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S U M M A R Y
Real-time applications such as earthquake early warning (EEW) typically use empirical
ground-motion prediction equations (GMPEs) along with event magnitude and source-to-
site distances to estimate expected shaking levels. In this simplified approach, effects due to
finite-fault geometry, directivity and site and basin response are often generalized, which may
lead to a significant under- or overestimation of shaking from large earthquakes (M > 6.5) in
some locations. For enhanced site-specific ground-motion predictions considering 3-D wave-
propagation effects, we develop support vector regression (SVR) models from the SCEC
CyberShake low-frequency (<0.5 Hz) and broad-band (0–10 Hz) data sets. CyberShake en-
compasses 3-D wave-propagation simulations of >415 000 finite-fault rupture scenarios (6.5
≤ M ≤ 8.5) for southern California defined in UCERF 2.0. We use CyberShake to demonstrate
the application of synthetic waveform data to EEW as a ‘proof of concept’, being aware that
these simulations are not yet fully validated and might not appropriately sample the range of
rupture uncertainty. Our regression models predict the maximum and the temporal evolution
of instrumental intensity (MMI) at 71 selected test sites using only the hypocentre, magnitude
and rupture ratio, which characterizes uni- and bilateral rupture propagation. Our regression
approach is completely data-driven (where here the CyberShake simulations are considered
data) and does not enforce pre-defined functional forms or dependencies among input param-
eters. The models were established from a subset (∼20 per cent) of CyberShake simulations,
but can explain MMI values of all >400 k rupture scenarios with a standard deviation of about
0.4 intensity units. We apply our models to determine threshold magnitudes (and warning
times) for various active faults in southern California that earthquakes need to exceed to cause
at least ‘moderate’, ‘strong’ or ‘very strong’ shaking in the Los Angeles (LA) basin. These
thresholds are used to construct a simple and robust EEW algorithm: to declare a warning, the
algorithm only needs to locate the earthquake and to verify that the corresponding magnitude
threshold is exceeded. The models predict that a relatively moderate M6.5–7 earthquake along
the Palos Verdes, Newport-Inglewood/Rose Canyon, Elsinore or San Jacinto faults with a
rupture propagating towards LA could cause ‘very strong’ to ‘severe’ shaking in the LA basin;
however, warning times for these events could exceed 30 s.

Key words: Spatial analysis; Earthquake ground motions; Site effects; Wave propagation;
Early warning; North America.

1 I N T RO D U C T I O N

Predicting site-specific ground-motion parameters for large earth-
quakes (M > 6.5) is a major challenge in seismic hazard assess-
ment and engineering applications. This is particularly true for
systems designed to provide earthquake early warning (EEW) to

locations outside of the epicentral area, a few seconds to tens of
seconds before potentially destructive waves arrive (Allen et al.
2009a).

Commonly, ground-motion parameters, such as peak values or
instrumental intensity (e.g. modified Mercalli intensity, MMI),
are predicted from magnitude and source-to-site distance using

1438 C© The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

mailto:mboese@sed.ethz.ch


Ground-motion prediction models for LA region 1439

empirical ground-motion prediction equations (GMPEs). This ap-
proach, however, is problematic for real-time applications such as
EEW because the fault rupture extent is often unknown. The earth-
quake typically is approximated as a point-source with usage of
hypocentral, instead of rupture-to-site distances in GMPEs. Also,
site/basin and directional effects, caused by rupture directivity and
seismic radiation patterns, are generally simplified or neglected.
In some cases this can lead to a serious under- or overestimation
of ground-motion parameters. In this paper we focus on ground-
motion predictions for EEW. However, results of this study are also
relevant for other applications, including for example GMPE-based
probabilistic seismic hazard analysis (PSHA).

Ignoring finite-fault and 3-D wave-propagation effects can mean
that EEW alerts are, in some cases, not issued. An instructive exam-
ple is the M7.8 ShakeOut scenario earthquake in southern California
with a 300-km-long rupture along the San Andreas Fault starting
at Bombay Beach (Graves et al. 2008; Jones et al. 2008). If source
dimensions are neglected (as is typically done in EEW; Böse et al.
2013), shaking intensities in the 240-km-distant Los Angeles (LA)
basin are predicted as ‘light’ to ‘moderate’ (MMI = IV–V; Table 1).
Under an operational warning system, no warning would likely be
issued. This predicted MMI intensity, however, is four to five units
less than what seismic 3-D wave-propagation simulations by Graves
et al. (2008) suggest. Assuming that these simulations are closer to
true shaking, a warning should be declared.

The situation can be improved with the application of the Finite
Fault Rupture Detector algorithm ‘FinDer’ (Böse et al. 2012a).
This algorithm is based on the observation that high acceleration
values are typically observed at seismic stations close to the ruptur-
ing fault, and thus allowing the estimation of finite source dimen-
sions and rupture-to-site distances while the fault rupture is still in
progress. With this enhancement, ground-motions in the LA basin
for the ShakeOut scenario earthquake are estimated as MMI = VIII
(‘severe’ shaking), which is in much better agreement with the
wave-propagation simulations. However, even with FinDer it takes
about half a minute after nucleation before the rupture has reached
a critical length that suggests that a warning in LA is needed. Thus
the warning times, which in this particular scenario could exceed 60
s, are significantly shortened. Likewise, effects caused by fault ge-
ometry, site and basin response and directional effects, particularly
important for large earthquakes (M > 6.5) and at longer shaking
periods (T > 1 s), are not considered.

For a user to receive maximum value from a received warning,
it is crucial for the warning to accurately specify when significant
shaking is expected to arrive at the user site. Different response ac-
tions based on the expected severity of ground shaking, in particular
those performed by automated control systems, may require differ-
ent time duration for execution and completion. Also, if shaking is
expected to occur late, for instance in more than 20 or 30 s, addi-
tional redundancy tests (e.g. do additional sensors also record strong
shaking?) can be performed to reduce the risk of false alarms and
associated costs. If, on the other hand, strong shaking is expected
to occur within a few seconds, a user needs to respond quickly and
no verification tests can be performed. Typically, warning times are
estimated from the expected arrival of the direct S wave at the user
location (Böse et al. 2013). However, as will be shown in this paper,
depending on the fault rupture-user geometry and effects of wave-
propagation, strong shaking in a large earthquake can be caused by
later arriving phases and warning times to significant shaking may
be much longer.

The aim of this study is to develop models to predict the tem-
poral evolution of instrumental intensity MMI (strictly speaking, T
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Figure 1. Top panel: scheme of our proposed approach for site-specific ground-motion predictions. The regression models are derived and validated with
earthquake source and ground-motion parameters of the pre-processed SCEC CyberShake data set with >400 k full 3-D waveform simulations at 15 BB
(0–10 Hz) and 56 LF (<0.5 Hz) sites. Goal is to predict the temporal evolution of instrumental intensity MMI at the user sites (strictly speaking the times when
intensity thresholds MMIthres = [I, II, . . . , X+] are first exceeded) for large earthquakes in southern California. Bottom panel: one of the input parameters for
the regression models is the rupture ratio δ = l/L, where L is the length of the surface projected 2-D rupture and l the portion of the rupture propagating towards
the observer. The parameter is a measure of whether the rupture propagates uni- (δ = 0 if the rupture propagates away from the user; δ = 1 if the rupture
propagates towards the user) or bilateral (0 < δ < 1). Stars show the points of rupture nucleation, the solid lines the surface projected 2-D line ruptures; the
house marks the user location.

the times when intensity thresholds MMIthres = [I, II, . . . , X+]
are first exceeded) at ∼70 selected test sites in and around the LA
basin for large earthquakes in southern California. We seek a simple
and robust model that requires a minimum amount of information
about the earthquake (hypocentre, magnitude and rupture ratio δ,
which characterizes the direction of rupture propagation) and still
is capable of providing fast and reliable ground-motion estimates
as needed for EEW and other applications.

