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Preconditioned Low-Rank Methods for
High-Dimensional Elliptic PDE Eigenvalue

Problems

Daniel Kressner · Christine Tobler

Abstract — We consider elliptic PDE eigenvalue problems on a tensorized domain, dis-
cretized such that the resulting matrix eigenvalue problem Ax = λx exhibits Kronecker
product structure. In particular, we are concerned with the case of high dimensions,
where standard approaches to the solution of matrix eigenvalue problems fail due to
the exponentially growing degrees of freedom. Recent work shows that this curse of
dimensionality can in many cases be addressed by approximating the desired solution
vector x in a low-rank tensor format. In this paper, we use the hierarchical Tucker
decomposition to develop a low-rank variant of LOBPCG, a classical preconditioned
eigenvalue solver. We also show how the ALS and MALS (DMRG) methods known
from computational quantum physics can be adapted to the hierarchical Tucker de-
composition. Finally, a combination of ALS and MALS with LOBPCG and with our
low-rank variant is proposed. A number of numerical experiments indicate that such
combinations represent the methods of choice.

2010 Mathematical subject classification: 65F15; 15A18; 15A69.

Keywords: high-dimensional PDE eigenvalue problems; low-rank tensor methods;
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1. Introduction

This paper is concerned with the solution of matrix eigenvalue problems arising from the
discretization of high-dimensional elliptic PDE eigenvalue problems. A typical example is
given by

−∆u(ξ) + V (ξ)u(ξ) = λ u(ξ) in Ω ⊂ R
d,

u(ξ) = 0 on ∂Ω,
(1.1)

for a certain potential V : Ω → R. In the case of a tensorized domain Ω, a standard
discretization by, e.g., finite differences leads to a matrix eigenvalue problem of the form

(AL +AV )x = λx, (1.2)
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where AL and AV are the discretized Laplace operator and potential, respectively. If Ω is a
tensorized domain, such as Ω = [0, 1]d, and the potential can be written as

V (ξ) =

s∑

j=1

V
(1)
j (ξ1)V

(2)
j (ξ2) · · ·V

(d)
j (ξd)

then such a discretization results in highly structured matrices:

AL =

d∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i times

⊗A
(i)
L ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

i−1 times

, (1.3)

AV =

s∑

j=1

A
(d)
V,j ⊗ · · · ⊗ A

(2)
V,j ⊗ A

(1)
V,j, (1.4)

where −A
(i)
L ∈ R

ni×ni is the finite-difference discretization of the 1D-Laplace operator and

A
(i)
V,j ∈ R

ni×ni is a diagonal matrix with the sampled function V
(i)
j (ξi) on the diagonal. Note

that the eigenvector x in (1.2) has length n1n2 · · ·nd and can thus be reshaped into a tensor
X ∈ R

n1×n2×···×nd. From this point of view, (1.2) becomes a linear operator eigenvalue
problem on the vector space of tensors.

In general, we aim at computing the smallest eigenvalue for a linear eigenvalue problem
of the form

A(X ) = λX , (1.5)

where we view the matrix A as a linear operator A : Rn1×···×nd → R
n1×···×nd. We assume

that A is symmetric and has a representation compatible with low-rank tensors, such as the
sum of Kronecker products from above. With increasing d, the number of entries in X grows
exponentially. This excludes the use of classical iterative methods [1, 6] already for moderate
values of d. During the last years, a number of concepts and algorithms have been developed
to cope with this curse of dimensionality. The underlying idea is to assume that X can be
well approximated in a low-rank tensor format, with significantly less degrees of freedom,
and to construct a solver that searches for such an approximation within the low-rank tensor
format. Such methods have been investigated intensively for the solution of eigenvalue
problems in computational quantum chemistry, including DMRG for matrix product states
and tensor networks, see [30, 22] and the references therein. A number of recent, more
mathematically oriented papers illustrate how these ideas can be adapted and transferred
to other applications [3, 10, 12, 13, 14, 27]. In particular, Oseledets and Khoromskij [27]
discuss the use of LOBPCG to solve reduced eigenvalue problems arising in DMRG (also
called MALS). In this paper, we adapt MALS to the hierarchical Tucker decomposition [8, 11]
and propose a low-rank variant of LOBPCG [17]. This low-rank variant can either be applied
directly to the high-dimensional eigenvalue problem or used in combination with MALS.

The rest of this paper is organized as follows. In Section 2, we briefly summarize the
hierarchical Tucker decomposition, which will serve as the low-rank tensor format throughout
this paper. Based on this decomposition, Section 3 introduces our low-rank variant of the
LOBPCG method. In Section 4, we introduce ALS and MALS in this setting and propose
combinations with LOBPCG and with our low-rank variant. Finally, a number of numerical
experiments in Section 5 show the effectiveness of such combinations.



