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A non-homogeneous constitutive model for
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The earlier constitutive model of Fang & Owens (Biorheology, vol. 43, 2006, p. 637)
and Owens (J. Non-Newtonian Fluid Mech. vol. 140, 2006, p. 57) is extended in scope
to include non-homogeneous flows of healthy human blood. Application is made to
steady axisymmetric flow in rigid-walled tubes. The new model features stress-induced
cell migration in narrow tubes and accurately predicts the F̊ahraeus–Lindqvist effect
whereby the apparent viscosity of healthy blood decreases as a function of tube
diameter in sufficiently small vessels. That this is due to the development of a
slippage layer of cell-depleted fluid near the vessel walls and a decrease in the tube
haematocrit is demonstrated from the numerical results. Although clearly influential,
the reduction in tube haematocrit observed in small-vessel blood flow (the so-called
F̊ahraeus effect) does not therefore entirely explain the F̊ahraeus–Lindqvist effect.

1. Introduction
Two of the most striking non-homogeneous effects observed in blood flow in

narrow glass tubes are those that bear the names of F̊ahraeus (1929) and F̊ahraeus
& Lindqvist (1931). The F̊ahraeus effect (1929) concerns the decrease in average
concentration of red blood cells (the so-called tube or dynamic haematocrit Hct )
in human blood as the diameter of the glass tube in which it is flowing decreases.
A simple mathematical treatment of the F̊ahraeus effect, along the lines of that
employed by Sutera et al. (1970), shows that because of migration of cells from the
vessel walls towards the tube centre (leading to an average cell speed greater than the
average axial velocity component of the surrounding fluid) the tube haematocrit must
be less than that of the blood discharged from the end of the tube (the discharge
haematocrit). As noted by many authors already, the dynamic decrease in red cell
concentration described in the F̊ahraeus effect is quite distinct from the possible
haematocrit decrease in a small tube due to entry effects (cell screening), although in
practice, even in controlled laboratory experiments, both effects may be taking place
simultaneously (Gaehtgens, Albrecht & Kreutz 1978). In the absence of entry effects
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the discharge haematocrit must equal that of the blood in the reservoir that feeds the
tube (the so-called feed haematocrit).

Conjointly with the F̊ahraeus effect, and as evidenced by F̊ahraeus & Lindqvist
in 1931, a decrease in the tube diameter D from approximately 0.3 mm down to
D ≈ 5–7 μm will result, in healthy human blood, in a drop in the apparent viscosity.
This effect, also due to cell migration, results in part from the development of a
slippage layer of plasma-rich cell-depleted fluid near the vessel walls. Although the
thickness of the cell-depleted lubricating layer depends upon flow rate and tube
diameter it seems to do so only weakly and the layer thickness remains more or less
in the range 2–4 μm (Caro et al. 1978). Therefore the relative volume of the slippage
(low-viscosity) layer increases as the tube diameter decreases. This, combined with
the F̊ahraeus effect, results in a decrease in the apparent viscosity. Thus, although the
F̊ahraeus effect is important for a correct understanding of the F̊ahraeus–Lindqvist
effect, it does not entirely explain it (Azelvandre & Oiknine 1976), something that we
further discuss in § 3.4. Enjoying little contestation since their discovery early in the
20th century (although see, for example, Mayer 1965), the F̊ahraeus and F̊ahraeus–
Lindqvist effects have spawned a huge research literature in the intervening years,
and the reader is referred to Blair (1958) and Goldsmith, Cokelet & Gaehtgens (1989)
for readable and fascinating accounts of some of the major research milestones up to
the late 1950s and 1980s.

In vivo, the apparent viscosity of blood in the smaller vessels is further reduced
because of plasma skimming. That is, a small side branch on a larger vessel may
receive blood containing a larger proportion of plasma than in the feeder vessel, due
to the fact that the blood supplying it largely comes from the near-wall plasma-
rich layer (Caro et al. 1978). It should also be noted, however, that flow resistance
in vivo in smaller vessels is larger than is predicted with in vitro data due to the
presence of a thick endothelial cell layer (Pries & Secomb 2005). For very small
vessels (D � 5 μm) both the tube haematocrit and apparent viscosity of normal
human blood increase sharply due to the very small clearance between the cells and
the vessel walls (Goldsmith, Cokelet & Gaehtgens 1989; Yen & Fung 1977).

Although healthy blood under physiological flow conditions in the heart and in
the larger arteries of the human cardiovascular system may be adequately described
using the Navier–Stokes equations, realistic modelling in the microcirculation requires
that proper account be taken of (at the very least) radial variations in viscosity.
Macroscopic modelling of blood in narrow tubes has often involved representing the
flowing blood as a concentrated core of suspended red blood cells, surrounded by a
lower viscosity annulus near the vessel walls. See Secomb (2003) and Sharan & Popel
(2001) and the references therein, for example. Sharan & Popel (2001) numerically
solved a consistent system of nonlinear equations to estimate the effective viscosity in
the cell-free layer, the thickness of this layer and the haematocrit in the concentrated
core. The system of equations was closed using experimental data for the apparent
viscosity and tube haematocrit from Pries, Neuhaus & Gaehtgens (1992). Rather than
adopt an empirical macroscopic model a more satisfactory, but potentially hugely
more expensive, approach is to directly simulate multi-particle systems. This has been
made possible very recently due to the massive increase in computing power available
to researchers. Sun & Munn (2005) have used a two-dimensional lattice Boltzmann
method to simulate the flow of both red and white blood cells in 20 μm and 40 μm
conduits at various haematocrits. Both the F̊ahraeus and the F̊ahraeus–Lindqvist
effects could be qualitatively reproduced, although agreement with in vitro experiments
was limited due to the authors’ use of rigid particles and a channel rather than a
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tube. Three-dimensional computations using an immersed finite element method and
deformable biconcave particles were performed by Liu & Liu (2006) to investigate
the dependence of blood viscosity on shear rate, the influence of cell deformability
on the viscosity and the F̊ahraeus–Lindqvist effect. The connection between the
radial migration of the cells and the F̊ahraeus–Lindqvist effect was established. No
comparisons were made between experiments and the predicted apparent viscosity
with decreasing tube diameter, however. Finally, and most recently, Bagchi (2007) has
modelled red blood cells as liquid capsules and employed the immersed boundary
method to model flows in two-dimensional rectangular channels involving as many as
2500 cells. Comparisons of the predictions of the size of the cell-free layer in channels
of different widths were made with the in vitro data of Bugliarello & Sevilla (1970) and
analytical data of Sharan & Popel (2001) and showed good agreement. Agreement
between the numerical results of Bagchi (2007) and the empirical expression of Pries
et al. (1992) for the relative apparent viscosity of blood at three different discharge
haematocrits was also very close.

The approach that we have adopted thus far in our work has been to derive
and use a macroscopic continuum model for blood flow which nevertheless rests
on sound microscopic-level foundations (Fang & Owens 2006; Owens 2006). Owens
(2006) showed that predictions of shear stress hysteresis loops in triangular hysteresis
experiments in a Couette rheometer were in close agreement with the experimental
data of Bureau et al. (1980) and resulted from a complex mixture of shear-thinning,
viscoelastic and thixotropic effects. Fang & Owens (2006) used the microstructure-
based constitutive model of Owens (2006) to investigate the steady, oscillatory and
pulsatile flow of blood in a tube of radius 0.43 mm. Elastic effects were most
pronounced at low flow rates and low flow rate amplitudes and agreement with data
from Thurston (1975) was good. In the present paper the basic model is extended
to include the possibility of describing highly non-homogeneous flows. In particular,
the new developments outlined in the theoretical sections that follow allow us to
investigate blood flow in tubes of sufficiently small diameter that wall effects become
significant.