Correcting ground-motion predictions for 3-D wave-propagation
effects, as well as estimating warning times, requires having a large
data set of seismic observations (including those of earthquakes
with M > 6.5) from which these relations can be derived. This re-
quirement is usually not fulfilled, due to the infrequency of M ≥ 6.5
earthquakes. However, using high-quality 3-D wave-propagation
simulations instead is an attractive alternative. We will establish ε-
support vector regression (ε-SVR) models from source and ground-
motion parameters in the Southern California Earthquake Center
(SCEC) CyberShake 1.4 data set with >415 000 rupture scenar-
ios along active faults in southern California (Graves et al. 2010).
While nowadays synthetic seismograms have limitations, as will be
discussed, we use the CyberShake data set in this study to demon-
strate their application to EEW as a ‘proof of concept’. Clearly, as
the simulation and rupture models evolve and improve within the
next years, they can be incorporated into updates to our regression
models.

Complexities in rupture directivity, site/basin response and 3-D
wave-propagation, as well as coupling of these effects, are usually
not included in GMPEs. We do not anticipate that these relations
can be expressed through simple equations. The aim of this study
is rather to develop models that are capable of predicting ground-
motions and warning times from a few input parameters without
enforcing predefined functional forms or dependencies among these
parameters. We rather follow a completely data-driven regression
approach.

Even though the relationship between earthquake source param-
eters (magnitude, location, rupture ratio) and ground-motions is
expected to be complex and non-linear, it is of deterministic nature
(at least for the long-period motions) and should be well approx-
imated by statistical models. One of the major challenges for the
models is to learn the relationship between the earthquake magni-
tude and fault rupture length, as well as the relationship between
the finite-fault geometry relative to the point of observation and the
level of ground shaking at this site (Fig. 1).

2 DATA

2.1 CyberShake waveform simulations

The SCEC CyberShake data set encompasses around 415 000 3-D
wave-propagation simulations for large earthquakes (6.5 ≤ M ≤
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Figure 2. Distribution of 15 BB (red squares) and 56 LF (green triangles)
CyberShake sites in the greater LA area as used in this study. Additional
data analyses are made at stations ALIS and DLA that are assumed to be
representative for rock and the deep LA basin, respectively.

8.5) at around 200 locations in and around the LA basin (Graves
et al. 2010). One of the goals of the CyberShake project is to develop
a physics-based computational approach to PSHA, by using reci-
procity to simulate synthetic seismograms for a suite of rupture re-
alizations obtained from the Unified California Earthquake Rupture
Forecast, version 2.0 (UCERF 2.0; Working Group on California
Earthquake Probabilities 2007). The large repository of simulated
waveforms generated by CyberShake also allows for a systematic
investigation of other effects, including rupture directivity, ground
motion limits and basin response (e.g. Donovan et al. 2012; Wang
& Jordan 2012; Denolle et al. 2014).

The original set of CyberShake simulations consists of low-
frequency (LF, <0.5 Hz) 3-D finite-difference simulations com-
puted in the SCEC CVM-4.0 seismic velocity model (Magistrale
et al. 2000; Kohler et al. 2003). For a typical site in the LA re-
gion, UCERF 2.0 identifies more than 7000 earthquake ruptures
(i.e. ‘faults’) with moment magnitudes M ≥ 6.5 that might affect
this site. For each of these ruptures, it is important to also capture
the possible variability in the earthquake rupture process. To do this,
CyberShake creates a variety of hypocentre and slip distributions
for each rupture yielding a total of over 415 000 rupture variations,
each representing a potential earthquake. The rupture variations are
generated using the method of Graves & Pitarka (2005), which pro-
duces a detailed kinematic description of slip evolution across the
prescribed fault for each scenario earthquake.

Callaghan et al. (2011) have recently extended the LF Cyber-
Shake results to broadband (BB, 0–10 Hz) for a subset of the orig-
inally considered sites (Fig. 2). The BB results were computed by
adding 1-D semi-stochastic high-frequency (HF) components to the
existing 3-D deterministic LF results using the hybrid simulation
methodology of Graves & Pitarka (2010). The transition from the
semi-stochastic to deterministic frequency bands is at 0.5 Hz. In
this paper we consider both the LF and BB simulations at 56 and 15
selected test sites, respectively (Fig. 2). Additional data analyses in
this study are made at stations ALIS (Aliso; 34.42o, −118.09o;
Vs30 = 724 m s–1) and DLA (Del Amo; 33.848o, −118.096o;

Vs30 = 301 m s–1), which are considered representative for sites

located on rock and for sites where sediments in the LA basin reach
maximum thickness, respectively. In the remainder of this paper,
we will refer to these sites as ‘rock’ and ‘deep basin’, respectively.
For these two selected sites there are both BB and LF simulations
available.

2.2 Comparison of CyberShake simulations with GMPEs

Unlike most current GMPEs, 3-D wave-propagation simulations
directly incorporate directivity and basin response effects. For com-
parison of the two approaches we analyse in Fig. 3 the residu-
als of pseudo-spectral acceleration (PSA), log10[PSACyberShake(T)]–
log10[PSAGMPE(T)], at two selected sites, ALIS and DLA, at various
periods (T = 0.1–10 s) and across the entire set of >415 k Cyber-
Shake ruptures. Here, PSA refers to the geometric mean of the
two horizontal components. For the GMPEs we select relations by
Boore & Atkinson (2008; BA08) and Campbell & Bozorgnia (2008;
CB08) as references; the latter accounts for basin effects through an
additional term that specifies the depth beneath the site to a shear
wave velocity of 2.5 km s−1 (Z2.5). As noted earlier ALIS and DLA
are considered representative for rock and the deep LA basin, re-
spectively; the basin depth at DLA is measured from CVM-4.0 to
be Z2.5 = 5.3 km.

For the rock site ALIS there is good agreement between the
wave-propagation simulations and the two GMPEs at all periods T
(mean Ē = 0.0 and standard deviation σ = 0.23; Fig. 3). For the
deep basin site DLA, however, the simulations predict higher PSA
levels than the GMPEs for T > 1 s (Ē = 0.09, σ = 0.22 using
CB08; Ē = 0.31, σ = 0.31 using BA08). For BA08, we suspect
the errors get larger for increasing periods because basin effects are
not explicitly considered in this relation. This is expected because
there are smaller basin response effects for the shorter periods,
and because the HF simulation in CyberShake does not explicitly
include the 3-D basin.

A systematic comparison of CyberShake simulations and GMPEs
was performed by Wang & Jordan (2012), who used an averaging-
based factorization scheme to facilitate a geographically explicit
comparison of seismic hazard models derived from the two ap-
proaches. Generally, the GMPEs tend to predict lower long-period
ground-motions in the LA basin compared with the waveform sim-
ulations. This shows the need for models that include 3-D wave-
propagation effects.

3 P R E - P RO C E S S I N G

3.1 Estimating MMI from CyberShake waveforms

We apply empirical relations by Worden et al. (2012) to convert the
CyberShake velocity waveforms into time-series of peak instrumen-
tal intensities, MMI(t). To avoid differentiation of the CyberShake
velocity waveforms and to keep computational efforts small, we
apply the peak ground velocity (PGV)-to-MMI relations for all
intensities, even though smaller intensities (MMI ≤ V) tend to cor-
relate slightly better with HF parameter peak ground acceleration
(PGA; Worden et al. 2012).