High-dimensional elliptic PDE eigenvalue problems 365

2. Preliminaries

In the following, we provide a very brief description of the hierarchical Tucker decomposition
(HTD) and refer to [8, 20] for more details.

A tensor X ∈ R
n1×n2×···×nd has d different modes 1, . . . , d. Consider a splitting of these

modes into two disjoint sets: {1, . . . , d} = t ∪ s with t = {t1, . . . , tk} and s = {s1, . . . , sd−k}.
The matricization with respect to this splitting is obtained by merging the first set of modes
into row indices and the second set into column indices:

X(t) ∈ R
(nt1
···ntk

)×(ns1
···nsd−k

) with
(
X(t)

)
(it1 ,...,itk ),(is1 ,...,isd−k

)
:= Xi1,...,id

for any indices i1, . . . , id in the multi-index set I = {1, . . . , n1} × · · · × {1, . . . , nd}.
HTD employs a hierarchy of matricizations, motivated by the following nestedness prop-

erty:

span
(
X(t)

)
⊂ span

(
X(tr) ⊗X(tl)

)

for any t = tl ∪ tr with two disjoint sets tl, tr ⊂ {1, . . . , d}. Given any bases Ut, Utl, Utr for
the column spaces of X(t), X(tl), X(tr), this implies the existence of a so called transfer matrix
Bt such that

Ut = (Utr ⊗ Utl)Bt, Bt ∈ R
rtlrtr×rt , (2.1)

where rt, rtl, rtr denote the ranks of the corresponding matricizations. Alternatively, Bt can
be reshaped into a so called transfer tensor Bt of size rtl × rtr × rt.

Applying (2.1) recursively, until tl and tr become singletons, leads to the HTD. For
example, for d = 4, repeated application of (2.1) leads to the HTD

vec(X ) = X(1234) = (U34 ⊗ U12)B1234

U12 = (U2 ⊗ U1)B12

U34 = (U4 ⊗ U3)B34

⇒ vec(X ) = (U4 ⊗ U3 ⊗ U2 ⊗ U1)(B34 ⊗B12)B1234. (2.2)

Such a (non-unique) recursive construction of HTD leads to a hierarchical splitting of the
modes 1, . . . , d, which is represented as a binary tree T , the so called dimension tree, as
follows: Each node of T corresponds to a subset of {1, . . . , d}, with the root node given by
{1, . . . , d} itself. Each parent node is the disjoint union of its two children and each leaf node
is a singleton, see also Fig. 2.1. Having prescribed a maximal rank rt for each node t ∈ T ,
the set of hierarchical Tucker tensors of hierarchical rank at most (rt)t∈T is defined as

H-Tucker
(
(rt)t∈T

)
=

{
X ∈ R

n1×···×nd : rank
(
X(t)

)
6 rt for all t ∈ T

}
. (2.3)

In [8], algorithms are described to compress a tensor (either given explicitly or in HTD)
to a tensor in HTD with prescribed hierarchical ranks. This operation is called low-rank
truncation.

It is often convenient to illustrate tensor decompositions by means of tensor network
diagrams (also called Penrose diagrams), see Fig. 2.1 for an example. Such a diagram
represents a tensor in terms of contractions of other smaller-order tensors. Each node in
the diagram represents a tensor and each edge represents a mode. An edge connecting two
nodes corresponds to the contraction of these tensors in the associated pair of modes.
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{1, 2} {3, 4}

{1} {2} {3} {4}

{1, 2, 3, 4}

Figure 2.1. Dimension tree and tensor network diagram for a fourth-order tensor in HTD (2.2)

HTD can also be used for the compression of a matrix A representing a linear operator
R

n1×···×nd → R
n1×···×nd. For this purpose, the indices of an entry ai1,...,id;j1,...,jd are shuffled

such that ãi1,j1;...;id,jd = ai1,...,id;j1,...,jd. After merging pairs of indices iµ, jµ, this corresponds

to a tensor Ã ∈ R
n2
1×···×n

2
d, to which the HTD can be applied. Having a linear operator

represented in low-rank HTD allows the efficient application of this operator to low-rank
HTD vectors. The described embedding of a linear operator into a tensor is a common
technique in the simulation of quantum spin systems (see, e.g.,[28]) and was also proposed
in [26] for the so called TT format.

3. Locally optimal block preconditioned CG (LOBPCG)

In principle, any iterative method for solving linear systems or eigenvalue problems can
be combined with a low-rank tensor format by representing each iterate in this format, as
proposed, e.g., in [2, 10, 16, 19]. This significantly reduces the computational cost for all
basic operations (addition, scalar product, . . .) of the method and may lead to significant
speedup. However, as the rank usually grows rapidly with each iteration, repeated low-
rank truncations of the iterates are necessary. When convergence is slow (e.g., due to a
poor choice of preconditioner), these truncations may lead to significant perturbations of the
iterates especially in the transient phase of the method. These perturbations may or may
not severely affect the convergence of the method; the understanding of this phenomenon is
still rather incomplete.

