In Model 2.1 we can explicitly provide the posterior density of �, given the observa-
tions Tt :

h (�| Tt) ∝
J−1∏

j=0

exp

{
− 1

2s2
j

(
� j − φ j

)2

}
I∏

i=1

(t−i)∧J∏

j=1

exp

{
− 1

2σ2
j−1

(
ξi, j − � j−1

)2

}
.

The first term on the right-hand side is the prior information about the parameters �, the
second term is the likelihood function of the observations, given the parameters �. This
posterior density immediately provides the following theorem.

Theorem 3.1 In Model 2.1, the posteriors of � j , given Tt with t ≥ I, are independent
normally distributed random variables with

� j
∣∣
Tt

∼ N
(
φ

(t)
j ,
(
s(t)

j

)2
)

,

and posterior parameters

φ
(t)
j = (

s(t)
j

)2

⎡

⎣φ j

s2
j

+ 1

σ2
j

(t− j−1)∧I∑

i=1

ξi, j+1

⎤

⎦

and

(
s(t)

j

)2 =
(

1

s2
j

+ (t − j − 1) ∧ I

σ2
j

)−1

.

Theorem 3.1 implies that

φ
(t)
j = E [� j

∣∣ Tt
] = β

(t)
j ξ

(t)
j +

(
1 − β

(t)
j

)
φ j , (3.2)

with sample mean and credibility weight given by

ξ
(t)
j = 1

(t − j − 1) ∧ I

(t− j−1)∧I∑

i=1

ξi, j+1 and β
(t)
j =

[
(t − j − 1) ∧ I

]
s2

j

σ2
j + [

(t − j − 1) ∧ I
]

s2
j

.
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Hence, the posterior mean of � j is a credibility weighted average between the sample

mean ξ
(t)
j and the prior mean φ j with credibility weight β

(t)
j . For non-informative prior

information we let s j → ∞ and find that β
(t)
j → 1 which means that we give full

credibility to the observation based parameter estimate ξ
(t)
j . For perfect prior information

we let s j → 0 and conclude that β(t)
j → 0, i.e. we give full credibility to the prior estimate

φ j .
Using the posterior independence and Gaussian properties of � j we obtain the fol-

lowing corollary for the Bayesian predictor.

Corollary 3.2 In Model 2.1 we obtain, for i + j > t ≥ I ,

E
[

Xi, j
∣∣ Tt

] = Ci,t−i

⎛

⎝
j−2∏

l=t−i

f (t)
l

⎞

⎠
(

f (t)
j−1 − 1

)
,

with posterior chain ladder factors

f (t)
l = E

[
exp

{
�l + σ2

l /2
}

+ 1
∣∣∣ Tt

]
= exp

{
φ

(t)
l + (

s(t)
l

)2
/2 + σ2

l /2
}

+ 1.

Moreover, ( f (t)
l )t=0,...,n are (P,T)-martingales for all l = 0, . . . , J − 1.

This corollary has the consequence that, in Model 2.1, the best-estimate reserves at
time t ≥ I are given by

Rt
(
X(t+1)

) =
I∑

i=t+1−J

Ci,t−i

J∑

j=t−i+1

⎛

⎝
j−2∏

l=t−i

f (t)
l

⎞

⎠
(

f (t)
j−1 − 1

)
P(t, i + j). (3.3)

This solves the question about the calculation of best-estimate reserves for outstanding
loss liabilities: it is a probability-weighted, time value adjusted amount that considers the
most recent available information. We now turn to the more challenging calculation of
the risk margin which covers deviations from these best-estimate reserves.