First we convert each velocity amplitude to the corresponding
intensity value; we do this for each of the >400 k rupture scenarios
and for each of the 71 selected test sites (Fig. 2). Then for each
time t we determine if the intensity has increased or decreased
compared to the previous time (t–dt) and keep the larger of both
values: MMI(t) = max[MMI(t), MMI(t–dt)]. We only consider the
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Figure 3. Comparison of pseudo-spectral acceleration PSA at different periods T determined from the CyberShake BB simulations and GMPEs by Boore &
Atkinson (2008; BA08) and Campbell & Bozorgnia (2008; CB08) using the geometric mean of the horizontal components for all >400 k rupture scenarios
in the CyberShake data set. Dots and bars show the mean Ē , and standard deviation σ of the error distributions; the open squares and thick lines show the
corresponding values taken over all seven periods. For the rock site ALIS there is good agreement between the wave-propagation simulations and the two
GMPEs for all periods (a and c). For the deep basin site DLA (b and d), however, the simulations predict for T > 1 s higher PSA levels than the GMPEs; the
residuals get larger for increasing periods for BA08 (b), since basin effects are not explicitly considered in this relation.

larger value determined from the waveforms of both horizontal
components. This gives us, for each user site and for each rupture
scenario, a time-series describing the temporal evolution of peak
intensity with intensity values either increasing or being constant
over time (Fig. 4).

Next we determine the times when intensity thresholds
MMIthres = [I, II, . . . , X+] are exceeded for the first time in the
obtained time-series, which gives us t1, t2, . . . , t10. Note that all Cy-
berShake waveforms start with the earthquake origin time (Fig. 4).
If a certain intensity threshold n is not exceeded in the entire time-
series, the corresponding time tn is not considered. The maximum
intensity value MMImax, the time when this value is reached tmax

and times t1, t2, . . . , t10 are the 12 target values for our regression
models (Fig. 1).

Table 1 compares the distributions of MMImax at ALIS (rock)
and DLA (deep basin). As expected, we observe stronger shaking
on average in the basin than on rock. While there is significant range

in the maximum intensity for the set of ruptures at both sites, the
distributions of intensity values are peaked at MMImax = VIII, which
corresponds to ‘severe’ shaking. This is to be expected because there
are a significant number of large magnitude ruptures on major faults
in the CyberShake data set (e.g. various San Andreas scenarios) that
will produce strong intensities. However, many of these scenarios
have low probability of occurrence, which is not accounted for in
the results in Table 1. Since our models assume that all the ruptures
are equally likely, changing the rupture rates or probabilities will
not affect the results.

3.2 Comparison of MMI for LF and BB CyberShake
simulations

All 71 selected test sites consist of LF (<0.5 Hz) waveforms,
with just a subset of sites having full BB (0–10 Hz) results cur-
rently available (Fig. 2). Clearly, the BB results provide a more
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Figure 4. Instrumental intensity (MMI) is estimated from the CyberShake velocity waveforms using relations by Worden et al. (2012). We determine the times
when intensity thresholds MMIthres = [I, II, . . . , X+] are exceeded for the first time in the obtained time-series. These times, t1, t2, . . . , t10, along with the
maximum intensity MMImax and the time when this value is reached, tmax, are the target values for our regression models (Fig. 1).

comprehensive representation of the ground motion response com-
pared to the LF-only results. However, it would be beneficial if
we could supplement the CyberShake BB simulations with the
LF-only simulations for establishing the regression models in this
study, because the LF simulations provide a broader and more
regular geographic distribution of sites throughout the LA basin
region.

To assess the adequacy of using the LF-only simulations in de-
veloping our models, we compare MMI values derived from the
BB and LF waveforms at the two selected sites, ALIS and DLA
(Table 1 and Fig. 5). In general, both MMImax and the arrival times
of incremental MMI are in good agreement for the BB and LF
simulations. For MMImax, there is a tendency for the LF data to pre-
dict slightly lower values than the BB, particularly for the rock site
ALIS, although the majority of the values agree within 0.5 MMI
units. For the arrival times, there is a tendency for the BB results
to predict slightly shorter times than the LF results, particularly for
the smaller MMI values at the basin site DLA.

In our current analysis, we view the level of misfit between the
BB and LF results to be of minor significance, especially at the
larger MMI values for which ground motion predictions and early
warning are most needed. Also, as was pointed out earlier, this
study is mainly intended to give a ‘proof-of-concept’, independent
from the characteristics of the underlying data. In the following
analyses we will establish BB models for sites at which BB data is
available, for the remaining sites we derive LF-only models. Since
the differences between the predictions of the two model types are
generally small (Fig. 5), we will plot them in some of the following
figures together (Figs 7 and 12) using distinct symbols.

4 R E G R E S S I O N M O D E L S

4.1 ε-SVR

The aim of this study is to develop models that are capable of
predicting ground-motions and warning times from a few input pa-
rameters without enforcing predefined functional forms or depen-
dencies among these parameters. SVR is one of the most popular
approaches in machine learning (Smola & Schölkopf 2004) that
is suited for multidimensional non-linear regression. The desired
mapping relations are determined from sets of example or training
patterns. SVR favours smooth models that are not overfitted to the
training data which is prerequisite for a high generalization capabil-
ity towards unseen data. Using kernel functions the input parameters
are implicitly mapped into a higher (infinite) dimensional feature
space where linear regression can be performed. In this study, we
apply a special type of SVR, called ε-SVR (Vapnik 1995; Smola &
Schölkopf 2004). See the Appendix for details.

4.2 Model parameters and training

For a given earthquake and user location our goal is to predict the
maximum instrumental intensity MMImax, the time tmax when this
value will be reached (relative to rupture nucleation), as well as
when each of the intensity thresholds MMIthres = [I, . . . , X+] will
be exceeded for the first time, that is times t1, . . . , t10. These are the
12 target metrics zi, i = 1, . . . , n, in our regression models (see the
Appendix), where n is the number of training patterns.
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Figure 5. Comparison of the 12 metrics (maximum intensity MMImax, and times t1, . . . , tmax) characterizing the temporal evolution of instrumental intensity
MMI(t) for the Cybershake BB and LF simulations at ALIS (rock, top panel) and DLA (deep LA basin, bottom panel). Shown are the histograms of the
corresponding residuals xBB – xLF. For the times t1, . . . , t10 we consider only events that reach the corresponding MMI level for both BB and LF. The metrics
largely agree for the majority of BB and LF-only simulations, in particular for the larger MMI values for which ground-motion predictions and early warning
are most needed.

We select simple and easily calculable features of the earthquake
to make our approach applicable to real-time procedures such as
EEW. We expect the target output values to depend on (moment)
magnitude M, (epicentral) distance to the user site R, source depth
Z, (back-)azimuth between the user site and the earthquake θ and
on the rupture ratio δ; the latter characterizes whether the rupture
propagates mainly unilateral (towards or away from the user) or
bilateral (Fig. 1, bottom panel).

How quickly these parameters can be determined in an oper-
ational system, depends mainly on the station density and data
latencies in the seismic network where the EEW algorithms are ap-
plied. For instance, real-time tests of the CISN ShakeAlert system in
California have shown that event magnitudes and locations can be
determined within 5 s from event origin with uncertainties of ±0.6
magnitude units and ±15 km, respectively, if seismic sensors are lo-
cated within 10–15 km from the epicentre (Böse et al. 2013). These
estimates can be updated as more data is received, and errors usu-
ally decrease within a couple of seconds to ±0.4 magnitude units
and <4 km, respectively. Very large earthquakes, such as the 2011
M9.0 Tohoku earthquake in Japan, can be difficult to be recognized
quickly from the observations of the initial shaking at the close-by

sensors (Hoshiba et al. 2011). First magnitude predictions still tend
to provide an estimate of the lower bound of earthquake magnitudes
(Kanamori 2005).