The present paper is divided into two major sections. The first, § 2, deals at some
length with the mathematical development of the non-homogeneous model and leads
to the coupled nonlinear system of equations (2.43), (2.45), (2.46), (2.51) and (2.55)
to be solved in a straight rigid-walled tube, subject to an imposed pressure gradient
and satisfying the boundary conditions given in § 2.2.3. The model is derived by
starting with the basic equations in a solution of non-interacting dumbbells for the
number density and polymeric stress, that are already available in the polymeric fluids
literature (Beris & Mavrantzas 1994; Bhave, Armstrong & Brown 1991; Cook & Rossi
2004; Rossi, McKinley & Cook 2006). As a consequence, these basic equations are
simply written down in § 2.1. The non-homogeneous blood model proposed in this
paper considers blood to be an ensemble of aggregates undergoing binary interactions,
each aggregate consisting of different numbers of cells and modelled by a Hookean
dumbbell, on the assumption that rates of deformation are small. The modifications to
the original kinetic theory are clearly explained in § 2.2. The substantial simplifications
that may be made to the full set of non-homogeneous blood equations in the case of
steady axisymmetric flow in a straight, rigid-walled tube are detailed in § 2.2.4.

The second major section in the paper is concerned with the numerical solution
of the simplified non-homogeneous equations in a tube. Section 3.3 shows how,
when the tube haematocrit is fixed, the basic variables vary with the radial distance
at different values of the Péclet number and pressure gradient. Next, by allowing
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q
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Figure 1. Single Hookean dumbbell and its representation of the end-to-end vector of a
simple rouleau. A linear spring connects two point masses m having position vectors r1 and r2.
The end-to-end vector q = r2 − r1 and the position vector of the centre of mass rc = (r1 + r2)/2.

the tube haematocrit to vary with tube diameter according to an empirical relation
of Pries et al. (1992), we study the influence of both the F̊ahraeus effect and other
non-homogeneous effects on the apparent viscosity of steady blood flow in tubes of
various diameters.

2. Mathematical modelling
2.1. Basic equations for a solution of non-interacting dumbbells

Consider an ensemble of non-interacting Hookean dumbbells in a viscous solvent,
each dumbbell consisting of two point masses (both of mass m) joined by a massless
linear spring, as shown in figure 1. The two point masses are labelled 1 and 2
and have position vectors r1 and r2, respectively. The position vector of the centre
of mass is therefore rc = (r1 + r2)/2 and we denote the end-to-end vector r2 − r1

by q. The tension F in the spring is calculated from F = H q, where H is the
spring constant. Suppose that p and P denote, respectively, the momentum vectors
associated with the centre of mass and the internal degrees of freedom. Then we
define the phase-space distribution function f = f (rc, q, p, P, t) to be such that
f (rc, q, p, P, t) drc dq d p dP is the number of dumbbells having centre of mass in
the range [rc, rc + drc], end-to-end vector in the range [q, q + dq] and momenta in
the ranges [ p, p + d p] and [P, P + dP]. Starting with the continuity equation for
f (the Liouville equation) it may be shown, using standard arguments in polymer
kinetic theory (see, for example, Beris & Mavrantzas 1994; Bhave et al. 1991; Cook
& Rossi 2004; Rossi, McKinley & Cook 2006) that if N denotes the number density
of dumbbells and if a microscopic length scale �0 (corresponding to the length in
equilibrium of a dumbbell, say) is sufficiently small relative to a macroscopic length
scale (a tube radius, for example) then neglecting quantities of third and higher order
in the ratio of these length scales leads to an equation for N of the form

DN

Dt
=Dtr∇2N − 1

2ζ
∇∇ : τ , (2.1)

where D/Dt denotes the material derivative ∂/∂t + v · ∇ and v is the fluid velocity.
In (2.1) Dtr = kBT /2ζ is the translational diffusivity, kB is the Boltzmann constant, T

the temperature, ζ a friction factor and τ the elastic stress tensor, representing the
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contribution to the total (Cauchy) stress tensor from the dumbbells. If it is further
assumed that ‖∇v‖ � λ−1

H , where λH = ζ/4H is the relaxation time for an isolated
dumbbell, we may derive an approximate evolution equation for the orientation tensor
〈qq〉 in the form

	
〈qq〉= Dtr∇2〈qq〉 +

4NkBT

ζ
δ − 4H

ζ
〈qq〉, (2.2)

where
	
· denotes the upper convected derivative

D·
Dt

− ∇v · − · ∇vT ,

and 〈·〉 denotes an ensemble average, defined for a quantity B = B(rc, q, p, P, t) by

〈B〉 :=

∫
Q

∫ ∫
P

Bf d p dP dq. (2.3)

In the definition (2.3) above Q and P denote, respectively, configuration and
momentum space. In (2.2) and throughout this paper δ denotes the identity tensor.

2.2. Non-homogeneous blood model

A healthy unstressed red blood cell assumes a biconcave discoid shape, approximately
8 μm in diameter and 2 − 3 μm maximum thickness and is made up of a viscoelastic
membrane filled with an almost saturated solution of haemoglobin. See Caro et al.
(1978) for further details. Human blood is a suspension of formed elements in
plasma, by far the greatest proportion of which consists of red blood cells. It is the
behaviour of these cells, therefore, which primarily determines the rheology of blood.
In the present paper we attempt to model human blood as a suspension of red cell
aggregates in plasma. Although at very low shear rates red cells in healthy human
blood form complex networks made up of column-like structures of cells (called
rouleaux), as the shear rate increases the rouleaux disassociate from each other. As
the shear rate continues to increase the rouleaux progressively fragment and blood
becomes a concentrated suspension of single cells (see, for example, Chien & Jan
1973). The presence of blood proteins such as fibrinogen and immunoglobulins in the
plasma is known to play an important role in the process of aggregation (Baskurt
& Meiselman 2003) and the entire disaggregation process is reversible. In the model
proposed in the present paper, we consider blood as a concentrated suspension of
rouleaux of various sizes, the distribution of rouleaux lengths at any point and time
in a flow depending upon the rheological and flow conditions. In the model, each
rouleau may undergo binary interactions with others, being able to fragment into two
smaller ones or coalesce with another rouleau to form a larger one. Each rouleau will
be represented by a Hookean elastic dumbbell, as shown in figure 1, and a rouleau
composed of k red cells will henceforth be termed a k-mer. The number density of
k-mers will be denoted by Nk and if N0 :=

∑∞
k=1 kNk and M :=

∑∞
k=1 Nk are the

notations used for the number density of red cells and number density of the rouleaux,
respectively, it follows that the average rouleau size n at a point in the flow domain
is calculated from

n =
N0

M
.

Owens (2006) assumed, as is common in reversible polymer network theory, that
aggregation is a Brownian process and that the aggregation rate of k-mers is
proportional to the equilibrium (no flow, homogeneous) number density Nk,0. He
also assumed that the fragmentation rate of k-mers is proportional to Nk . We denote

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

42
8X

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

25
:4

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S002211200800428X
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


332 M. Moyers-Gonzalez, R. G. Owens and J. Fang

the aggregation and fragmentation rate coefficients by hk and gk and will assume a
little later that these are functions of the shear rate γ̇ and time.