4 Risk-adjusted reserves and risk margin
In this section we define the risk margin using the economic argument that a risk averse
financial agent will ask for a premium that is higher than the conditionally expected
discounted claim. This will be achieved by introducing a probability distortion on the
payments Xi, j which will lead to the so-called risk-adjusted reserves R+

t
(
X(t+1)

)
at

time t. The risk margin at time t can then by defined as the difference

RMt
(
X(t+1)

) = R+
t

(
X(t+1)

)−Rt
(
X(t+1)

)
, (4.1)

which will be strictly positive under an appropriate probability distortion. Before doing
this explicitly for the Bayesian chain ladder model, we describe the probability distor-
tions that we are going to use in more generality. The crucial idea is that we introduce
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a density process ϕ = (ϕ0, . . . , ϕn) that modifies the probabilities in an appropriate way.
The probability distortion functions introduced by Wang [12] relate to our framework in
sufficiently smooth cases and the change-of-measure techniques from financial mathe-
matics are obtained by the transformations presented in Sections 2.5 and 2.6 of Wüthrich
et al. [14].

4.1 Insurance-technical probability distortions

An insurance-technical probability distortion ϕ = (ϕ0, . . . , ϕn) is aT-adapted and strictly
positive stochastic process that is a (P,T)-martingale with normalization ϕ0 = 1. This is
exactly the definition given in (2.103) of Wüthrich et al. [14] and means that ϕ is a density
process w.r.t. (P,T) (which can be used for a change-of-measure). For a cash flow X we
can then define the risk-adjusted units by

	t,k = 1

ϕt
E [ϕk Xk| Tt ] .

In view of (2.1), the risk-adjusted reserves are then defined by

R+
t

(
X(t+1)

) =
∑

k≥t+1

	t,k P(t, k) =
∑

k≥t+1

∑

i+ j=k

1

ϕt
E
[
ϕk Xi, j

∣∣ Tt
]

P(t, k). (4.2)

For the choice ϕ ≡ 1 the best-estimate reserves and the risk-adjusted reserves coincide,
but for an appropriate risk averse choice of ϕ we will obtain a strictly positive risk margin
RMt

(
X(t+1)

)
.

For the latter, it is required that ϕk|Tt and Xk|Tt are positively correlated, where in
this case (using the martingale property of ϕ)

	t,k = 1

ϕt
E [ϕk Xk| Tt] ≥ 1

ϕt
E [ϕk| Tt]E [ Xk| Tt ] = E [ Xk| Tt] .

This correlation inequality is often achieved by using the Fortuin–Kasteleyn–Gini-
bre (FKG) inequality from [6], which sometimes is also called the supermodular prop-
erty. The positive correlatedness implies that more probability weight is given to ad-
verse scenarios. In order to have time-consistency w.r.t. to risk aversion, we require that
(	t,k)t=0,...,n is a (P,T) super-martingale. This implies that

E
[
	t+1,k − E [Xk| Tt+1

]∣∣ Tt
] ≤ 	t,k − E [ Xk| Tt ] , (4.3)

which says that, in expectation, the risk margin is constantly released over time.

4.2 Risk-adjusted reserves for the Bayesian chain ladder model

In the previous section, using insurance-technical probability distortions, we have given
the general concept for the calculation of a positive risk margin. In the present section we
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give an explicit example for the insurance-technical probability distortion ϕ that will fit
to our Bayesian chain ladder model. We make the following particular choice:

ϕn =
J∏

j=1

exp
{
α1

I∑

i=1

ξi, j + α2� j−1 − (Iα1 + α2)φ j−1

− (Iα1 + α2)
2

s2
j−1

2
− Iα2

1

σ2
j−1

2

}
,

(4.4)

where α1, α2 ≥ 0 are fixed constants. As will become apparent below, the parameters
α1 and α2 characterize risk aversion: α1 relates to the process risk in ξi, j and α2 to the
parameter uncertainty in �. We then define the insurance-technical probability distortion
ϕ by ϕt = E [ϕn| Tt].

Lemma 4.1 ϕ is a strictly positive and normalized (P,T)-martingale.

The proof of the lemma is provided in the Appendix. We are now ready to state our
main theorem.

Theorem 4.2 In Model 2.1 we have, for k > t ≥ I and i ∈ {k − J, . . . , I},
1

ϕt
E
[
ϕk Xi,k−i

∣∣ Tt
] = Ci,t−i

(
k−i−2∏

l=t−i

f (+t)
l

)(
f (+t)
k−i−1 − 1

)
,

with risk-adjusted chain ladder factors

f (+t)
l = exp

{
φ

(t)
l +

(
s(t)
l

)2

2
+ σ2

l

2

}

× exp
{
(α2 + [I − (t − l − 1)]α1)

(
s(t)
l

)2 + α1σ
2
l

}
+ 1.