In the following, we discuss the combination of HTD with LOBPCG [17], an iterative
method for computing the smallest eigenvalue(s) of a symmetric matrix A. In contrast to
standard Krylov subspace methods, LOBPCG allows for the direct use of a preconditioner B.
Algorithm 1 provides a summary of LOBPCG. For simplicity, this paper focuses on the
computation of a single eigenvalue, and we therefore restrict ourselves to block size 1.

We combine LOBPCG with HTD for the solution of a linear symmetric eigenvalue prob-
lem A(X ) = λX with X ∈ R

n1×···×nd and a given preconditioner B. The algorithmic descrip-
tion given in Algorithm 2 is nearly identical with Algorithm 1, with the notable difference
that the iterates are repeatedly truncated to low-rank HTD by means of a truncation oper-
ator T . This truncation can be tuned with user-specified options, the prescribed maximal
hierarchical rank and maximal truncation error. The evaluation of A(X ),B−1(X ) typically
represents the major part of the computational cost. The following details are essential for
the successful implementation of Algorithm 2:

• To avoid numerical instabilities due to ill-conditioning of the matrix Uk in Algorithm
1, it is often [1, 17] recommended to orthogonalize Uk before calculating (λk+1, y).
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Algorithm 1:
LOBPCG with block size 1.

Input: Functions for applying matrices A,B−1 to a vector;
starting vector x0 with ‖x0‖2 = 1.

Output: Approximate smallest eigenpair (λmin, x)
λ0 = 〈x0, x0〉A
p0 = 0
for k = 0, 1, . . . (until converged) do

rk = B−1(Axk − λkxk)
U =

[
xk, rk, pk

]

Ã = UTAU , M̃ = UTU
Find eigenpair (λk+1, y), with ‖y‖2 = 1, for smallest

eigenvalue of matrix pencil Ã− λM̃ .
pk+1 = y2 · rk + y3 · pk
xk+1 = y1 · xk + pk+1

xk+1 ← xk+1/‖xk+1‖2
end for

Return (λmin, x) = (λk+1, xk+1).

Algorithm 2:
Tensor LOBPCG with low-rank truncation in HTD.

Input: Functions for applying A,B−1 to a tensor; function
for evaluating 〈X ,Y〉A of two tensors X ,Y in HTD; starting
vector X0 in HTD with 〈X0,X0〉 = 1.

Output: Approximate smallest eigenpair (λmin,X )
λ0 = 〈X0,X0〉A
P0 = 0 · X
for k = 0, 1, . . . (until converged) do

Rk = B−1(A(Xk)− λkXk), Rk ← T (Rk)
U1 = Xk, U2 = Rk, U3 = Pk

Ãij = 〈Ui,Uj〉A, M̃ij = 〈Ui,Uj〉
Find eigenpair (λk+1, y), with ‖y‖2 = 1, for smallest

eigenvalue of matrix pencil Ã− λM̃ .
Pk+1 = y2 · Rk + y3 · Pk Pk+1 ← T (Pk+1)
Xk+1 = y1 · Xk + Pk+1 Xk+1 ← T (Xk+1)

Xk+1 ← Xk+1/
√
〈Xk+1,Xk+1〉

end for

Return (λmin,X ) = (λk+1,Xk+1).

However, in the context of low-rank tensors, orthogonalization by, e.g., Gram-Schmidt,
is not practical, as the ranks would grow significantly and additional truncation would
destroy orthogonality.

• As the application of A and B−1 usually increases the rank of a tensor significantly,
we truncate the tensors Rk and Pk before setting up the 3 × 3 eigenvalue problem.
Depending on the nature of A and B−1, truncation might even be required during the
application of these operators. While the convergence of LOBPCG is quite tolerant to
such truncations, the reduced Gram matrices Ã and M̃ need to be calculated exactly
to guarantee the accuracy of the eventually attained eigenpair approximation. In
particular, this requires computing the inner products 〈Ui,Uj〉A without truncation.
This turns out to be possible even for high-order tensors in HTD in a number of
situations, for example when A is a short sum of Kronecker products or, more generally,
when A is represented in low-rank HTD [20]. The user is therefore required to provide
not only functions for applying A,B−1 but also a function for evaluating A-inner
products with tensors in HTD; an operation that will be available in the htucker

toolbox [20].

3.1. Numerical experiments

In the following, Algorithm 2 is applied to two quite different examples.

Example 3.1. Consider the PDE eigenvalue problem (1.1) with Ω = [0, π]d and potential
V (ξ) = q ·

∏d
i=1 sin(ξi) for some constant q > 0. We aim to compute the smallest eigenvalue

and its eigenvector.