The equations equivalent to (2.1) and (2.2) above are now, respectively,

DNk

Dt
= Dtr,k∇2Nk − 1

2ζk

∇∇ : τ k + hkNk,0 − gkNk, (2.4)

and

	
〈qq〉k= Dtr,k∇2〈qq〉k +

4(kBT + κ)kNk

ζk

δ − 4H

ζk

〈qq〉k + hk〈qq〉k,0 − gk〈qq〉k, (2.5)

where ζk is the k-dependent friction factor and Dtr,k = (kBT + κ)k/2ζk is the
translational (thermal and convective) diffusivity for k-mers. The numerator of Dtr,k

consists of the sum of a very small Brownian contribution and a constant κ which
takes account of impacts with other blood cells. Since the k-mer consists of k cells we
choose

(kBT + κ)k = k(kBT + κ) and ζk = kζ

and this reduces the diffusion coefficients Dtr,k to Dtr = (kBT + κ)/2ζ for all k. τ k in
(2.4) denotes the contribution to the total elastic stress tensor τ : =

∑∞
k=1 τ k from

k-mers. Substituting from the Kramers expression (Kramers 1944) for the elastic stress
tensor τ k:

τ k = H 〈qq〉k − kNk(kBT + κ)δ, (2.6)

we then find from (2.4) and (2.5) that

τ k + μk

	
τ k −Dtrμk(∇2τ k + (∇∇ : τ k)δ) = kNk(kBT + κ)μkγ̇ , (2.7)

where the relaxation time

μk =
kλH

1 + gkkλH

. (2.8)

We see from (2.8) that the relaxation time for a rouleau is increased (through the
numerator) relative to that for a single cell due to the increase in friction but decreased
(through the denominator) due to the extra relaxation mechanism brought about by
fragmentation. With gk a function of shear rate, μk is therefore a non-trivial function
of both shear rate and rouleau size. Since we expect that in the infinite shear rate limit
all rouleaux break up into individual cells with zero aggregation and fragmentation,
μk (k � 2) will tend in this case to 0 and μ1 to λH . The constitutive equation satisfied
by the elastic stress tensor will then tend to the non-homogeneous Oldroyd B equation

τ + λH

	
τ −DtrλH (∇2τ + (∇∇ : τ )δ) = N0(kBT + κ)λH γ̇ . (2.9)

As in our previous work (Fang & Owens 2006; Owens 2006) we choose

gkNk =
1

2

k−1∑
i=1

Fi,k−iNk +

∞∑
j=1

Kk,jNkNj ,

hkNk,0 =
1

2

k−1∑
i=1

Ki,k−iNiNk−i +

∞∑
j=1

Fk,jNk+j ,

where Ki,j is an aggregation kernel, expressing the rate at which an (i + j )-mer is
formed from an i-mer and a j -mer, and Fi,j is a fragmentation kernel, denoting the
rate at which an (i + j )-mer breaks into an i-mer and a j -mer. As in Fang & Owens
(2006) and Owens (2006) we choose the aggregation and fragmentation kernels to be
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simple functions a and b of the shear rate γ̇ since the reaction sites are principally
the end points of the rouleau, independently of k. In this case, gk and hk become

gk =
b(γ̇ )(k − 1)

2
+ a(γ̇ )

∞∑
j=1

Nj, (2.10)

hk =
a(γ̇ )

2Nk,0

k−1∑
i=1

NiNk−i +
b(γ̇ )

Nk,0

∞∑
j=1

Nk+j , (2.11)

and we note that, as is to be expected,

∞∑
k=1

k(hkNk,0 − gkNk) = 0, (2.12)

this expressing the fact (mass conservation) that in any material volume the number
of red cells remains constant.

Rather than work with a multi-mode model, which even with a truncated sum∑
k τ k would necessitate the solution of a potentially large number of constitutive

equations of the type (2.7), we compute an average relaxation time μ̄ := μn and may
now sum k times (2.4) from k = 1 to ∞ to get

DN0

Dt
= Dtr∇2N0 − Dtr

(kBT + κ)
∇∇ : τ , (2.13)

and sum (2.7) from k = 1 to ∞, which gives us

τ + μ̄
	
τ −Dtrμ̄(∇2τ + (∇∇ : τ )δ) = N0(kBT + κ)μ̄γ̇ . (2.14)

With the choice Kij = a(γ̇ ) and Fij = b(γ̇ ) we sum (2.4) from k = 1 to ∞ to get the
evolution equation for the number density of aggregates

DM

Dt
= Dtr∇2M − Dtr

(kBT + κ)
∇∇ : σ − a(γ̇ )

2
M2 +

b(γ̇ )

2
(N0 − M), (2.15)

where

σ =

∞∑
k=1

τ k

k
,

and satisfies

σ + μ̄
	
σ −Dtrμ̄(∇2σ + (∇∇ : σ )δ) = M(kBT + κ)μ̄γ̇ . (2.16)

To close the system of equations for (v, p, N0, M, σ , τ ) we must add the usual equation
of conservation of linear momentum and the incompressibility constraint:

ρf

Dv

Dt
= −∇p + ηN∇2v + ∇ · τ , (2.17)

∇ · v = 0, (2.18)

where ρf denotes the fluid density, p the pressure and ηN is the constant plasma
viscosity.

If D ⊂ �3 denotes the region occupied by a blood sample and Ve is the volume
of a single red blood cell (the so-called mean corpuscular volume ≈ 90 μm3), the tube
haematocrit Hct is defined as

Hct =
Ve

volD

∫
D

N0(x, t) dx. (2.19)
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We may also define an average number density of red cells Nav in D:

Nav :=
1

volD

∫
D

N0(x, t) dx, (2.20)

which, from (2.19) is seen to be related to the haematocrit by Nav = Hct/Ve.

2.2.1. Non-dimensionalization of the equations

We scale the variables as follows:

N̂0 =
N0

Nav

, M̂ =
M

Nav

, p̂ =
p

Nav(kBT + κ)
, t̂ =

tV

R
,

x̂ =
x
R

, v̂ =
v

V
, τ̂ =

τ

Nav(kBT + κ)
, σ̂ =

σ

Nav(kBT + κ)
,

where Nav is given by (2.20), R denotes a characteristic length and V a characteristic
flow speed (a maximum or average value, for example).

Introducing the non-dimensionalized variables into (2.13)–(2.16) and using the fact
that μ̄ = μn, we get

DN̂0

Dt̂
=

1

Pe
∇̂2N̂0 − 1

Pe
∇̂∇̂ : τ̂ , (2.21)

and

τ̂ + De
	
τ̂ −De

Pe
(∇̂2τ̂ + (∇̂∇̂ : τ̂ )δ) = N̂0De ˆ̇γ . (2.22)

In (2.22) we define the (shear-rate- and time-dependent) Deborah number De as

De :=
μ̄V

R
=

nDe∞

1 + gnnDe∞
,

where

De∞ =
λHV

R
.

The Péclet number

Pe :=
V R

Dtr

=
2ζRV

(kBT + κ)
,

relates the rate of convection of the flow to the rate of mass diffusion. The physical
significance of the ratio De∞/P e may be seen by computing

De∞

Pe
=

λHV

R

(kBT + κ)

2ζRV
=

1

8

(kBT + κ)

HR2
=

�2
0

24R2
,

where �0 =
√

3(kBT + κ)/H is the ensemble-average equilibrium length of a simple
(k =1) Hookean dumbbell in the absence of wall effects. (De∞/P e)1/2 therefore
measures the relative magnitudes of a microscopic length scale to a macroscopic
length scale. Where this ratio is non-negligible wall effects may be considered to
be important. Moyers-Gonzalez & Owens (2008) show that when De∞/P e � 1
boundary layers of thickness O(De∞/P e)1/2 develop.