The theorem is proved in the Appendix. In view of Corollary 3.2 and Theorem 4.2
we obtain, for l ≥ t − I , the inequality f (+t)

l ≥ f (t)
l . The posterior chain ladder factors

f (t)
l provide the best-estimate reserves at time t, the risk-adjusted chain ladder factors

f (+t)
l provide risk-adjusted reserves that consider both process risk in ξi, j and parameter

uncertainty in � j . The risk-adjusted reserves are then given by

R+
t

(
X(t+1)

) =
I∑

i=t+1−J

Ci,t−i

J∑

j=t−i+1

⎛

⎝
j−2∏

l=t−i

f (+t)
l

⎞

⎠
(

f (+t)
j−1 − 1

)
P(t, i + j), (4.5)

and we obtain a positive risk margin RMt
(
X(t+1)

)
.

Remark 4.3 • We observe that it is fairly easy to calculate the risk-adjusted reserves
in the Bayesian log-normal chain ladder Model 2.1 with probability distortion (4.4),
all that we need to do is to modify the chain ladder factors appropriately:

f (+t)
l =

(
f (t)
l − 1

)
exp

{
(α2 + [I − (t − l − 1)]α1)

(
s(t)
l

)2 + α1σ
2
l

}
+ 1. (4.6)
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The following function for l ≥ t − I ≥ 0,

τl,t(α1, α2) = exp
{
(α2 + [I − (t − l − 1)]α1)

(
s(t)
l

)2 + α1σ
2
l

}
≥ 1

exactly reflects this modification according to the risk aversion parameters α1 ≥ 0
and α2 ≥ 0. Note that τl,t(α1, α2) is deterministic and, as stated before, represents
the level of prudence similar to the construction of the first and second order life
tables in life insurance.

• The parameter α2 reflects risk aversion in the parameter uncertainty and the pa-
rameter α1 reflects risk aversion in the process risk. However, α1 also influences
parameter uncertainty because in the Bayesian analysis we do inference on the
parameters from the observed information Tt .

• This concept of constructing risk-adjusted chain ladder factors is by no means
exclusive to the Bayesian log-normal chain ladder model. It can be applied to other
chain ladder models, or even more broadly, to every claims reserving and pricing
model (similar as the risk neutral measure constructions in financial mathematics). It
hence yields a very general concept for constructing a risk margin. We have chosen
the Bayesian log-normal chain ladder model because of its practical relevance
and because it allows for closed form solutions, helping interpretation. Note that
(4.4) gives a special type of probability distortion, other choices could have been
made. The remaining, more economic and regulatory, question then is: which
are alternative constructions of insurance-technical probability distortions used in
practice, and how should these be calibrated?

4.3 Expected run-off of the risk margin
In this subsection we study the expected run-off of the best-estimate and of the risk-
adjusted reserves. For this, we need the following lemma.

Lemma 4.4 For l ≥ t − I ≥ s − I ≥ 0 we have

f (+t,s)
l = E

[
f (+t)
l

∣∣∣ Ts

]
=
(

f (s)
l − 1

)
τl,t(α1, α2) + 1.

The proof of this lemma immediately follows from (4.6) and the martingale property
of the chain ladder factors ( f (t)

l )t=0,...,n . Observe that τl,t(α1, α2) is decreasing in t which
gives the super-martingale property (4.3). Moreover, we have the following theorem.

Theorem 4.5 For t > s ≥ I we have for the expected best-estimate reserves

E
[
Rt

(
X(t+1)

)∣∣ Ts,Fs
]

=
I∑

i=t+1−J

Ci,s−i

J∑

j=t−i+1

j−2∏

l=s−i

f (s)
l

(
f (s)

j−1 − 1
)
E
[

P(t, i + j)|Fs
]
,
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and for the expected risk-adjusted reserves

E
[
R+

t

(
X(t+1)

)∣∣ Ts,Fs
]

=
I∑

i=t+1−J

[
Ci,s−i

t−i−1∏

l=s−i

f (s)
l

×
J∑

j=t−i+1

j−2∏

l=t−i

f (+t,s)
l

(
f (+t,s)

j−1 − 1
)
E
[

P(t, i + j)|Fs
] ]

.