Similarly as in the TT format [15, 26], the discretization AL of the Laplace operator can
be represented by a tensor in HTD, with all hierarchical ranks equal to 2 [20]. The potential
V is separable and therefore leads to a matrix AV that can be written as the Kronecker
product of d matrices. As a preconditioner in LOBPCG, we use the results from [7] to
construct an approximate inverse of AL having the form

A−1L =

∫ ∞

0

exp(−tAL)dt ≈

M∑

j=−M

ωj exp(−αjA
(d)
L )⊗ · · · ⊗ exp(−αjA

(1)
L ) =: B−1, (3.1)
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Figure 3.1. Algorithm 2 (LOBPCG with low-rank truncation) applied to Example 3.1, with q = 1 (left

plot) and q = 1000 (right plot). The lines represent the residual, while the dots represent the maximal rank

in each iteration

for a certain, optimized choice of coefficients αj , ωj > 0. Note that all matrices A
(i)
L are

symmetric positive definite and comparably small. Therefore, the matrix exponentials can
be evaluated in a stable and efficient manner by calling the Matlab function expm. In

applications with large and possibly nonsymmetric A
(i)
L , different methods need to be used

for approximating the matrix exponentials, see [25] for an overview. Alternatively, the tensor
Krylov subspace method from [18] could be used for directly approximating the action of
A−1L .

We choose d = 10 and discretize with n = 128 uniformly spaced nodes in each dimension,
using finite differences. The preconditioner (3.1) uses M = 10, and the maximally allowed
hierarchical rank is set to 50 throughout all iterations. Figure 3.1 illustrates the performance
of Algorithm 2 applied to this problem, using truncation with a relative error eps smaller
than 10−2, 10−4 or 10−8, respectively. The plots show the residual and maximal rank at
every step.

It can be observed that the convergence depends strongly on the choice of eps. In the
case q = 1000, choosing eps too large may even lead to stagnation. Since the preconditioner
is less effective for this case, this may also serve as a confirmation that the availability of a
good preconditioner is even more critical in our low-rank variant of LOBPCG. Furthermore,
the hierarchical ranks tend to grow quite rapidly in the transient phase of the iteration, only
decreasing when the asymptotic regime of convergence is reached.

The intermediate rank growth of Algorithm 2 and the observation that overly aggressive
truncation potentially leads to stagnation, has motivated and still motivates the search for
other methods. However, there are particular settings to which other methods, such as the
ones described below, are not applicable. Such a setting arises from an approach to calculate
the position and the value of the smallest entry of a given tensor C in HTD. Following a
suggestion in [4, Sec. 6.2.2] for determining the largest entry of a high-order tensor, we define
a diagonal matrix A with the entries of C on the diagonal. Clearly, the smallest eigenvalue
of A is the smallest entry of C. Also, the corresponding eigenvector will have exactly one
nonzero entry at the corresponding position, provided that the smallest eigenvalue is simple.
Hence, the desired eigenvector of A is a tensor with all hierarchical ranks equal to 1.

Example 3.2. We consider a discretized stationary heat equation with conductivity coef-
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Figure 3.2. Algorithm 2 applied to determining the smallest entry of a tensor, for a tensor of order d = 4

(left plot) and d = 9 (right plot)

ficient depending on p parameters, as described in more detail in [19, Sec. 4]. Sampling the
solutions on a tensorized grid of parameter values results in a tensor Y of order d = p + 1.
The first mode of this tensor, Y(:, i1, . . . , ip), contains the temperature distribution in the

physical domain for certain parameter values α
(1)
i1
, . . . , α

(p)
ip
. The mean temperature across

the computational domain is then given by

C(i1, . . . , ip) =
1

N

N∑

j=1

Y(j, i1, . . . , ip).

It is now of interest to find the parameter values which give minimal mean temperature,
corresponding to finding the smallest entry of C. Using the low-rank CG method described
in [19], the tensor C is already in HTD, which we truncate further up to a relative error
eps = 10−4.

In our experiments, we have considered the cases p = 4 and p = 9 with n = 101
samples for each parameter. Figure 3.2 shows the convergence of Algorithm 2 applied to
the diagonal embedding A of C as described above. For the repeated truncation to HTD,
we used a maximal rank of 50 and a truncation tolerance of eps = 10−1. It can be observed
that the ranks increase and then decrease again, eventually reaching rank 1. At this point,
the iteration should be continued until all matrices Ut at leaf nodes in the dimension tree of
Xk have one clearly dominant entry. The positions of these entries in the leaf matrices give
the coordinates of the smallest entry, which can then be used to extract the exact smallest
value from C.

4. Alternating optimization

One of the drawbacks of directly combining LOBPCG (or other iterative methods) with HTD
is the intermediate rank growth observed in the numerical examples above. Avoiding this
rank growth, a rather different class of methods originates from Computational Quantum
Mechanics, in particular the Density Matrix Renormalization Group (DMRG) method. In
these methods, the problem at hand is posed as an optimization problem, which is then
constrained to the low-rank tensor structure imposed on the solution. ALS (Alternating
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Linear Scheme) and MALS (Modified ALS) are particular instances of this class, and have
been proposed in [12, 3, 14, 27] in combination with the TT low-rank tensor format. In the
following, we will discuss the use of ALS and MALS in combination with HTD.