The non-dimensionalized equations for M̂ and σ̂ are

DM̂

Dt̂
=

1

Pe
∇̂2M̂ − 1

Pe
∇̂∇̂ : σ̂ − â( ˆ̇γ )

2
M̂2 +

b̂( ˆ̇γ )

2
(N̂0 − M̂), (2.23)

σ̂ + De
	
σ̂ −De

Pe
(∇̂2σ̂ + (∇̂∇̂ : σ̂ )δ) = M̂De ˆ̇γ , (2.24)
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where

â( ˆ̇γ ) := a(γ̇ )Nav

R

V
= a(γ̇ )Nav

λH

De∞
, b̂( ˆ̇γ ) := b(γ̇ )

R

V
= b(γ̇ )

λH

De∞
, (2.25)

are non-dimensional aggregation and fragmentation rates, respectively. The precise
functional forms of a(γ̇ )Nav and of b(γ̇ ) are determined from experiments (see
Murata & Secomb 1988; Shiga et al. 1983) and from the a–b relationship in steady
homogeneous flow, respectively. See the Appendix. As before, the average aggregate
size is n= N̂0/M̂ . If we introduce

η∞ := Nav(kBT + κ)λH and η :=
De∞ηN

η∞
, (2.26)

then the non-dimensionalized equations of motion become

Re
Dv̂

Dt̂
= −∇̂p̂ + η∇̂2v̂ + ∇̂ · τ̂ , (2.27)

∇̂ · v̂ = 0, (2.28)

with the Reynolds number Re being defined as

Re =
ρf V RDe∞

η∞
.

(Note that, as an alternative to the Reynolds number defined above, scaling time with
λH rather than R/V would lead to a more conventional definition of a Reynolds
number: Re = ρf V R/η∞.)

For the rest of the paper, and for the sake of simplicity, we will drop the hats on
the non-dimensional variables.

2.2.2. Equations for axisymmetric non-homogeneous flow of blood in a uniform pipe

We introduce cylindrical polar coordinates (r, θ, z) and consider steady pressure-
driven axisymmetric flow in a uniform pipe of radius R having its axis in the
z-direction. Then, seeking a solution with a velocity field of the form v =(0, 0, vz(r)),
pressure p =p(z) and all other variables functions of r alone, (2.21)–(2.27) may be
written as

1

r

d

dr

(
r
dN0

dr

)
−

(
1

r

d

dr

(
r
dτrr

dr

)
+

1

r

d

dr
(τrr − τθθ )

)
= 0, (2.29)

1

Pe

1

r

d

dr

(
r
dM

dr

)
− 1

Pe

(
1

r

d

dr

(
r
dσrr

dr

)
+

1

r

d

dr
(σrr − σθθ )

)

− aN0

2n
M +

b

2
(N0 − M) = 0, (2.30)

τrr − De

Pe

(
2

r

d

dr

(
r
dτrr

dr

)
+

1

r

d

dr
(τrr − τθθ ) − 2

r2
(τrr − τθθ )

)
= 0, (2.31)

τθθ − De

Pe

(
1

r

d

dr

(
r
dτθθ

dr

)
+

1

r

d

dr

(
r
dτrr

dr

)
+

1

r

d

dr
(τrr − τθθ ) +

2

r2
(τrr − τθθ )

)
= 0,

(2.32)

τrz − De
dvz

dr
τrr − De

Pe

(
1

r

d

dr

(
r
dτrz

dr

)
− τrz

r2

)
− N0De

dvz

dr
= 0, (2.33)
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τzz − 2De
dvz

dr
τrz − De

Pe

(
1

r

d

dr

(
r
dτzz

dr

)
+

1

r

d

dr

(
r
dτrr

dr

)
+

1

r

d

dr
(τrr − τθθ )

)
= 0,

(2.34)

−dp

dz
+ η

1

r

d

dr

(
r
dvz

dr

)
+

1

r

d

dr
(rτrz) = 0. (2.35)

Since vz = vz(r), the incompressibility condition (2.28) is identically satisfied. Also τrθ ,
τθr , τzθ , τθz and the corresponding components of σ are all zero. Equations for the
remaining components of σ are analogous to those for the corresponding components
of τ and are obtained by replacing τij with σij and N0 with M in (2.31)–(2.34).

2.2.3. Boundary conditions

We assume, as have other authors before us (Bhave et al. 1991; Cook & Rossi
2004; Rossi et al. 2006), that the principal axes of the microstructure on the wall
are orientated in the z-direction, so that non-dimensionalization of the Kramers
expression (2.6) then leads to the elastic stress boundary condition

τ = N0Q
2
0ezez − N0δ, (2.36)

where Q0 is the length of a Hookean dumbbell divided by �0/
√

3 and ez is a unit
vector in the z-direction. Since τzz is not required in order to solve (2.29)–(2.33)
and (2.35) for the other variables, we have no need to estimate Q0 and the wall
stress condition on the remaining components is just τij = −N0δij . Along the axis of
symmetry τrz is set equal to zero and the normal derivatives of τrr and τθθ equal zero,
from symmetry considerations. Boundary conditions for σ are equivalent to the ones
for τ , the only difference being that N0 is exchanged for M .

Subtracting (2.31) and (2.32) we get

τrr − τθθ − De

Pe

(
1

r

d

dr

(
r
dτrr

dr

)
− 1

r

d

dr

(
r
dτθθ

dr

)
− 4

r2
(τrr − τθθ )

)
= 0. (2.37)

Now, let w = τrr − τθθ . Then (2.37) becomes

w − De

Pe

(
1

r

d

dr

(
r
dw

dr

)
− 4

w

r2

)
= 0, (2.38)

together with the homogeneous boundary conditions

dw

dr
= 0 at r = 0, (2.39)

w = 0 at r = 1. (2.40)

The solution to (2.38) with boundary conditions (2.39)–(2.40) is w ≡ 0, which implies
τrr ≡ τθθ . Using the same arguments with the corresponding equations for σrr and σθθ

allows us to conclude that σrr ≡ σθθ .
N0 and M satisfy the natural boundary conditions

dN0

dr
− dτrr

dr
= 0, (2.41)

and
dM

dr
− dσrr

dr
= 0, (2.42)

at the walls r = 1. Equation (2.41) is equivalent to ensuring that there is no flux of
rouleaux through the tube wall. In addition, the non-dimensional form of (2.20) where
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the region D is taken to be any right circular cylindrical section of the tube, imposes
the condition ∫ 1

0

N0r dr =
1

2
, (2.43)

upon N0. Solvability of (2.30) for M requires that M be bounded at r = 0 and this is
achieved in the weak finite element formulation (see § 3.2) by setting ∂M/∂r = 0 on
the axis of symmetry.