Note that, in order to project the expected run-off of the best-estimate reserves and
the risk margin for t ≥ s ≥ I , we also need to model the expected future zero coupon
bond prices E

[
P(t, i + j)|Fs

]
. In the next section we give a numerical example for this

run-off.

5 Real data example
We present a real data example. The data set is a 17 × 17 private liability insurance cash
flow triangle. In Table 5.1 we provide the cumulative payments Ci, j = ∑ j

l=0 Xi,l for
i + j ≤ 17. We choose the final accident year under consideration I = 17 and we assume
that all claims are settled after development year J = 16. We then consider the run-off
situation at time I for t = I, . . . , n = 33.

Using the parameter choices from Table 5.1 we are able to calculate the credibility
weights β

(t)
j and the posterior means φ

(t)
j at time t = 17.

-10

-8

-6

-4

-2

0
0 2 4 6 8 10 12 14

prior mean sample mean posterior mean

Figure 5.1 Prior mean φ j , sample mean ξ
(t)
j and posterior mean φ

(t)
j for j = 0, . . . , 15 and

t = 17.
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In Figure 5.1 we present the prior means φ j , sample means ξ
(t)
j and posterior means

φ
(t)
j based on the data Tt with t = 17. We see that the posterior mean smooths the sample

mean using the prior mean with credibility weights 1 − β
(t)
j ; see also the credibility

formula (3.2).
Next, we need to provide the term structure for the zero coupon bond prices at time

t = 17 in order to calculate the best-estimate and the risk-adjusted reserves. We choose
the actual CHF bond yield curve available from the Swiss National Bank. Finally, we
choose the risk aversion parameters: α1 = 0.02 and α2 = 1. Now, we are ready to
calculate the best-estimate and the risk-adjusted reserves, they are given in Table 5.2.

R17(X(18)) R+
17(X(18)) RM17(X(18))

reserves under actual ZCB prices 23’977 25’066 1’089

nominal reserves, i.e. P(17, k) ≡ 1 24’672 25’814 1’142

discounting effect 695 748 53

discounting effect in % 2.82% 2.90% 4.64%

Table 5.2 Best-estimate reservesR17 (X(18)), risk-adjusted reservesR+
17 (X(18)) and risk margin

RM17(X(18)) for the data set given in Table 5.1.

These reserves are calculated under the actual CHF bond yield curve and for nominal
prices, i.e. P(17, k) ≡ 1. We observe that the discounting effect is quite small which
comes from the fact that we are currently in a low interest rate period.

On the other hand we obtain a risk margin RM17(X(18)) of 1’089 which is 4.54% in
terms of the best-estimate reserves R17(X(18)). Of course, the size of this risk margin
heavily depends on the choice of the risk aversion parameters. In our case we have chosen
these such that we obtain a similar risk margin as in the cost-of-capital approach under
the parameter choices used for Solvency II. If we choose the split of total uncertainty
approach from Salzmann and Wüthrich [10] with security loading φ = 2 and cost-of-
capital rate c = 6% (see formula (4.2) in [10] and TP.5.25 in [9]) we obtain for nominal
reserves a risk margin of 1’107 (see also Table 5.4) which is comparable to the 1’142 of
the probability distortion approach. Finally, the balancing between α1 and α2 was done
such that if we turn off one of these two parameters then the risk margin has similar
size; see Table 5.3. The question of the choice of the risk aversion parameters also needs
input from the regulator. The latter gives the legal framework within which a loss portfolio
transfer needs to take place. This question concerns whether or not the insurance portfolio
is sent into run-off. Moreover, the regulator needs to decide at which state of the economy
this transfer should take place between so-called willing financial agents because this also
determines their risk aversion.