4.1. ALS combined with HTD

Computing the smallest eigenvalue of a symmetric matrix is equivalent to minimizing the
Rayleigh quotient 〈X ,A(X )〉/〈X ,X〉. Following the principle outlined above, the Rayleigh
quotient is restricted to all tensors in HTD with prescribed hierarchical ranks rt:

min
{〈X ,A(X )〉

〈X ,X〉
: X ∈ H-Tucker

(
(rt)t∈T

)
, X 6= 0

}
(4.1)

where H-Tucker is defined as in (2.3).
The general principle of ALS for low-rank structures that are represented by tensor net-

works is to alternately optimize individual nodes of the tensor network. For this purpose,
the admissible set of the optimization problem is restricted such that only the tensor asso-
ciated with the selected node is variable while the tensors associated with all other nodes
remain fixed. One sweep of ALS is completed after visiting each node once. For a tensor X
in HTD, every step of ALS corresponds to the selection of one node in the dimension tree.
Formulating the associated restricted optimization problem is highly technical and we will
only illustrate the procedure for a non-leaf node t in the following; the formulation is similar
for a leaf node.

Each non-leaf node t of a dimension tree corresponds to a transfer tensor Bt ∈ R
rtl×rtr×rt ,

where tl and tr are the left and right child of t, respectively. When selecting such a node
in ALS, only this transfer tensor is allowed to vary in the optimization problem (4.1) while
all other transfer tensors and the leaf bases remain fixed. Recalling the nestedness prop-
erty (2.1), the matricization X(t) can be decomposed as

X(t) = UtV
T
t =

(
Utr ⊗ Utl

)
BtV

T
t ,

for some matrix Vt, where Bt ∈ R
rtlrtr×rt is a matricization of Bt. Vectorizing this relation

yields

vec(X ) =
(
Vt ⊗ Utr ⊗ Utl︸ ︷︷ ︸

=:Ut

)
vec(Bt), (4.2)

provided that we are in a situation where tl = {1, . . . , i} and tr = {i + 1, . . . , j} for some
1 6 i < j 6 d. In other situations, a similar relation holds after permuting the dimensions
appropriately. Using (4.2), the restricted optimization problem takes the form

min

{
yT Ãty

yTM̃ty
: y ∈ R

rtlrtrrt , y 6= 0

}
, (4.3)

with the reduced matrices

Ãt := UT
t AUt, M̃t := UT

t Ut. (4.4)

Clearly, the solution of (4.3) is given by an eigenvector y belonging to the smallest eigenvalue

of the matrix pencil Ãt−λM̃t, provided that this pencil is not singular. In one step of ALS,
the transfer tensor Bt is replaced by the tensor representation of this eigenvector y.
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A1 A3 A5 A6 A7 A8A2 A4

Ã12 Ã34

Â1234

Figure 4.1. Tensor network corresponding to the inner product 〈X ,A(X )〉 with X in HTD and A =

Ad⊗· · ·⊗A1. The subnetworks corresponding to the Gram matrices Ãtl
, Ãtr , Ât are marked by dashed lines

It remains to explain how the reduced matrices in (4.4) are computed. This can only be
performed efficiently if A can be written as a (short) sum of Kronecker products or if A is
in HTD. In the following, we focus on the first case and restrict ourselves to one term in the
sum: A = Ad ⊗ · · · ⊗ A2 ⊗A1 with Ai ∈ R

ni×ni. Using (4.2), we obtain

Ãt =
(
Vt ⊗ Utr ⊗ Utl

)T
A
(
Vt ⊗ Utr ⊗ Utl

)
= Ât ⊗ Ãtr ⊗ Ãtl ,

where

Ãtl = UT
tl

(⊗

i∈tl

Ai

)
Utl , Ãtr = UT

tr

(⊗

i∈tr

Ai

)
Utr , Ât = V T

t

(⊗

i 6∈t

Ai

)
Vt.

These reduced matrices exhibit the same structure as the Gram matrices introduced in [8, P.
2045]. Such Gram matrices are computed by tensor contractions as explained in more detail
in [20]. An intuitive way to see this is to note that the inner product 〈X ,A(X )〉 can be

expressed as a tensor network, see Fig. 4.1 for an illustration. It follows that Ãtl , Ãtr , Ât are
subnetworks, which can be evaluated efficiently by matrix-matrix products. In particular,
note that the matrix Vt does not need to be constructed explicitly for the computation of Ât.
Without going into details, it is important to reuse parts of these computations in subsequent
steps of ALS, which can be achieved if the nodes are visited in a certain order. Traversing
the dimension tree in a depth-first search (DFS) fashion gives a suitable ordering, see also
Fig. 4.2.