The azimuth θ between the user and earthquake location has
periodicity every 360o. For instance, earthquakes at θ = 359◦ and
1◦ are very close to each other in space for the same R (for instance,
they are less than 5 km apart if R < 150 km). To account for a smooth
transition every 360◦, we use a simple trick by defining two separate
feature parameters, cos(θ ) and sin(θ ); each of these trigonometric
functions produces a smooth output with values [−1. . . +1], and,
at the same time, allow reconstructing the original azimuth θ from
Euler’s formula exp(iθ ) = cos(θ ) + i sin(θ ). Note that θ is the
azimuth between the user and the earthquake epicentre, not the
strike of the rupturing fault. Instead of using the polar coordinates
R and θ to characterize the epicentre, we could use the geographic
longitude and latitude.

The rupture ratio parameter δ is calculated as δ = l/L, where l
is the rupture length from the epicentre to the rupture end that is
closest to the user; L is the total length of the surface projected 2-D
line rupture (Fig. 1, bottom panel). The parameter δ can take values
[0. . . 1], where δ = 0 indicates that the rupture propagates away and
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Figure 6. Predicted versus observed (CyberShake simulated) maximum instrumental intensity MMImax at (a) ALIS (rock) and (b) DLA (deep LA basin).
Although only 20 per cent of the CyberShake BB waveforms at the two sites were used to establish the models, they can explain MMImax of all >400 k rupture
scenarios with σ ≈ 0.43 (ALIS) and σ ≈ 0.38 (DLA), respectively.

δ = 1 towards the user; 0 < δ < 1 characterizes bilateral rupture
propagation.

We define the input feature vector x j ∈ R6 (see the Appendix)
as

xi = {M̃i , R̃i , Z̃ , cos(θi ), sin(θi ), δ̃i }, i = 1, . . . , n, (1)

where ∼ denotes that M, R, Z and δ were linearly scaled to fall into
the range [−1. . . +1].

In this study we use LIBSVM (Chang & Lin 2011),
a free library for support vector machines and regression
(http://www.csie.ntu.edu.tw/∼cjlin/libsvm/), to determine and test
our SVR models. For each user site and each target value zi charac-
terizing MMI(t), we determine a separate SVR model. We randomly
select 20 per cent of the CyberShake rupture scenarios to establish
our regression models. For each site, we train a total of 12 finite-
fault models to predict the maximum intensity (MMImax) and the
temporal evolution (t1, t2, . . . , tmax) using the input vector in eq. (1)
(Fig. 1). We use only a small subset of the whole CyberShake data
set to establish our prediction models (1) to demonstrate that >415 k
are not required to obtained stable models (20 per cent appears to
be sufficient), (2) to prove the high generalization capability of our
models by using a large test set (80 per cent) that is unknown to the
models but for which accurate predictions of MMI can be achieved
as will be shown and (3) to keep the computational efforts small
when deriving the models.

5 R E S U LT S

In the following subsections, we will assess the accuracy of our
ground-motion prediction models through comparison with pa-
rameters derived from the CyberShake waveform simulations. For
model validation we compare our predictions with seismic obser-
vations during the 2008 M5.4 Chino Hills earthquake in southern
California. Furthermore, we show that there are fundamental dif-
ferences in the predicted ground motions depending on whether
the earthquake fault rupture propagates towards or away from the
observer. Finally, we develop the concept of a simple and robust

magnitude-threshold based early warning algorithm for southern
California.

5.1 Prediction accuracy

To assess the prediction accuracy of our finite-fault regression mod-
els we analyse their performance for the two selected BB sites, ALIS
and DLA, that are assumed to be representative for rock and the
deep LA basin, respectively. Though only 20 per cent of the Cy-
berShake simulations were used for training, the regression models
can explain the maximum intensity values MMImax of all >415 000
rupture scenarios with a standard deviation of σ ≈ 0.43 at ALIS
(rock) and σ ≈ 0.38 at DLA (deep basin), respectively (Fig. 6).
The standard deviations remain the same if the training and test
data sets are analysed separately from each other. We perform a
fivefold cross-validation to confirm these values. The order of these
intensity prediction errors is representative for all 71 test sites.

We believe that the slightly larger errors at ALIS were caused
by the 2-D line-source approximation of fault ruptures as needed
for the calculation of rupture ratio δ (Fig. 1, bottom panel); this
simplification may be problematic for earthquakes with ruptures
through the ‘Big Bend’ section of the San Andreas Fault with a
strong divergence from a line source. Since ALIS is located closer
to the fault (Fig. 2), MMImax predictions at this site are more strongly
affected by this shortcoming than at DLA (Fig. 6).

5.2 Model application: examples

In the following, we apply our models to predict the shaking in-
tensities at the 71 selected sites (15 BB and 56 LF) for four rup-
ture scenarios that are part of the CyberShake data set (Figs 7
and 8): (i) along the Pico thrust fault with nucleation point close
to the 1994 M6.7 Northridge earthquake, (ii) along the Elsinore
strike-slip fault with nucleation close to Temecula, (iii) along the
San Andreas strike-slip fault with a bilateral rupture starting 45 km
northwest of Lake Hughes and terminating at the Cajon pass, close
to the assumed rupture termination of the 1857 M7.8 Fort Tejon

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 7. Predicted (left-hand panel) and CyberShake simulated (right-hand panel) maximum intensities MMImax in the larger LA area for four scenario
earthquakes; yellow stars mark the points of rupture nucleation (epicentre), red lines the surface-projected 2-D fault ruptures. Each square and each triangle
represents the target site of an individual BB (square) or LF (triangle) model; the colour codes MMImax at this site. Even though the estimates at different sites
are independent from each other, the maps provide highly consistent pictures of ground-motions variations in and around the LA basin and show an excellent
agreement with the simulated intensities.
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Figure 8. Our models predict the temporal evolution of instrumental intensity, MMI(t), within a fraction of a second using only information on the location
of the earthquake, its magnitude, and rupture ratio δ. Red lines show MMI(t) derived from the CyberShake simulations at basin site DLA for the four scenario
earthquakes in Fig. 7; the dashed black lines show the corresponding predictions from our finite-fault models. The time-series are obtained from linear
interpolation between the predicted times t1, t2, . . . , tmax when MMI thresholds I to MMImax are exceeded for the first time. Both (a) LF and (b) BB results are
shown. The theoretical arrival of the S wave assuming a constant shear wave velocity of 3.55 km s–1 is marked by grey bars. The blue arrows show the time to
MMI = V.

earthquake and (iv) the earlier described M7.8 ShakeOut scenario
earthquake (Jones et al. 2008) along the southern portion of the San
Andreas Fault with nucleation point close to Bombay Beach. Since
20 per cent (randomly selected) of the CyberShake simulations were
used to establish the regression models, there is some chance that
single data points were used for training; the majority of points,
though, are new, that is unknown, to the models.

Ground-motion estimates at the 71 test sites come from different
models and are thus independent from each other. Still the maps in
Fig. 7 provide highly consistent pictures of ground-motion varia-
tions in and around the LA basin and show an excellent agreement
with the simulated intensities from the CyberShake data set. In all
four scenarios ground-motions in the LA basin are strongly ampli-
fied relative to the surrounding rock.

In addition to maximum intensity MMImax the regression mod-
els also predict the temporal evolution of instrumental intensity,
MMI(t), at the test sites. Strictly speaking, they predict when in-
tensity thresholds MMIthres = [I, II, . . . , MMImax] are exceeded for
the first time relative to the event origin time (Fig. 3). The temporal
evolution MMI(t) is obtained from linear interpolation between the
times t1, t2, . . . , tmax (Fig. 1, right-hand panel). Since these estimated
times are independent from each other, it can happen in some cases
that tn < tn−1 if tn and tn−1 are very close to each other, that is if the
change from one intensity level to next higher is very quick. There-
fore we apply a moving average procedure to smooth the predicted
time values and thus to obtain an even intensity evolution.