In Table 5.4 we compare the probability distortion approach (4.5) to the split of total
uncertainty approach (proposed in Salzmann and Wüthrich [10]) and to the proportional

Swiss National Bank’s website: www.snb.ch

http://www.snb.ch
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R17(X(18)) R+
17(X(18)) RM17(X(18))

α1 = 0.02 and α2 = 1 23’977 25’066 1’089

α1 = 0 and α2 = 1 23’977 24’478 501

α1 = 0.02 and α2 = 0 23’977 24’546 568

Table 5.3 Best-estimate reservesR17 (X(18)), risk-adjusted reservesR+
17 (X(18)) and risk margin

RM17(X(18)) for different risk aversion parameter choices.

nominal reserves R17(X(18)) R
+
17(X(18)) RM17(X(18))

probability distortion approach (4.5) 24’672 25’814 1’142

split of total uncertainty approach [10] 24’672 25’779 1’107

proportional scaling proxy TP.5.41 in [9] 24’672 25’350 678

Table 5.4 Comparison of probability distortion approach (4.5), split of total uncertainty ap-
proach [10] and proportional scaling proxy TP.5.41 in [9] in the risk measure framework
of [10].

scaling proxy (which is the method used in QIS5 [9], Article TP.5.41, see also Salzmann
and Wüthrich [10] and Keller [7]). We see that in this example the proportional scaling
proxy is clearly below the other two approaches. This is further investigated in Figure 5.3
below (we also refer to Wüthrich [13]).

Next, we calculate the expected run-off of the best-estimate reserves and the risk
margin. Therefore, we need a stochastic model for the development of the term structure
which determines future zero coupon bond prices; see Theorem 4.5. For simplicity we
only consider nominal cash flows for the run-off analysis which avoids modeling future
zero coupon bond prices, i.e. we set P(t, k) ≡ 1 for t, k ≥ 17. Figure 5.2 provides for this
case the expected run-off of the best-estimate reserves and the risk margin.

Finally, we calculate the expected relative run-off of the risk margins defined by

wk = E
[

RMk
(
X(k+1)

)∣∣ T17,F17
]

RM17
(
X(18)

) for k ≥ 17.

We observe that the split of total uncertainty approach vk(1), as defined in Salzmann
and Wüthrich [10], gives a similar picture to the risk margin run-off pattern wk, see
Figure 5.3. On the other hand, the proportional scaling proxy vk(2) from Article TP.5.41
in QIS5 [9] (see also Salzmann and Wüthrich [10] and Keller [7]) clearly under-estimates
run-off risks. This agrees with the findings in Wüthrich [13] and reflects that the ex-
pected claims reserves as volume measure for the run-off risk scaling is not appropriate.
The main reason for this under-estimation of the proportional scaling proxy is that the
payout of the claims reserves takes places much faster than the release of insurance-
technical risk because we first settle small non-risky claims and risky claims stay in the
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Figure 5.2 Expected run-off of the best-estimate reserves E
[
Rk

(
X(k+1)

)∣∣ T17,F17
]

and the
risk margin E

[
RMk

(
X(k+1)

)∣∣ T17,F17
]

for k = 17, . . . , n − 1.
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Figure 5.3 Expected relative run-off of the risk margins wk , k ≥ 17, compared to the split of
total uncertainty approach vk(1) of Salzmann and Wüthrich [10] and the proportional scaling
proxy vk(2) (see Article TP.5.41 in QIS5 [9] and Salzmann and Wüthrich [10]).

run-off portfolio for much longer accounting for the fact that their settlement is more
difficult.

6 Conclusion
We have considered the concept of insurance-technical probability distortions for the cal-
culation of the risk margin in non-life insurance. This concept is based on the assumption
that financial agents are risk averse which is reflected by a positive correlation between
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the insurance-technical probability distortions and the insurance cash flows. This then
provides, in a natural and mathematically consistent way, a positive risk margin. For
our specific choice within the Bayesian log-normal chain ladder model we have found
that this concept results in choosing prudent chain ladder factors. The prudence margin
reflects the risk aversion in process risk and parameter uncertainty. We have compared
our choice of the risk margin to the methods used in practice and we have found that the
qualitative results are similar to the more advanced methods presented in Salzmann and
Wüthrich [10].