The reduced matrix M̃t in (4.4) can be calculated in the same way as Ãt, simply by
replacing the factors Ai by identity matrices.

Remark 4.1. The computation of M̃t can be avoided if the columns of Ut form an or-
thonormal basis, which is equivalent to requiring that the columns of Vt, Utr , Utl form or-
thonormal bases. This property also helps to avoid U becoming nearly rank-deficient, which
would lead to numerical instabilities in the eigenvalue computation for the reduced pencil
Ãt − λM̃t. The orthonormality of U can always be achieved by applying an orthogonaliza-
tion procedure very similar to [8, Alg. 3]. Analogously to the computation of Gramians, the
computational cost of this orthogonalization procedure can be kept small if the nodes are
visited in DFS order, see Fig. 4.2.
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Figure 4.2. Illustration of the DFS ordering, in which the nodes are traversed in one sweep of ALS, for a

tensor of order 4 in HTD

4.2. MALS combined with HTD

MALS introduces the following modification to the ALS described above: Instead of a node,
an edge of the dimension tree is selected in every step. The nodes connected by this edge
are combined to form a tensor of higher order (order 3 if one of the nodes is a leaf, order 4
otherwise). Similarly to ALS, the optimization of the Rayleigh quotient is performed only
with respect to this combined tensor. This is, again, equivalent to the solution of a reduced
eigenvalue problem (4.3). Next, an SVD is applied to approximate the matricization of
the resulting eigenvector y by a product of two low-rank matrices. These two factors are
tensorized and replace the tensors at the nodes connected to the selected edge. More details
can be found, e.g., in [12, Pg. 10]. All other aspects of ALS, such as the construction of the
reduced Gram matrices and orthogonalization, extend immediately to MALS.

Clearly, one step of MALS is more expensive than one step of ALS, simply because of the
enlarged reduced matrices. However, MALS offers a number of distinct advantages: First of
all, the low-rank approximations for splitting the combined tensors allow an adaptive choice
of the hierarchical ranks in the course of the method. Moreover, since the optimizations are
performed on much larger subspaces in every step, MALS can be expected to converge faster
and is less likely to get stuck in local minima.

4.3. Combination with LOBPCG

In ALS and more pronouncedly in MALS, the solution of the reduced eigenvalue prob-
lem (4.3) may become very expensive even for moderate hierarchical ranks. If r denotes
the maximal hierarchical rank and n the maximal size of the tensor then a direct eigenvalue
solver [6] would require O(n3r3) operations in the case of a leaf node and O(r9) operations in
the case of a non-leaf node in one step of ALS. For MALS, the number of operations grows to
O(n3r6) and O(r12), respectively. The use of a Krylov subspace method, as implemented in
ARPACK (Matlab’s eigs), can reduce this cost to a certain extent. However, searching for
the smallest eigenvalue usually requires the use of shift-and-invert techniques, which requires
the explicit construction and factorization of the possibly dense matrix Ãt.

1 Instead, we will
use, as proposed in [27], the LOBPCG method for solving (4.3).

In MALS, the matricization of the desired eigenvector y can be expected to admit a good
low-rank approximation. This can be exploited to reduce the computational cost further,
by applying the low-rank LOBPCG proposed in Algorithm 2. Note that a variation of
Algorithm 2 needs to be used, replacing the HTD by a low-rank matrix format.

1Note that Ãt is represented as a sum of Kronecker products and this property could be used in an
iterative method for solving linear systems with Ãt. However, such an inner iteration would require additional
parameter choices and it may not always lead to computational benefits.



High-dimensional elliptic PDE eigenvalue problems 373

It is not advisable to use LOBPCG in all situations, especially when the size p of the
reduced eigenvalue problem is small. Following [3], we suggest the following criteria:

p < 1000: use dense symmetric eigenvalue solver (Matlab’s eig);
p < 4000: use shift-and-invert Arnoldi (Matlab’s eigs);
p < 50000: use standard LOBPCG;
p > 50000: use low-rank LOBPCG (only within MALS).

Both, standard and low-rank LOBPCG greatly benefit from the use of a good precondi-
tioner. For this purpose, a given preconditioner P for the original matrix A can be turned
into a preconditioner UTPU for UTAU . This choice is motivated by the following result: If
A,P are symmetric positive definite then

κ
(
(UTPU)−1 UTAU

)
6 κ(P−1A), for UTU = I.

This follows immediately from an eigenvalue interlacing property for matrix pencils, see,
e.g., [21].

4.4. Implementation details

The implementation of ALS and MALS depends on a number of parameter choices. In
particular, the stopping criterion for LOBPCG (or any other iterative method) applied to
the reduced eigenvalue problem (4.3) is critical to the execution time of the overall method.