Fig. 8 shows the predicted and observed (CyberShake simulated)
temporal evolution of MMI at basin site DLA for the four scenario
earthquakes in Fig. 7. As expected the models are more accurate
in predicting the long-period deterministic than the semi-stochastic
HF motions (Fig. 8b). In all four scenarios intensity level MMI = V
(‘moderate’ shaking) is exceeded once the direct S-wave arrives,
which occurs between 20 s (for the Northridge earthquake) and 60 s
(for the ShakeOut scenario) after rupture nucleation; larger intensity
values are reached 10 or more seconds later.

As described earlier, the maximum intensity in the LA basin for
the ShakeOut scenario is simulated as MMI = VIII-IX (‘severe’
to ‘violent’ shaking). Using a point-source approximation of this
earthquake with GMPEs by Cua (2005) predicts ‘light’ to ‘moder-
ate’ shaking (MMI = IV–V) only. Using rupture-to-site instead of
hypocentral distances through the application of the FinDer algo-
rithm (Böse et al. 2012a) predicts ‘severe’ shaking (MMI = VIII).
However, it takes around 30 s after rupture nucleation before the
rupture in this scenario has reached a critical length that suggests
that a warning in LA is needed. Using the finite-fault regression
models from this study (where FinDer is used only to determine
the normalized rupture ratio parameter δ rather than the full rupture
length), MMI is estimated as MMI = VIII–IX (‘severe to violent’
shaking; Fig. 8), which agrees well with the wave-propagation sim-
ulations by Graves et al. (2008). We will see later that an accurate
magnitude determination is actually not needed in this scenario.
Assuming that the magnitude is determined within 5–10 s from
rupture nucleation, warning times for users in the LA basin for the
ShakeOut scenario earthquake could be on the order of 60 s.

Maps and time-series as shown in Figs 7 and 8 can be calcu-
lated from our finite-fault regression models within a fraction of a
second (as needed for EEW). They only require estimates of event
magnitude, the rupture nucleation point and whether the rupture
propagates uni- or bilaterally (as quantified through rupture ratio
parameter δ). The fault rupture extent (Fig. 7, red lines) is plotted
for visualization only.

5.3 Model validation

For model validation we compare the predictions of MMImax and
MMI(t) with seismic observations during the 2008 M5.4 Chino
Hills earthquake (Fig. 9), caused by oblique slip faulting along
the Yorba Linda fault. While finite source effects, for which
our models were established, are generally small for an earth-
quake of this size, the Chino Hills earthquake is the best-recorded
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Figure 9. Model verification using the 2008 M5.4 Chino Hills earthquake. (a) Comparison of predicted instrumental intensities MMImax at the 71 test sites,
and observed intensities in the USGS ShakeMap (http://earthquake.usgs.gov). On average the models predict slightly higher intensity values, but otherwise
agree well with the seismic observations during the earthquake. (b) Comparison of the predicted (dashed black line, left-hand column) and observed (red
line) temporal evolution of seismic intensity MMI at 10 SCSN stations (<100 km) for the LF (<0.5 Hz, left-hand panel) and BB (0–10 Hz, right-hand panel)
models. Accelerograms were integrated and filtered (for the LF models) to make them comparable to the CyberShake data sets (middle and right-hand column).
The event magnitude of the Chino Hills earthquake is assumed to be M6.25, because M5.4 is outside of the training range of the regression models and the
prediction results become otherwise unstable; this explains why MMImax is slightly overestimated. In any case, there is good overall agreement between the
observed and predicted temporal evolution of MMI.

http://earthquake.usgs.gov
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moderate-sized earthquake in the LA area with reliable time in-
formation (Hauksson et al. 2008). Other LA area events such as
the 1987 M5.9 Whittier-Narrows and 1994 M6.7 Northridge earth-
quakes were considered for this validation, but nearly all of the
ground motion observations for these events lack absolute timing
information, which makes them unsuitable for testing of our mod-
els. The recent 2010 M7.2 El Mayor-Cucapah earthquake was also
considered for this test, but it is so distant from the LA region that
the observed intensities were quite low, plus it is located beyond the
200 km source-to-site limit used in generating the CyberShake data
set (Graves et al. 2010). In contrast to other significant earthquakes
in southern California, waveform simulations of the Chino Hills
earthquake are not included in the CyberShake data set. The Chino
Hills earthquake is thus considered as an independent event that is
suited for model validation.

A drawback of this choice, however, is that the magnitude of
the Chino Hills earthquake is around one full unit smaller than the
minimum magnitude in the CyberShake data set (6.5 ≤ M ≤ 8.5),
and is thus outside of the training range of our regression models.
Therefore, for this test we increase the event magnitude in this ex-
ample to M6.25; this is the minimum magnitude our models start
to produce stable results. Our finite fault models should not be ap-
plied to smaller earthquakes. We suspect that the higher magnitude
explains why the predicted MMImax values are on average slightly
higher than in ShakeMap, which shows the interpolated observed
instrumental intensities for the Chino Hills earthquake (Fig. 9a).

The temporal evolution MMI(t) at 10 randomly selected seis-
mic stations (<100 km) for the LF (<0.5 Hz) and BB (0–10 Hz)
models is shown in Fig. 9(b). The corresponding accelerograms
were downloaded from the Southern California Seismic Network
(SCSN, www.scsn.org), integrated and low-pass filtered (for the LF
models) to allow comparison with the CyberShake simulations. The
conversion of the velocity waveforms to time-series of instrumen-
tal intensities, MMI(t), is analogous to the earlier described pre-
processing of the CyberShake data set using relations by Worden
et al. (2012). Again, because we had to assume a higher magnitude
(M6.25), MMImax is slightly overestimated by our models; how-
ever, overall the observed and predicted temporal evolution of MMI
for the Chino Hills earthquake agree well, verifying the first-order
applicability of the regression models to real earthquakes (Fig. 9b).

5.4 The role of rupture ratio δ

Fig. 10 shows an example of the dependency of MMI on magnitude
and rupture ratio δ for a fixed epicentre-observer location pair as
determined from the regression models. The observer in this exam-
ple is located in the LA basin at site DLA, the rupture nucleation
point is on the San Jacinto Fault at 160 km distance. Overall, the
isoseismals in Fig. 10 show that, as desired, support vector regres-
sion produces smooth ground-motion prediction models that are not
overfitted to the training data. As expected small rupture ratios (that
is the rupture propagates mainly away from the observer) require
larger magnitudes to cause the same shaking as a rupture that prop-
agates towards the observer. For instance, to cause ‘strong’ shaking
(MMI = VI) at DLA, the magnitude for δ = 0 needs to be almost
one unit larger (M7.4) than for δ = 1 (M6.55).

In the following, we restrict potential earthquake locations to
those from the CyberShake data set (as defined in the UCERF
2.0 earthquake rupture forecast) and use our regression models to
predict MMImax in the LA basin at site DLA for a magnitude M6.5
and M7 earthquake at depth Z = 10 km (Fig. 11); the corresponding

Figure 10. MMI as a function of magnitude and rupture ratio δ for a given
observer-earthquake location pair as predicted by the regression models.
The user in this example is located in the LA basin (DLA), the rupture
nucleation point is 160 km southeast along the San Jacinto Fault. As expected
small rupture ratios (that is the rupture propagates mainly away from the
observer) require larger magnitudes to cause the same shaking as a rupture
propagating to the opposite direction. Overall, support vector regression
produces smooth ground-motion prediction models (as preferred) with quite
simple isoseismals.

fault ruptures are assumed to propagate either away (δ = 0) or
towards the user (δ = 1). Typical rupture lengths of magnitude M6.5
and M7 earthquakes are ∼10 and ∼60 km, respectively (Wells &
Coppersmith 1994).