In the present paper we have chosen one specific insurance-technical probability
distortion because this choice has led to closed form solutions. Future research should
investigate alternative constructions of probability distortions (according to market be-
havior of financial agents) and it should also investigate the question how these choices
can be calibrated. In our example, we have assumed that the insurance cash flow is in-
dependent from financial market developments. This has resulted in the choice of the
default-free zero coupon bond as replicating financial instrument. Future research should
also analyze situations where this independence assumption is not appropriate.

A Proofs

Proof of Lemma 4.1:The strict positivity and the martingale property immediately follow
from the definition of ϕ. So there remains the proof of the normalization ϕ0 = 1. Using
the assumptions of Model 2.1 and the tower property we obtain (note that T0 = {∅,�})

ϕ0 = E [ϕn] = E [E [ϕn|�]]

= E
⎡

⎣
J−1∏

j=0

exp
{
(Iα1 + α2)� j − (Iα1 + α2)φ j − (Iα1 + α2)

2s2
j /2

}
⎤

⎦ = 1.

This proves the claim. �

Proof of Theorem 4.2: Note that we have Ci,k−i = Xi,k−i − Xi,k−i−1, therefore it
is sufficient to prove the claim for cumulative claims Ci,k−i . We first condition on the
knowledge of the chain ladder parameters �,

1

ϕt
E
[
ϕkCi,k−i

∣∣ Tt
] = 1

ϕt
E
[
ϕnCi,k−i

∣∣ Tt
] = 1

ϕt
E
[
E
[
ϕnCi,k−i

∣∣ Tt ,�
]∣∣ Tt

]
.

Further,

ϕn =
⎡

⎣
J∏

j=1

I∏

l=1

exp
{
α1ξl, j

}
⎤

⎦

×
J−1∏

j=0

exp

{
α2� j − (Iα1 + α2)φ j − (Iα1 + α2)

2
s2

j

2
− Iα2

1

σ2
j

2

}
.
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This means, that conditionally on �, the first term in the brackets is the only random term
in ϕn . Define

ϕ�
t = E [ϕn| Tt ,�] =

J∏

j=1

(t− j)∧I∏

l=1

exp
{
α1ξl, j − α1� j−1 − α2

1σ
2
j−1/2

}

×
J−1∏

j=0

exp

{
(Iα1 + α2)� j − (Iα1 + α2)φ j − (Iα1 + α2)

2
s2

j

2

}
.

Hence, for k > t,

E
[
ϕnCi,k−i

∣∣ Tt,�
] = E

[
ϕ�

k Ci,k−i

∣∣∣ Tt,�
]
.

For the last term, note that (ϕ�
t )t=0,...,n is a martingale for the filtration (Tt,�)t=0,...,n

and that the cumulative claim

Ci,k−i = Ci,t−i

k−i∏

j=t−i+1

(
exp

{
ξi, j

}+ 1
)

only contains terms for accident year i which are conditionally independent given �. This
implies that, for k > t,

E

[
ϕ�

k Ci,k−i

∣∣∣ Tt,�
]

= ϕ�
t Ci,t−i

k−i−1∏

j=t−i

(
exp

{
� j + α1σ

2
j + σ2

j /2
}

+ 1
)

.

We therefore conclude that

1

ϕt
E
[
ϕkCi,k−i

∣∣ Tt
] = Ci,t−i

ϕt
E

⎡

⎣ϕ�
t

k−i−1∏

j=t−i

(
exp

{
� j + α1σ

2
j + σ2

j /2
}

+ 1
)
∣∣∣∣∣∣
Tt

⎤

⎦ .