Stopping criteria for LOBPCG in ALS. As suggested in [3] for the case of ALS applied
to linear systems, we use the following adaptive choice for terminating LOBPCG: Let res

be an estimate for the norm of the residual for the eigenvalue/eigenvector approximation to
A obtained after completing the previous sweep of ALS. Then LOBPCG is stopped when
the residual for the reduced eigenvalue problem becomes smaller than γ · res, where γ is
a user-specified parameter (γ = 10−2 in all numerical examples). Note that the choice of
γ may need to be adjusted to the problem to achieve optimal performance. Furthermore,
LOBPCG is stopped after a maximum number of iterations (chosen to be 100 in all numerical
examples).

Truncation criteria for MALS. Independent of the particular inner solver, the splitting of
the combined tensor in every step of MALS requires a choice of tolerance eps for neglecting
small singular values in the low-rank approximation. It is important to adjust eps in every
sweep of MALS [3]. In the beginning of the iteration, eps should be chosen quite large to
avoid an excessive growth of ranks. Once the iteration settles to convergence, eps should
be decreased to attain good asymptotic convergence and accuracy. The choice of when to
decrease ǫ is quite subtle. Currently, a heuristics is used for this purpose; a theoretically
justified automated choice of eps remains open. Apart from eps, the maximally allowed rank
is limited by a user-specified value.

Stopping criteria for (low-rank) LOBPCG in MALS. For the low-rank truncation in Algo-
rithm 2 (low-rank LOBPCG), we use the same criteria as explained for low-rank truncation
in MALS. In the choice of stopping criteria, it is important to take into account that it
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will be impossible to attain an arbitrarily small residual, due to the low-rank structure im-
posed on the eigenvector of the reduced eigenvalue problem. Hence, instead of requiring that
the residual is smaller than a certain tolerance, we choose to terminate Algorithm 2 when
stagnation occurs. More specifically, the algorithm is stopped when the residual does not
decrease within s steps (s = 10 in all numerical examples).

When using standard LOBPCG in MALS, we could in principle use the same stopping
criterion as in ALS. However, such a choice may lead to an unnecessarily high accuracy
compared to the approximation error introduced when splitting the combined tensor. To
avoid this waste of LOBPCG iterations, we use the stopping criterion

‖xk − xk−s‖ 6 eps,

with eps and s defined as above.

5. Numerical Experiments

Most of our experiments will be concerned with the PDE eigenvalue problem (1.1), which
was already used in Example 3.1. In all examples, a random starting vector was chosen
(with prescribed ranks for ALS, with all hierarchical ranks equal to 2 for MALS). Note that
an intelligent choice of starting vector would possibly include components from eigenvectors
of the discretized Laplace operator. We have deliberately decided not to do this, in order
to reflect the more typical setting when no particularly good choice of starting vector is
available.

All numerical experiments have been performed in Matlab, version 7.7.0.471, on an
Intel Xeon DP X5450 with 3 GHz and 2× 6MB L2 Cache. In the following, we will refer to
the following quantities.

err lambda: Absolute eigenvalue error |λ−λk| after the kth sweep of (M)ALS. As the exact
value of λ is not known, an estimate based on the minimum of all computed Rayleigh
quotients is used.

res = ‖A(Xk)− λkXk‖2: Residual norm after the kth sweep of (M)ALS.

nr iter: Maximal number of LOBPCG iterations for solving the reduced eigenvalue problems
within one sweep. Note that no number of iterations is provided when Matlab’s eig
or eigs are used for the solution.

eps: Tolerance for low-rank truncations as explained in Section 4.4.

rank: Maximal hierarchical rank in one sweep of MALS.

Example 5.1. This example is a continuation of Example 3.1, to which we now apply ALS
and MALS. In ALS, all hierarchical ranks are set to 7 for q = 1 and to 40 for q = 1000, while
MALS is used with a maximal hierarchical rank of 30. The choice of eps for MALS is varied
in the course of the iteration as shown in the plots. If not stated otherwise, we have used the
preconditioner UTPU explained in Section 4.3, where P coincides with the Laplace-based
preconditioner used in Example 3.1.

The obtained results are displayed in Fig. 5.1 and 5.2. For q = 1, both ALS and MALS
nearly reach the eventually attained accuracy within only two sweeps. For q = 1000, the
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Figure 5.1. ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue problem with

sine potential and q = 1
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Figure 5.2. ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue problem with

sine potential and q = 1000

convergence is still very satisfactory even though the quality of the preconditioner is worse.
Compared to low-rank LOBPCG applied to the full eigenvalue problem, see Example 3.1,
the convergence of (M)ALS is significantly more robust and faster.

In the following, we will explore some of the choices made in the design of our (M)ALS
methods in Section 4. First, Fig. 5.3 shows the convergence for 10 runs of (M)ALS where in
every sweep the nodes of the hierarchical tree are traversed in a fixed but random ordering.
This is compared with our choice of traversing the tree in DFS ordering, which was needed to
keep the computational cost minimal. Apparently, the choice of ordering has little influence
on the overall convergence of ALS and MALS.