As expected, close earthquakes (e.g. along the Sierra Madre, Ray-
mond, northern Newport-Inglewood faults) tend to cause stronger
shaking than those at larger distances (Fig. 11a). However, this is
only true if δ < 0.5; if the rupture propagates towards the observer,
earthquakes at larger distances pose a significant and in some case
an even larger threat than close events (Fig. 11b). Obviously, it does
not need to be a very large earthquake for a user in the LA basin to
experience significant shaking: a relatively distant moderate M6.5–
7 earthquake along the Palos Verdes, Newport-Inglewood/Rose
Canyon, Elsinore or San Jacinto faults with a rupture propagating
towards LA have the potential to cause ‘very strong’ (MMI = VII)
to ‘severe’ shaking (MMI = VIII) in the LA basin (Fig. 11).

5.5 When do we need to issue an alert?

Current algorithms for EEW, such as ‘τ c–Pd Onsite’ (Kanamori
2005), ‘Virtual Seismologist’ (Cua et al. 2009), ‘ElarmS’ (Allen
et al. 2009b), ‘PRESTo’ (Zollo et al. 2009) or ‘PreSEIS/PreSEIS
Onsite’ (Böse et al. 2008; Böse et al. 2012b), aim to provide esti-
mates of the earthquake hypocentre and magnitude as quickly and
as accurately as possible. However, it has not been established yet
how quickly these algorithms can determine, for instance, whether
an earthquake is M7 or M7.5. Several research papers address the
achievable accuracy in the predicted magnitudes, in particular in
EEW algorithms that only use information from the first few sec-
onds of the seismic P wave (e.g. Kanamori 2005). There is an on-
going debate on whether the predicted magnitudes will saturate for
large magnitude earthquakes (Rydelek & Horiuchi 2006; Rydelek
et al. 2007).
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Figure 11. Predicted maximum intensity MMImax for a user located in the deep LA basin for a magnitude M6.5 (left-hand panel) and M7.0 (right-hand panel)
earthquake at various locations with a rupture (a) propagating away (δ = 0) or (b) towards the user (δ = 1). Each coloured pixel represents the nucleation point
(epicentre) of an individual earthquake rupture; the colour quantifies the shaking intensity at basin site DLA (white square). Even a relatively distant moderate
M6.5–7 earthquake along the Palos Verdes, Newport-Inglewood/Rose Canyon, Elsinore or San Jacinto faults with a rupture propagating towards LA has the
potential to cause ‘very strong’ (MMI = VII) to ‘severe’ shaking (MMI = VIII) in the LA basin.

Our results suggest that high accuracy in the estimated magni-
tudes is not essential for many EEW applications. Fig. 12 shows the
predicted and observed (CyberShake simulated) maximum intensi-
ties MMImax for the earlier described ShakeOut scenario earthquake
along the southern San Andreas Fault (Jones et al. 2008), assuming
that the magnitudes were estimated as M7, M7.5 and M7.8, respec-
tively. In all three cases a warning should be issued immediately,
because shaking in the LA basin is expected to be at least ‘strong’

[MMI> = VI; we assume that the general public will care about
events causing at least ‘moderate’ shaking (MMI> = V) at their
site]. More accurate magnitude estimation is not needed in this (and
other) examples.

Another way to view this problem is as follows: the final goal of
EEW is to predict if shaking at a given user site is expected to exceed
a pre-defined maximum level which requires taking protective ac-
tions to reduce expected damage by the approaching seismic waves.
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Figure 12. Predicted (left-hand panel) and simulated (right-hand panel) maximum intensities MMImax in the larger LA area for the ShakeOut scenario
earthquake along the San Andreas Fault with epicentre (yellow star) at Bombay Beach (Jones et al. 2008). Magnitudes are estimated as (a) M7, (b) M7.5 and
(c) M7.8. Red lines show the surface-projected 2-D fault ruptures. Each square and each triangle represents the target location for an individual BB (squares)
or LF (triangles) model; the colour quantifies MMImax at this site. Ground shaking in the LA basin is ‘strong’ to ‘violent’ (MMI = VI–IX) in all three cases,
that is a warning needs to be issued as soon as the estimated magnitude is M ≥ 7.0. Accurate magnitude estimation is not necessary in this example.

That is, for a given user and earthquake location, we mainly seek to
determine a critical magnitude Mcritical; if the predicted magnitude is
expected to exceed this threshold, Mpred ≥ Mcritical, a warning needs
to be issued, otherwise not. Note that a user, in particular when op-
erating automated control systems, may want to set multiple ground
motion thresholds and thus multiple Mcritical for different response
actions.

Fig. 13 shows Mcritical at basin station DLA for three warning
levels: (a) MMI ≥ V (‘moderate’ shaking), (b) MMI ≥ VI (‘strong’
shaking) and (c) MMI ≥ VII (‘very strong’ shaking). Each coloured
pixel represents the nucleation point of an individual earthquake
rupture; the colour codes Mcritical. We compare Mcritical determined

from a point-source (Fig. 13, left-hand panel) and a finite-fault
model (middle panel), where MMImax is estimated from empirical
GMPEs (Cua 2005; Worden et al. 2012) using the hypocentral dis-
tance or closest rupture-to-site distance (as determined from FinDer;
Böse et al. 2012a), respectively. On the right-hand panel we show
the corresponding results from our finite-fault models developed in
this study. We assume that the fault ruptures propagate towards the
LA basin (δ = 1), that is these are the worst case scenarios with
maximum effects of rupture directivity coupled with basin response.
Mcritical is determined from solving the relations for the minimum
required magnitude to cause at least the respective MMI level in the
LA basin.
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Figure 13. Threshold (or critical) magnitudes Mcritical of earthquakes along various active faults in southern California that need to be exceeded to cause at least
(a) MMI ≥ V (‘moderate’ shaking), (b) MMI ≥ VI (‘strong’ shaking) or (c) MMI ≥ VII (‘very strong’ shaking) in the LA basin. Each coloured pixel marks the
nucleation point of an individual earthquake rupture, the colour codes the corresponding Mcritical. Shown are the results from three models. Left-hand panel:
results for a point-source model with usage of hypocentral distances and GMPEs by Cua (2005) as is currently implemented in CISN ShakeAlert (Böse et al.
2013). Middle panel: results for the FinDer finite-fault model (Böse et al. 2012a) with usage of rupture-to-site distances and GMPEs by Cua (2005). Right-hand
panel: results for the finite-fault model developed in this study, which considers effects of rupture directivity and basin response. Mcritical as determined from
our finite-fault models (right-hand panel) is up to 2.5 magnitude units smaller than if determined from a point-source model (left-hand panel) and up to 1
magnitude unit smaller than if determined from alternative finite-fault models such as FinDer (middle panel). Note that all three models can predict Mcritical at
a higher magnitude resolution than displayed here. The corresponding warning times are shown in Fig. 14.

While all three models predict similar Mcritical within ∼50 km
from the user location (e.g. a close-by M5 to M5.5 has the potential
to cause MMI ≥ V (‘moderate’ shaking) at DLA), there are strong
differences at larger distances (Fig. 13). For instance, at ∼100 km

distance the point-source model predicts Mcritical = 7–7.5 for
MMI ≥ V; that is only large earthquakes are considered as posing a
threat. The finite-fault model derived from the CyberShake data set,
however, predicts Mcritical as being up to 2.5 magnitude units smaller.
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Mcritical also varies significantly depending on the fault where rup-
ture is occurring. For instance, Mcritical is up to 0.5 magnitude units
smaller if the rupture propagates along a south-north trending fault
pointing towards the LA basin, including for instance the Palos
Verdes, Newport-Inglewood/Rose-Canyon, Elsinore or San Jacinto
faults; a moderate-sized or larger earthquake (M > 6.5) along any
of these faults poses a significant seismic threat to users located in
the LA basin and requires a warning as soon as it has been detected.