(A.1)

There are three important observations that allow to calculate this last expression. The first
is that E

[
ϕ�

t

∣∣ Tt
] = ϕt (which is the tower property for conditional expectations). The

second comes from Theorem 3.1, namely we have posterior independence of the � j ’s,
conditionally given Tt . This implies that expected values over the products of � j can be
rewritten as products over expected values. The third observation is that in the expected
value of (A.1) we have exactly the same product terms as in ϕt except for the development
periods j ∈ {t − i, . . . , k − i − 1}. This implies that all terms cancel except the ones



Risk margin for a non-life insurance run-off 315

that belong to these development parameters. If, in addition, we cancel all constants and
Tt -measurable terms we arrive at

1

ϕt
E
[
ϕkCi,k−i

∣∣ Tt
]

= Ci,t−i

k−i−1∏

j=t−i

(
E

[
exp

{
([I − (t − j − 1)]α1 + α2)� j

}

×
(

exp
{
� j + α1σ

2
j + σ2

j /2
}

+ 1
)

| Tt

])

×
(
E
[
exp

{
([I − (t − j − 1)]α1 + α2)� j

} | Tt
] )−1

.

So there remains the calculation of the terms in the product of the right-hand side of the
equality above. Using Theorem 3.1 we obtain, for j ∈ {t − i, . . . , k − i − 1},

E

[
exp

{
([I − (t − j − 1)]α1 + α2)� j

} (
exp

{
� j + α1σ

2
j + σ2

j /2
}

+ 1
)

| Tt

]

E
[
exp

{
([I − (t − j − 1)]α1 + α2)� j

} | Tt
]

= E
[
exp

{
(1 + α2 + [I − (t − j − 1)]α1)� j

} | Tt
]

E
[
exp

{
(α2 + [I − (t − j − 1)]α1)� j

} | Tt
] exp

{
α1σ

2
j + σ2

j /2
}

+ 1

= exp
{
φ

(t)
j + (

s(t)
j

)2
/2 + σ2

j /2
}

× exp
{
(α2 + [I − (t − j − 1)]α1)

(
s(t)

j

)2 + α1σ
2
j

}
+ 1.

This proves Theorem 4.2. �

Proof of Theorem 4.5: We only prove the claim for the best-estimate reserves because
the proof for the risk-adjusted reserves is completely analogous. From Corollary 3.2 we
see that φ

(t)
l is the only random term in f (t)

l . Therefore we can concentrate on this term.

First we study the decoupling of φ
(t)
l conditionally given Tt−1. If we use the credibility

formula for this term we obtain

φ
(t)
l = β

(t)
l ξ

(t)
l + (

1 − β
(t)
l

)
φl = γ

(t−1)
l ξt−l−1,l+1 + (

1 − γ
(t−1)
l

)
φ

(t−1)
l ,

with credibility weight given by

γ
(t−1)
l = s2

l

σ2
l + (t − l − 1)s2

l

.

This is the well-known iterative update mechanism of credibility estimators; see for ex-
ample Bühlmann and Gisler [3, Theorem 9.6]. Therefore, conditional on Tt−1, ξt−l−1,l+1

is the only random term in f (t)
l . Since all these terms belong to different accident years
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and development periods for l ∈ {t − i, . . . , J − 1} we have posterior independence,
conditional on Tt−1, which implies, for k > t ≥ I , that

E

⎡

⎣Ci,t−i

j−2∏

l=t−i

f (t)
l

(
f (t)

j−1 − 1
)
∣∣∣∣∣∣
Ts

⎤

⎦

= E
⎡

⎣E

⎡

⎣Ci,t−i

j−2∏

l=t−i

f (t)
l

(
f (t)

j−1 − 1
)
∣∣∣∣∣∣
Tt−1

⎤

⎦

∣∣∣∣∣∣
Ts

⎤

⎦

= E
⎡

⎣E
[
Ci,t−i

∣∣ Tt−1
] j−2∏

l=t−i

E

[
f (t)
l

∣∣∣ Tt−1

]
E

[
f (t)

j−1 − 1
∣∣∣ Tt−1

]
∣∣∣∣∣∣
Ts

⎤

⎦

= E
⎡

⎣Ci,t−i−1

j−1∏

l=t−i−1

f (t−1)
l

(
f (t−1)

j−1 − 1
)
∣∣∣∣∣∣
Ts

⎤

⎦ .

Iteration of this argument completes the proof. �
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[14] Wüthrich, M. V., Bühlmann, H., Furrer, H. (2010). Market-Consistent Actuarial Val-
uation. 2nd edition. Springer.
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