2.2.4. Further simplifications

Heeding the arguments above, it may be seen that the set of equations describing
steady axisymmetric tube flow reduces to

1

r

d

dr

(
r
dN0

dr

)
− 1

r

d

dr

(
r
dτrr

dr

)
= 0, (2.44)

1

Pe

1

r

d

dr

(
r
dM

dr

)
− 1

Pe

(
1

r

d

dr

(
r
dσrr

dr

))
− aN0

2n
M +

b

2
(N0 − M) = 0, (2.45)

τrr − De

Pe

(
2

r

d

dr

(
r
dτrr

dr

))
= 0, (2.46)

τrz − De
dvz

dr
τrr − De

Pe

(
1

r

d

dr

(
r
dτrz

dr

)
− τrz

r2

)
− N0De

dvz

dr
= 0, (2.47)

τzz − 2De
dvz

dr
τrz − De

Pe

(
1

r

d

dr

(
r
dτzz

dr

)
+

1

r

d

dr

(
r
dτrr

dr

))
= 0, (2.48)

−dp

dz
+ η

1

r

d

dr

(
r
dvz

dr

)
+

1

r

d

dr
(rτrz) = 0. (2.49)

In the paragraphs that follow we demonstrate that yet further simplification is
possible. We begin by multiplying (2.44) by an arbitrary function φ ∈ C∞(0, 1) and
integrating by parts over [0, 1] to get

−
∫ 1

0

r
dN0

dr

dφ

dr
dr +

dN0

dr

∣∣∣∣
r=1

= −
∫ 1

0

r
dτrr

dr

dφ

dr
dr +

dτrr

dr

∣∣∣∣
r=1

.

Applying (2.41) we have ∫ 1

0

r
dN0

dr

dφ

dr
dr =

∫ 1

0

r
dτrr

dr

dφ

dr
dr. (2.50)

Since (2.50) holds for any φ ∈ C∞(Ω), we get

dN0

dr
=

dτrr

dr
,

so that integrating yields

N0 = τrr + C, (2.51)

for some constant C, chosen such that (2.43) is satisfied. Equation (2.51) expresses the
original idea of Onuki (2002) that the degree of inhomogeneity in a polymer solution
due to stress-induced migration is proportional to the first normal stress difference in
the flow.
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Letting T := ηγ̇ + τ , we can write the equation of motion, (2.49) as

1

r

d

dr
(rTrz) =

dp

dz
, (2.52)

where

Trz = η
dvz

dr
+ τrz. (2.53)

We solve for Trz in (2.52), and noting that the shear stress should be bounded at r = 0
we have

Trz =
r

2

dp

dz
. (2.54)

Substituting (2.53) into (2.47) leads to

η
De

Pe

(
1

r

d

dr

(
r

d

dr

(
dvz

dr

))
− 1

r2

dvz

dr

)
− dvz

dr
(De τrr + N0De + η) + Trz = 0. (2.55)

This is a differential equation for dvz/dr , with boundary conditions

dvz

dr
= 0 at r = 0, (2.56)

i.e. zero shear rate along the line of symmetry and

dvz

dr
=

1

2η

dp

dz
at r = 1. (2.57)

Boundary condition (2.57) may require further explanation. We note from (2.36) that
τrz is zero at the wall, and this implies, from (2.53), that at r =1

dvz

dr
=

Trz

η
.

Using (2.54) we now get (2.57).

3. Numerical results
In this section we present the results of solving (2.45), (2.46) (and the corresponding

equation for σrr ) and (2.55), subject to an imposed (dimensional) pressure gradient
P and satisfying the boundary conditions on M , τrr , σrr and dvz/dr described in the
paragraphs above. N0 is found from (2.43) and (2.51). Once converged solutions have
been found for τrr and dvz/dr , one may compute τzz and vz, should one wish to do
so, from (2.48) and the identity

vz(r) = −
∫ 1

r

dvz

dr ′ dr ′. (3.1)

3.1. Parameter selection

Since the fragmentation rate function b(γ̇ ) is determined from the a–b relationship
that holds in steady homogeneous flow (see the Appendix), we need to select the
parameters that appear in the Cross model description (A 2) of the contribution of
the cell suspension to the steady shear viscosity (the other contribution is that due
to the plasma). We shall refer to this contribution as the steady polymeric shear
viscosity. The parameters required by (A 2) are the zero-shear-rate steady polymeric
shear viscosity η0, the infinite-shear-rate steady polymeric shear viscosity η∞, and
parameters β and m (a power-law exponent), that determine the shape of the viscosity
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Parameter symbol assigned value units

plasma viscosity ηN 0.001 Pa s
zero-shear-rate polymeric viscosity η0 0.0326 Pa s
high-shear-rate polymeric viscosity η∞ 0.00234 Pa s
Cross model power-law exponent m 2.1238 –
Cross model parameter β 0.7014 sm

Maxwell relaxation time λH = ζ/4H 0.005 s
infinite-shear-rate Deborah number De∞ = λH V/R 1.4 –
homogeneous average cell number density Nav,hom 5 × 1015 m−3

Table 1. Material and flow parameters and their assigned values.

curve as a function of shear rate as it passes between η0 and η∞. The values of the
aforementioned parameters are tabulated in table 1 and for a justification of the value
assigned to η∞, see § 3.4. The plasma viscosity ηN is set equal to 0.001 Pa s.

With λH chosen as 0.005 s (see Moyers-Gonzalez, Owens & Fang 2008, where this
value was best for agreement with the small-amplitude oscillatory data of Thurston
1975) and the homogeneous (infinite radius tube) average cell number density Nav,hom

(see the Appendix) selected to be equal to 5 × 106 per μl (a realistic value, for an
haematocrit of 0.45), the formula (2.26) for η∞ now fixes the value of kBT + κ . We
note, in passing, that this necessitates that κ be several orders of magnitude greater
than kBT and this is consistent with the experimental observation by Goldsmith
& Marlow (1979), for example, that the principal cause of diffusion is that due to
particle–particle interactions rather than thermal effects. De∞ was chosen equal to
1.4 (this being the product of λH with a shear rate of 280 s−1, characteristic of that
found in an arteriole (Caro et al. 1978)). The Péclet number Pe is determined from
R2 using

Pe =
V R

Dtr

=
2ζRV

(kBT + κ)
=

(
2ζDe∞

(kBT + κ)λH

)
R2 =

(
8De∞H

(kBT + κ)

)
R2, (3.2)

and best results were found when the ratio between the two quantities was set
equal to 1.75 × 1011. This results in a characteristic single red cell dimension of√

3(kBT + κ)/H =1.38 × 10−5 m which is slightly on the high side. However, it is not
expected that increasing the ratio between the Péclet number and R2 so as to reduce
the cell dimension to O(10−6) will significantly change the presented results. Finally,
in order to be able to impose a given physical (dimensional) pressure gradient P (say)
we calculate the dimensionless pressure drop from

dp

dz
=

(
R

Nav(kBT + κ)

)
P =

(
RλH

η∞

)
P.

3.2. Numerical method

The system of equations is discretized using a standard second-order Galerkin finite
element method and the resulting nonlinear system is solved iteratively with a Picard-
type iteration. Starting with an initial guess for the velocity gradient (calculated by
assuming simple Poiseuille flow in a pipe subject to the imposed P ) we perform two
inner loops: the first for the τrr–N0 pair ((2.43), (2.46) and (2.51)) and the second
for the σrr–M pair ((2.45) and the σrr equation). The variables in each inner loop
are considered to have converged when the L2 norm of the difference in successive
iterates drops below a prescribed tolerance (equal to ε =1 × 10−4). dvz/dr is then
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Figure 2. (a) Comparison of aggregate number density M for ◦, homogeneous and �,
non-homogeneous flow, against normalized radial distance r . P = −1000 N m−3, R = 700 μm,
Pe = 8.58 × 104. (b) Enlargement of the boundary layer near r = 1.

updated and the process continued until the L2 norm of the difference in successive
iterative values of all variables is less than ε. In order to accurately approximate the
solution in the boundary layer and near the axis of symmetry the finite element mesh
was refined in r ∈ [0, 0.05]

⋃
[0.95, 1]. In the main part of the mesh the element length

�r was set equal to 5 × 10−3 and in the refined regions to one tenth of this value.
We experimented with different ε and �r but no obvious difference was to be seen
in the computed solutions by reducing either any further, at least for the parameter
set given in table 1.