The corresponding warning times for these scenarios are shown
in Fig. 14. These are the maximum warning times an EEW sys-
tem could provide, assuming the hypocentre and magnitude of the
earthquake were immediately known. For the point-source model
(Fig. 14, left-hand panel) we assume that strong shaking starts with
the S-wave arrival (constant S-wave speed: 3.55 km s–1). For the
finite-fault model using FinDer (Böse et al. 2012a) warning times
are calculated from the time difference between the onset of shaking
of a particular MMI level and the time required for the rupture to
reach the rupture point that is closest to the user; we are assuming
constant rupture velocities of 2.8 km s−1. In all three models, the
maximum achievable warning time for close earthquakes (≤50 km)
is ≤10 s. However, for many other rupture scenarios, including those
of more distant moderate-sized earthquakes along the Palos Verdes,
Newport-Inglewood/Rose-Canyon, Elsinore or San Jacinto faults,
for which strong shaking in the LA basin is expected (Fig. 13),
warning times as determined from our regression models (right-
hand panel) could exceed 30 s. Warning times are significantly
shortened if alternative finite-fault models such as FinDer are used
(Fig. 14, middle panel), because the fault rupture needs to have
reached a critical length before strong shaking is expected.

6 D I S C U S S I O N

In 2007 the development and implementation of an EEW demon-
stration system for California, named CISN ShakeAlert, was started
(Böse et al. 2013). This hybrid system combines the outputs from
three algorithms implemented in parallel, τ c–Pd Onsite (Kanamori
2005; Wu et al. 2007; Böse et al. 2009), Virtual Seismologist (Cua
et al. 2009) and ElarmS (Allen et al. 2009b), to calculate real-time
the most probable earthquake magnitude and location. A UserDis-
play receives these alert messages in real-time, calculates for a given
user the expected local shaking intensity (MMI), and displays the
information on a map (Böse et al. 2013).

The UserDisplay software estimates MMI from generic empirical
GMPEs by Cua (2005) using the ShakeAlert magnitude and source-
to-site distance. Recently, Böse et al. (2012a) developed the finite
fault rupture detector algorithm FinDer for the real-time estimation
of 2-D source dimensions and rupture-to-site distances while the
fault rupture is still in progress. With this enhancement, ground-
motion estimates in the ShakeAlert system are expected to become
more accurate for moderate to large earthquakes (M > 6.5) once
the algorithm is fully implemented and integrated in the system.
However, so far directivity and basin response effects have been
neglected, which can lead to an underestimation of shaking in large
earthquakes.

In this study, we used the SCEC CyberShake data set with full
3-D wave-propagation simulations for >400 k rupture scenarios
(6.5 ≤ M ≤ 8.5) in southern California to develop ε-SVR mod-
els for enhanced ground-motion predictions that consider effects of
3-D wave-propagation. Our models allow prediction of the tem-
poral evolution of MMI at a given user-site within a fraction of a
second using only information on the hypocentre, magnitude and

rupture ratio (uni- or bilateral propagation). These parameters can
be easily provided by the existing CISN ShakeAlert EEW demon-
stration system with finite fault extension (Böse et al. 2013). Even
if the rupture ratio parameter was unknown, δ could be set to ‘1’
to simulate the worst case scenario with the rupture propagating
towards the user. In this paper we are not designing an entire EEW
algorithm, but rather a shaking intensity estimator given input pa-
rameters from an assumed pre-existing EEW module, such as CISN
ShakeAlert. We are not conducting a detailed analysis of false and
missed alarms due to the lack of a clear definition of these terms that
was applicable to users in general. Communicating uncertainties in
the estimated parameters to end-users, however, will remain one of
the major challenges in future EEW applications.

Certainly, the performance of our regression models depends on
the quality and completeness of the training data set. The Cyber-
Shake waveforms were calibrated and validated with numerous seis-
mic observations, including, for example those of the recent 2010
M7.2 El Mayor Cucapah earthquake in Baja California (Graves &
Aagaard 2011), and the 2008 M5.4 Chino Hills earthquake in this
study. Each rupture scenario in the set was simulated multiple times
sampling a range of potential slip distributions and hypocentres.

However, physics-based simulation models, dynamic and kine-
matic, are in a state of ongoing modification, verification, testing
and improvement. An important issue with kinematic models (hence
CyberShake results) is the assumptions regarding the development
and assignment of numerical values to the kinematic parameters,
for example slip vector, rise time, rupture velocity (and their corre-
lations) to which model results are sensitive. Such parameters are
selected, in part by being guided by the more realistic, though more
complicated and perhaps even less developed, dynamic models.
Even though much progress has been made within the past decade,
and particularly within the past few years, in developing objective
verification methodologies for reviewing and comparing individual
simulation models and validating them against observed data, a lot
remains to be done in order to make them sufficiently reliable as
practical tools, especially for EEW applications.

Even though CyberShake clearly is a high-quality data set that
applies state-of-the-art scientific and computational knowledge and
resources, it is affected by these limitations. Furthermore, it is likely
that not all possible rupture scenarios were considered, particularly
those involving the rupture along multiple faults. That is, our use
of the CyberShake data set is not meant as a claim that these sim-
ulations are fully validated and appropriately sample the range of
rupture uncertainty, but rather we are using these data to demon-
strate their application to EEW as a ‘proof of concept’. Our method
is not limited to the CyberShake data set; once more accurate BB
ground-motion simulations or new rupture scenarios (such as in
UCERF 3.0, Field et al. 2013) become available, our models can be
easily updated.

Another uncertainty in our current regression models comes from
the parametrization of earthquake ruptures. To keep the approach as
simple and robust as possible, we restricted our models to requiring
only a few input parameters (magnitude, location, rupture ratio).
Additional input parameters might help to make the ground-motion
predictions more accurate, but the real-time application will likely
get more challenging and possibly unrealistic. From the analyses in
this paper we saw that the rupture ratio δ, which is a normalized pa-
rameter that characterizes if the rupture propagates mainly towards
(δ = 1) or away (δ = 0) from the user site, can have important impli-
cations on the predicted level of shaking (Figs 10 and 11). Determin-
ing δ in real-time is thus critical for ground-motion predictions and
EEW applications. While MMI could be over- or underpredicted
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Figure 14. Maximum warning times (in seconds after rupture nucleation) until a user in the LA basin will experience (a) MMI ≥ V (‘moderate’ shaking),
(b) MMI ≥ VI (‘strong’ shaking) or (c) MMI ≥ VII (‘very strong’ shaking) for the scenarios shown in Fig. 13. Left-hand panel: results for a point-source
model assuming that peak shaking starts with the S-wave arrival (S-wave speed: 3.55 km s−1); a distinction of the three intensity levels cannot be made, that
is all plots from top to bottom are the same. Middle panel: results for the FinDer finite-fault model (Böse et al. 2012a) as calculated from the time difference
between the rupture reaching the point that is closest to the user at DLA (rupture speed: 2.8 km s−1) and the onset shaking corresponding to the three MMI
levels. Right-hand panel: results for the finite-fault models developed in this study. Our finite-fault models predict that for many dangerous rupture scenarios,
including moderate- to large-sized earthquakes along the Palos Verdes, Newport-Inglewood/Rose-Canyon, Elsinore or San Jacinto faults for which shaking
in the LA basin can be strong (Fig. 13), warning times of >30 s are a realistic expectation (right-hand panel).Warning times are significantly shortened if
alternative finite-fault models are used (middle panel), because the ruptures need to have reached a critical length before strong shaking is expected.

by two or more intensity units (depending on the location of the
earthquake and its magnitude, Fig. 10) if the rupture propagates in
the opposite direction from what was assumed or estimated, tests
of the FinDer algorithm have shown that these extreme cases are

not likely for large earthquakes (M > 7) if applied in dense seis-
mic networks (� ≈ 30 km). A limitation of FinDer, however, arises
from the simplified 2-D representation of ruptures which appears
to be suited to describe long and narrow ruptures (low W/L aspect
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ratios), but less suited to describe relatively short and wide ruptures
(W/L ∼ 1, e.g. reverse faults) such as the Northridge earthquake.