Although we defer a complete asymptotic analysis until Part II of this paper
(Moyers-Gonzalez & Owens 2008), it may be seen that as Pe → ∞ the dominant
terms in (2.45) in those parts of the normalized flow domain [0, 1] where

1

r

d

dr

(
r
dM

dr

)
and

1

r

d

dr

(
r
dσrr

dr

)

remain finite will be

−aN0

2n
M +

b

2
(N0 − M), (3.3)

and that therefore the relationship between M and N0 there will assume the same
form as that for homogeneous flow (cf. (9) of Owens 2006). In the boundary layer
adjacent to the tube wall steep derivatives develop in M so that the dominant balance
as Pe → ∞, changes, and the method of matched asymptotic expansions is needed in
order to correctly match the inner to the outer solution. Equally, as explained at greater
length by Moyers-Gonzalez & Owens (2008) in Part II of this paper, the development
of a steep internal layer in the steady homogeneous average aggregate size and
upon which the function b (and therefore M) depends will mean that the M will no
longer behave as in (3.3) as Pe → ∞ and sufficiently close to r = 0. In figure 2(a)
we show, as a check on our numerical scheme, the solution M to (2.45) and the
homogeneous solution, when Pe =8.58 × 104 and the physical pressure gradient is
P = −1000 N m−3. The agreement between the two solutions is excellent in a region
in the interior of the flow domain, as anticipated, the only remaining discrepancy
being due to the fact that sufficiently close to the axis of symmetry, M , in the non-
homogeneous case, is larger than in the homogeneous case. In figure 2(b) we show
the non-homogeneous boundary layer solution. We will comment on the behaviour
of M as Pe and P are allowed to vary in the following section.
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Figure 3. Cell number density N0 and aggregate number density M against normalized radial
distance r . P = −10 N m−3 ◦, R = 500 μm, Pe =4.38 × 104; �, R = 250 μm, Pe = 1.09 × 104; �,
R = 50 μm, Pe =4.38 × 102.
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Figure 4. As figure 3 but for P = −1000N m−3.

3.3. Results with varying Pe and P

In figures 3–6 we show how the computed flow variables change as a function
of normalized radial distance as the Péclet number Pe increases from 4.38 × 102

(corresponding to a tube of physical radius 50 μm) to 4.38 × 104 (for which the
equivalent tube radius is R = 500 μm) and as the physical pressure gradient P increases
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Figure 5. Radial elastic normal stress τrr and elastic shear stress τrz against normalized radial
distance r . P = −10N m−3 ◦, R = 500 μm, Pe = 4.38 × 104; �, R = 250 μm, Pe = 1.09 × 104; �,
R = 50 μm, Pe = 4.38 × 102.
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Figure 6. As figure 5 but for P = − 1000N m−3.

from −10 Nm−3 to −1000 Nm−3. The results are most easily considered by dividing
them into two groups: those at Pe =4.38 × 102 and those at the higher Péclet
numbers. We begin our comments on the results with those at the two highest Péclet
numbers. Figures 7 and 12–14 are surface plots of N0, M , n and N0De to show
how these quantities vary as functions of the normalized radial distance and Péclet
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Figure 7. Cell number density N0 as a function of normalized radial distance r and Péclet
number Pe. P = −500 N m−3.

number when the pressure gradient P is fixed at −500 Nm−3. All results in § 3.3.1
and 3.3.2 have been computed at a fixed tube haematocrit equal to the feed/discharge
haematocrit. The results of more realistic calculations, where we allow Hct to decrease
with tube diameter, are reported in § 3.4.

3.3.1. Pe = 1.09 × 104 and 4.38 × 104

Variations in N0 with r as the Péclet number is reduced (equivalently, as the
tube radius R is reduced) and visible in figures 3 and 4 and figure 7, indicate
migration of the cells away from the walls. The process of diffusion is driven by the
r-variation of τrr , and indeed would continue to be even in equilibrium (P = 0). It
is worth mentioning in passing that if the model were not viscoelastic (λH =0) τrr

would, of course, be zero and there would be no particle migration. Migration effects
in the present steady flow, where inertial effects are absent, are therefore dependent
on the deformability of the cells and leave a cell-depleted region near the tube wall.
In the infinite Pe case (homogeneous flow) wall effects would be absent and N0 = 1,
but as the Péclet number is reduced the near-wall number density N0 decreases and
the boundary layer thickens. Since mass conservation requires that (2.43) be satisfied,
a smaller cell number density near the walls is compensated for with a higher density
near the axis of symmetry as cells diffuse across fluid streamlines towards the centre
of the tube. In this way, wall effects are felt by the fluid throughout the flow domain,
however large the Péclet number and however thin the boundary layer. An increasing
flow rate (and corresponding shear rate) leads to closer alignment of the rouleaux
with the streamlines and an increase in stretch in this direction. As evidenced by
figures 3–6, these kinematical and microstructural changes lead to a reduction in |τrr |
at any radial position and to an increase in |τrz|. The consequence of normal stresses
having smaller magnitude is a reduction in migration effects.

As the pressure drop increases, for a tube of any radius (fixed Pe) the volume
flow rate and the maximum shear rate (attained at the walls) increase (see figures 8
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Figure 8. Axial velocity gradient dvz/dr and axial velocity vz against normalized radial
distance r . P = −10N m−3 ◦, R = 500 μm, Pe = 4.38 × 104; �, R = 250 μm, Pe = 1.09 × 104; �,
R = 50 μm, Pe = 4.38 × 102.
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Figure 9. As figure 8 but for P = −1000N m−3.

and 9). Figures 8 and 9 also indicate that the centreline axial velocity and wall shear
rates increase with Péclet number. At the lowest flow rate (P = −10 Nm−3), the shear
rate in the bulk flow (outside the boundary layers) is extremely small and as a result
aggregates are not broken up in any great numbers. This means (see figure 3) that
the number density of aggregates M is small and uniform in the bulk flow which in
turn means that n is larger than the values it assumes at the same radial positions at
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Figure 10. Average aggregate size n and viscosity N0De against normalized radial distance r .
P = −10 N m−3 ◦, R =500 μm, Pe = 4.38×104; �, R = 250 μm, Pe = 1.09×104; �, R = 50 μm,
Pe = 4.38 × 102.
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Figure 11. As figure 10 but for P = −1000 N m−3.

much higher flow rates (compare figures 10 and 11, for example). Figure 12 shows the
behaviour of M as a function of Pe and r , calculated with an intermediate pressure
gradient P = −500 Nm−3.

At the largest Péclet number, the impact on the viscosity N0De of nearly constant N0

and n in the bulk flow (and away from the centreline, in the case of P = −1000 N m−3)
is that it too shows only small variations with r in this region of the flow and, as a
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Figure 12. Aggregate number density M as a function of normalized radial distance r and
Péclet number Pe. P = −500 N m−3.

consequence, the velocity profile is essentially parabolic and the elastic shear stress
τrz a linear function of r (figure 5). With increasing flow rates the shear rate increases
at any radial position r (figures 8 and 9), aggregates are broken up, more so as
one approaches the wall. This leads inevitably to profiles of n and N0De that are
monotonic decreasing functions of r at any given flow rate, whose average values
decrease with increasing flow rates. As the flow rate increases to the maximum value
considered in our numerical experiments (figure 11), aggregates have been broken up
at all Péclet numbers to the extent that the average aggregate size is only slightly
greater than 1 away from the centreline.

3.3.2. Pe =4.38 × 102

From figures 3–6 it may be observed that at a Péclet number of 4.38 × 102 cell
migration is at its strongest, in response to the greater elastic normal stress effects near
the walls and the deeper penetration of these effects into the flow domain compared
with those at the Péclet numbers considered in § 3.3.1. Although, of the three values
shown in figure 3, the centreline value of the number density N0 is found to be a
maximum for the narrowest tube (R = 50 μm), the corresponding number density of
aggregates there is sufficiently large compared to its value for tubes of larger radius
that the variation of the average aggregate size n along the centreline as the tube
radius is reduced from 500 μm to 50 μm is non-monotonic. The same non-monotonic
behaviour was observed in the centreline viscosity, although we only show graphs
corresponding to tubes of three different radii in figure 10. Referring to figure 11,
the sharp decrease in n and N0De as one moves away from the axis of symmetry
that is to be seen at higher Péclet numbers is replaced, when Pe = 4.38 × 102, by
an aggregate size distribution and associated viscosity that decay with r much more
gradually. The tube is now so small compared to a cell that, with the exception of
the very near-wall region, flow conditions are approximately uniform (plug-like). The
non-monotonic progression of both n and N0De as functions of r from the high to
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Figure 13. Average aggregate size n as a function of normalized radial distance r and Péclet
number Pe. P = −500 N m−3.
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Figure 14. Viscosity N0De as a function of normalized radial distance r and Péclet number
Pe. P = −500N m−3.

very low Pe regimes may be seen most clearly in figures 13 and 14, where the pressure
gradient P = −500 N m−3. At high values of Pe both variables show a steep decrease
with r and at the lower values of Pe, n and N0De are more uniform in the bulk flow.
Note the viscosity boundary layer, indicating the presence of a near-wall cell-depleted
layer.

In summary, the model predicts, as it should, that blood becomes thinner as
flow rates increase and that the viscosity assumes its maximum along the axis of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

08
00

42
8X

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ity
 o

f B
as

el
 L

ib
ra

ry
, o

n 
30

 M
ay

 2
01

7 
at

 2
1:

25
:4

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
:/w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/S002211200800428X
https:/www.cambridge.org/core
https:/www.cambridge.org/core/terms


348 M. Moyers-Gonzalez, R. G. Owens and J. Fang

symmetry, which is where both the greatest number density and the largest average
size aggregates are to be found. The viscosity is a non-trivial function of both the local
haematocrit (measured by N0) and the average aggregate size (influenced strongly by
the local shear stress). In the smallest vessels and at sufficiently high flow rates (see
figure 11) the viscosity is, on the whole, higher in the bulk flow than in larger vessels
but smaller, because of migration effects, in the near-wall region. Lower shear stresses
in the smallest Pe flow means that the viscosity is larger and the velocity profile
blunter near the centre. The thicker blood in the core more closely resembles a plug
lubricated by plasma near the wall, whereas blood in the larger vessels is much
more Newtonian in behaviour, with an almost parabolic velocity profile and very
small elastic normal stresses. It may appear somewhat surprising, given the higher
viscosity in the bulk flow at the lowest Péclet number compared to that in the flows at
higher Péclet numbers, that the apparent viscosity should decrease as the tube radius
decreases. This is due, however, to lubrication effects and (were the F̊ahraeus effect
to be taken account of) to a reduction in the tube haematocrit as the vessel diameter
is made smaller.

We examine the phenomenon of decreasing apparent viscosity (the F̊ahraeus–
Lindqvist effect) and that of the decreasing tube haematocrit that accompanies it (the
F̊ahraeus effect) in the next section.

3.4. Comparisons with in vitro experiments

The conclusion of Barbee & Cokelet (1971) that the F̊ahraeus effect is entirely
responsible for the F̊ahraeus–Lindqvist effect has not been supported by subsequent
experiments (Azelvandre & Oiknine 1976). In an effort to distinguish between the
contributions of tube haematocrit and the presence of a wall slippage layer to the
F̊ahraeus–Lindqvist effect we consider three separate cases as the tube diameter (and,
therefore, with it, the Péclet number Pe) is reduced from 1 mm to 10 μm. These cases
are as follows:

(a) non-homogeneous model with tube haematocrit set equal to the feed/discharge
haematocrit,

(b) non-homogeneous model with tube haematocrit determined experimentally by
Pries et al. (1990),

(c) homogeneous model (Fang & Owens 2006; Owens 2006) with tube haematocrit
determined experimentally by Pries et al. (1990).
In all three cases we will plot the predictions of the apparent viscosity relative
to the plasma viscosity (a quantity which we denote by relative ηapp) against tube
diameter D, measured in μm. The feed/discharge haematocrit Hc is held constant at
0.45. Differences in our results between (a) and (b) above may be attributed to the
F̊ahraeus effect and those between (b) and (c) to the wall slip layer, since case (c)
corresponds to the limit D → ∞ and uniform cell number density. Comparison is
made with the empirical curve of Pries et al. (1992)

relative ηapp,0.45 = 220 exp(−1.3D) + 3.2 − 2.44 exp(−0.06D0.645) (3.4)

(with D measured in μm), the parameters in which were determined by fitting the
curve to 163 data points coming from 18 experimental studies performed over a period
of some 60 years. The measurements in the studies were made at feed haematocrits of
between 0.4 and 0.45 and where Hc was below 0.45 an extrapolated relative ηapp was
calculated. Even allowing for the fact that apparent viscosities were calculated relative
to the suspending medium used (which was not always plasma) it is remarkable (see
figure 2 of Pries et al. 1992), given the very different conditions under which the
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experiments were performed (anticoagulant, tube length, temperature, pressure drop,
method of determination of the apparent viscosity and even animal species) that
scatter of the experimental data points about the curve (3.4) is not greater than
it appears to be. The relative apparent viscosity tended consistently to a value of
approximately 3.2 in tubes of diameter 1 mm but this does not appear to us to be
the asymptotic value from the data of figure 2 of Pries et al. (1992) (which is still
increasing with D) and this motivated the choice of η∞ =0.00234 Pa s made in our
model, thus yielding a relative ηapp ≈ 3.34 as D → ∞. The pressure gradient P for all
results presented in this section was fixed at −1000 N m−3.

3.4.1. The Fåhraeus effect

At this stage in the development of the non-homogeneous model proposed in
this paper, no satisfactory equation predicting the tube haematocrit Hct from the
flow conditions and material parameters is available. However, using the empirical
parametric description of the F̊ahraeus effect given by Pries et al. (1990):

Hct

Hc

= Hc + (1 − Hc)(1 + 1.7 exp(−0.35D) − 0.6 exp(−0.01D)), (3.5)

(with D measured in μm) we are able to fit the tube haematocrit by adjusting η∞.
This is done by returning to the definition (2.26) of η∞:

η∞ := Nav(kBT + κ)λH ,

and then using (2.19)–(2.20) to conclude that

Hct =
η∞Ve

(kBT + κ)λH

⇒ η∞(D) =
Hct (D)

Hct (∞)
η∞(∞), (3.6)

where, as before, Ve is the volume of a single erythrocyte. The fitted curve for Hct as
determined from (3.6) and the empirical (3.5) is shown in figure 15. Of course, the
fitting does not rely in any way upon the model being non-homogeneous and exactly
the same procedure may be followed for the homogeneous model of Fang & Owens
(2006) and Owens (2006). The upturn in Hct for D sufficiently small and referred to
earlier in our discussion, is to be seen for D � 15 μm. The corresponding upturn in
the apparent viscosity occurs at a yet smaller D, however.