We selected the instrumental intensity (MMI) at the user site as
model output, because this parameter is well understood by the gen-
eral public; MMI uses a descriptive scale (see Table 1) making the
predicted intensities easily comprehendible by untrained individu-
als. The conversion of the simulated ground motions to MMI or
any other ground-motion parameter using statistically based mod-
els (e.g. Worden et al. 2012), as done in this paper, however, is an
additional source of uncertainty in our regression models.

In this study we developed ground-motion prediction models
for ∼70 selected test sites in and around the LA basin. However,
the real-time application of our approach within CISN ShakeAlert
(Böse et al. 2013) will require ground-motion estimates at a much
denser grid of possible user locations. This would possibly allow for
the rapid prediction of ShakeMap-like ground-motion maps (Wald
et al. 1999). Aside from the site-specific ground-motion models
as presented in this study, we should develop generic models using
various site characteristics, such as Vs30 or thickness of sediments in
the basin, as additional input parameters. Since these generic models
will have to average over multiple site-rupture geometries, we expect
the prediction results to be less accurate compared to the site-specific
prediction models developed in this study. Nevertheless generic
models might be useful for spatial interpolation at sites, where no
ground-motion simulations and, consequently, no regression models
are available.

An earthquake similar to the 2008 ShakeOut scenario (Jones et al.
2008) on the southern portion of the San Andreas Fault starting at
Bombay Beach could offer ∼60 s of warning to recipients in the
LA basin. The most recent large earthquake on this section of the
fault occurred over 300 yr ago, although the average recurrence
rate of large earthquakes on the southern San Andreas is only about
150 yr (e.g. Jones et al. 2008). Moreover, rupture simulations by
Böse & Heaton (2010) suggest that the probability for a rupture
along a smooth fault such as the San Andreas Fault to evolve into
a major event is high. Still we should be careful not to neglect the
threat from other faults (Palos Verdes, Newport-Inglewood/Rose-
Canyon, Elsinore or San Jacinto) where moderate-sized magnitude
earthquakes could cause significant shaking and damage in the LA
basin, but that are still far enough away to provide reasonable long
warning times (>30 s) for early warning. Our finite-fault models
could be useful for designing or optimizing seismic and geodetic
networks for EEW (e.g. Oth et al. 2010) by predicting shaking
levels and available warning times for various rupture scenarios and
station distributions.

7 C O N C LU S I O N S

EEW systems need a reliable and accurate method to quickly de-
termine expected shaking and arrival time of this shaking at a user
site once an earthquake has been detected. In this paper we devel-
oped and demonstrated a method to achieve this goal by quantifying
the relationship between earthquake parameters (hypocentre, mag-
nitude, rupture ratio) and shaking for specific sites in and around
LA. Regression models of the earthquake parameters and shaking
intensities were derived from the SCEC CyberShake database with
around 415 000 finite-fault rupture scenarios (6.5 ≤ M ≤ 8.5) along
active faults in southern California. The results were shown to be
a substantial improvement over existing GMPEs, because basin re-
sponse and directivity effects are directly considered. Our models
predict that a relatively distant moderate M6.5–7 earthquake along

the Palos Verdes, Newport-Inglewood/Rose Canyon, Elsinore or
San Jacinto faults with a rupture propagating towards LA could
cause ‘very strong’ to ‘severe’ shaking in the LA basin. However,
warning times for these events could be >30 s. Finally, we want to
point out that our use of the CyberShake data set is not meant as a
validation of these simulations, but rather we are using these data
to demonstrate their application to EEW as a ‘proof of concept’.
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A P P E N D I X : ε- S U P P O RT V E C T O R
R E G R E S S I O N ( ε- S V R )

For a given set of training data points with input feature vector x and
target output zi, {(x1; z1), . . . , (xn ; zn)} ⊂ χ × R, where χ denotes
the space of input patterns (e.g. χ = R

d ) and n is the number of
example patterns, the goal of ε-SVR is to find a function f, that has
at most ε deviation from the actually obtained targets (ε-insensitive
loss function, Fig. A1b), and that at the same time is a flat as possible
(Vapnik 1995; Smola & Schölkopf 2004). In the simplest case, we
seek a linear function

f (x) = 〈w, x〉 + b, with w ∈ χ, b ∈ R, (A1)

where 〈·,·〉 denotes the dot product in χ . Flatness of the regression
function in (A1) means to find a small w, which can be achieved from
minimization of the norm ‖w‖2 = 〈w, w〉. To cope with otherwise
infeasible constraints in the optimization problem, slack variables
ξi and ξ ∗

i are introduced (Fig. A1). The optimization problem in
ε-SVR can thus be written as

min
w,b,ξ,ξ∗

1

2
||w||2 + C

n∑

i=1

(ξi + ξ ∗
i ) (A2.1)

subject to

zi − 〈w,φ(xi )〉 − b ≤ ε + ξi (A2.2)

〈w,φ(xi )〉 + b − zi ≤ ε + ξ ∗
i (A2.3)

ξi , ξ
∗
i ≥ 0, i = 1, 2, . . . n, (A2.4)

where φ(xi) is a non-linear mapping function to transform the input
vector into a higher (infinite) feature space where linear regression
can be performed; b is the bias term. The regularization parameter
C > 0 in eq. (A2.1) controls the trade-off between the flatness of

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://pubs.usgs.gov/of/2008/1150/10.1093/gji/ggu198.html
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Figure A1. Principle of ε-SVR. (a) The input data is transformed to a higher (infinite) dimensional feature space using kernel functions (here: radial basis
function, RBF) where linear regression can be performed. (b) The error function in ε-SVR is ε-insensitive, that is errors <|ε| are neglected. Goal of ε-SVR is
to find a function f, that has at most ε deviation from the actually obtained targets, and that at the same time is as flat as possible.

the regression function and the amount to which errors >|ε| are
tolerated (Smola & Schölkopf 2004).

A solution to the optimization problem in eqs (A2.1)–(A2.4) is
found by solving the corresponding dual problem (e.g. Smola &
Schölkopf 2004) using quadratic programming (e.g. Chang & Lin
2011). Feature vectors xi, for which the corresponding Lagrangian
multipliers αi and α∗

i are positive, are the so-called ‘support vectors’
of the regression function (Fig. A1)

f (x) =
n∑

i=1

(αi − α∗
i )k(xi , x) + b (A3)

with kernel k(x, x ′) := 〈φ(x), φ(x ′)〉. Note that f only depends on
dot products between the input data, which is computationally

effective. Here we select the radial basis function (RBF)

k(xi , x j ) = exp(−γ ||xi − x j ||2), γ > 0 (A4)

which is a commonly used kernel in SVR. The parameter γ in
eq. (A4) defines the width of the (Gaussian) kernels. This leaves us
with two critical model parameters, C and γ , (eqs A2.1 and A4),
which are generally not straightforward to select. We determine the
optimum values in this study from the application of the Direct
Search algorithm. The advantage of SVR compared to other re-
gression techniques is that the obtained models are very flat which
is prerequisite for a high generalization capability towards unseen
data.