3.4.2. The Fåhraeus–Lindqvist effect

In figure 16 we show the relative apparent viscosity as a function of tube diameter
predicted by the non-homogeneous model both when the tube haematocrit is fitted
from (3.6) and when the tube haematocrit is fixed equal to its feed/discharge value
of 0.45. Although agreement with the experimental data in the case of a constant
tube haematocrit (fixed η∞) is good it is significantly better, and especially so at
intermediate values of D, when a realistic Hct is used. From the results shown
in figure 16 it would seem that the apparent relative viscosity is not a sensitive
function of tube haematocrit, although tube haematocrit clearly plays a non-negligible
role in determining the apparent viscosity. This is in contradiction, therefore, to
the contention by Barbee & Cokelet (1971) that the F̊ahraeus effect is completely
responsible for the F̊ahraeus–Lindqvist effect.

When the homogeneous model with fitted Hct is used in the same experiment the
upper curve of figure 17 results. To be absolutely sure that this is correctly calculated
we have used separate codes employing both the finite element method described in
§ 3.2 and the finite difference code of Fang & Owens (2006) with no-slip boundary
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Figure 15. F̊ahraeus effect. Relative tube haematocrit Hct/Hc against tube diameter D (μm).
P = −1000N m−3. Fit of non-homogeneous model (�) to the empirical formula Hct/Hc =
Hc + (1 − Hc)(1 + 1.7 exp(−0.35D) − 0.6 exp(−0.01D)) (Pries et al. 1990).
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Figure 16. F̊ahraeus–Lindqvist effect. Apparent relative viscosity ηapp against tube diameter

D (μm). P = −1000 Nm−3. , ηapp = 220 exp(−1. 3D) + 3.2 − 2.44 exp(−0.06D0.645) (Pries
et al. 1992); ◦, non-homogeneous model with constant tube haematocrit Hct = Hc; �,
non-homogeneous model with Hct/Hc = Hc +(1 − Hc)(1+1.7 exp(−0.35D) − 0.6 exp(−0.01D))
(Pries et al. 1990).
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Figure 17. F̊ahraeus–Lindqvist effect. Apparent relative viscosity ηapp against tube diameter

D (μm). P = −1000 Nm−3. �, homogeneous model; �, non-homogeneous model. In both
models Hct/Hc = Hc + (1 − Hc)(1 + 1.7 exp(−0.35D) − 0.6 exp(−0.01D)) (Pries et al. 1990).

conditions. Differences in the homogeneous model plot and the non-homogeneous
model plot may now be attributed to diffusion (migration) effects and the consequent
appearance of a cell-depleted wall slip layer, since in the homogeneous model the
number density of cells is always a constant across the tube radius. The dramatic rise
in the relative apparent viscosity as D → 0 manifested in the homogeneous model
curve is reminiscent of that observed experimentally, for example, in the case of heated
red blood cells or those fixed with glutaraldehyde, where in the former case the cells
are less deformable than normal cells and in the latter are rigid (McKay & Meiselman
1988). Changing the deformability of red cells in this way changes their migration
properties and was shown by McKay & Meiselman (1988) to result in reversal of the
F̊ahraeus–Lindqvist effect in tubes of diameters below approximately 150 μm, even
though the tube haematocrit of the heated red blood cells continued to decrease with
tube diameter beyond this point. In the homogeneous model, the asymptotic value of
the relative ηapp as D → 0 is that corresponding to the total zero-shear-rate viscosity
(η0 + ηN )/ηN . This is due to the fact that the polymeric centreline viscosity is always
η0, the number density N0 being constant everywhere and the average aggregate size
n in steady flow being a function only of the local shear rate.

4. Conclusions
In this paper we have presented a non-homogeneous model for whole human blood,

taking account of fragmentation and aggregation of the aggregates and stress-induced
diffusion. The magnitude of the elastic normal stress component driving particle
migration in small tubes has been shown to depend on cell deformability. Predictions
of the F̊ahraeus–Lindqvist effect in narrow tubes match closely the experimental data
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and the relative importance of the F̊ahraeus effect and of a cell-depleted layer near
the wall on the apparent viscosity has been discussed. We conclude that the F̊ahraeus
effect is influential but not determinative in this regard.

Appendix. Definition of aggregation and disaggregation functions and
parameter values

Motivated by the work of Murata & Secomb (1988) and of Shiga et al. (1983) the
aggregation rate a(γ̇ )Nav,hom is defined as:

a(γ̇ )Nav,hom =

⎧⎨
⎩

a1,3γ̇
3 + a1,2γ̇

2 + a1,0 for 0 � γ̇ � γ̇c,

a2,3γ̇
3 + a2,2γ̇

2 + a2,1γ̇ + a2,0 for γ̇c � γ̇ � γ̇max,

0 for γ̇ > γ̇max,

(A 1)

where

a1,0 = 1, a1,2 = 3a1,0/γ̇
2
c , a1,3 = −2a1,0/γ̇

3
c ,

a2,0 =
2a1,0γ̇

2
max(−γ̇max + 3γ̇c)

−γ̇ 3
max − 3γ̇maxγ̇ 2

c + γ̇ 3
c + 3γ̇cγ̇ 2

max

,

a2,1 =
−12γ̇ca1,0γ̇max

−γ̇ 3
max − 3γ̇maxγ̇ 2

c + γ̇ 3
c + 3γ̇cγ̇ 2

max

,

a2,2 =
6a1,0(γ̇max + γ̇c)

−γ̇ 3
max − 3γ̇maxγ̇ 2

c + γ̇ 3
c + 3γ̇cγ̇ 2

max

,

a2,3 =
−4a1,0

−γ̇ 3
max − 3γ̇maxγ̇ 2

c + γ̇ 3
c + 3γ̇cγ̇ 2

max

,

and where the critical shear rate (see Murata & Secomb 1988) is chosen as γ̇c = 5.78 s−1

and the maximum shear rate γ̇max = 900 s−1. Nav,hom is the infinite-radius-tube average
cell number density, defined (cf. (2.20)) as

Nav,hom =
Hct (∞)

Ve

=
Hc

Ve

.

Therefore, Nav,hom/Nav = Hc/Hct .
Finally, b(γ̇ ) is determined from a(γ̇ )Nav from the relationship that holds in steady

homogeneous flow (see (27) and (28) of Owens 2006):

b(γ̇ ) =
a(γ̇ )Nav,hom

nst (nst − 1)
,

where

nst :=
ηst (γ̇ )

η∞

(
1 +

3

2
a(γ̇ )Nav,homλH

)
,

and

ηst (γ̇ ) = η0

(
1 + θγ̇ m

1 + βγ̇ m

)
, (A 2)

with θ/β := η∞/η0, the steady polymeric viscosity of Cross type (Cross 1965), fitted
to steady shear data.
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