Second, to investigate the impact of using the preconditioner UTPU in LOBPCG, we
repeat our experiments with no preconditioner, see Fig. 5.4. It turns out that the availability
of a preconditioner is critical for the performance of ALS. Since the maximal number of
allowed iterations for LOBPCG is nearly always attained, the obtained approximation to
the solution of the reduced eigenvalue problem is poor, resulting in a significantly slower
convergence of ALS. In contrast, the availability of a preconditioner seems to have almost
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Figure 5.3. ALS (left plot) and MALS (right plot) with DFS ordering and 10 random orderings applied to

Example 3.1 – PDE eigenvalue problem with sine potential and q = 1000. In contrast to all other plots, the

eigenvalue approximation error is displayed for every step of (M)ALS
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Figure 5.4. ALS (left plot) and MALS (right plot), applied to Example 3.1 – PDE eigenvalue problem with

sine potential and q = 1000. In contrast to Fig. 5.2, no preconditioner is used
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Figure 5.5. ALS (left plot) and MALS (right plot), applied to Example 5.2 – PDE eigenvalue problem with

Henon-Heiles potential

no influence on the convergence of MALS. However, it would be misleading to conclude that
MALS generally requires no preconditioning. In this particular example, the hierarchical
ranks grow quite slowly in the beginning so that eig(s) instead of LOBPCG is used in
the critical first stage of MALS sweeps. Only at the 5th sweep does the method switch
to LOBPCG, but by then the current iterate of MALS already represents a rather good
approximation. In such a case, the reduced eigenvalue problems can be expected to feature
a much more narrow eigenvalue distribution and demand no preconditioning.

Example 5.2. We consider the same discretized PDE eigenvalue problem as in Exam-
ple 3.1, but with the sine potential replaced by a Henon-Heiles potential as defined in [24,
29, 5]:

V (ξ) =
1

2

n∑

j=1

σjξ
2
j +

n−1∑

j=1

(
σ∗(ξjξ

2
j+1 −

1

3
ξ3j ) +

σ2
∗

16
(ξ2j + ξ2j+1)

2
)
.

In our experiments we have chosen σj = 1, σ∗ = 0.2, and the computational domain Ω =
[−10, 2]d. The discretized potential AV , see (1.4), has the structure

d∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i times

⊗Ci ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 times

+

d−1∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i−1 times

⊗Bi+1 ⊗Ai ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 times

.

Any matrix with such a structure can be represented exactly in HTD with rank 4, see [20, 27],
leading to a significantly reduced cost compared to the straightforward Kronecker product
representation. Note that the first sum of the potential can be absorbed into the discretized
Laplace operator and accounted for in the construction of the preconditioner. Although we
make use of this property in our implementation, we have not observed a dramatic positive
effect on the convergence. We choose d = 20 and discretize with n = 128 uniformly spaced
nodes in each dimension. In the ALS method, we set all hierarchical ranks to 40, while a
maximal hierarchical rank of 50 is used in MALS. Figure 5.5 contains the obtained results.
Interestingly, MALS is 2 to 3 times slower than ALS due to rapid rank growth in the first
sweeps until the imposed maximal rank 50 is reached.

Example 5.3. As a final PDE eigenvalue example, we consider the hydrogen-like potential
V (ξ) = 1/‖ξ‖2 which features a singularity in the chosen domain Ω = [−1, 1]d. Although
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Figure 5.6. ALS (left plot) and MALS (right plot), applied to Example 5.3 – PDE eigenvalue problem with

potential 1/‖ξ‖2

the discretization of this potential has full hierarchical rank, there exist highly accurate low-
rank approximations. Such approximations can be constructed by means of an exponential
sum, see [9]. In our experiments, we use 10 terms of this sum, leading to a hierarchical
rank of 10. We choose d = 10 and once again discretize with n = 128 uniformly spaced
nodes in each dimension. In the ALS method, we set all hierarchical ranks to 30, while a
maximal hierarchical rank of 40 is used in MALS. As can be seen in Fig. 5.6, MALS converges
somewhat faster. Compared to the results for the sine potential with d = 10 (see Figs. 5.1
and 5.2), the execution time is significantly higher due to the more complicated nature of
the potential.

Example 5.4. Our final example is a spin system from [14], with d = 64 and n = 2:

A =

d∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i times

⊗σx ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 times

+

d−1∑

i=1

I ⊗ · · · ⊗ I︸ ︷︷ ︸
d−i−1 times

⊗σz ⊗ σz ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i−1 times

.

where σx =

[
0 1
1 0

]
and σz =

[
1 0
0 −1

]
are Pauli matrices. Note that, as for the Henon-

Heiles potential, this matrix has an HTD with hierarchical ranks 4. Moreover, A is not
positive definite and we search for the smallest eigenvalue, which is negative, and for its
eigenvector. We do not make use of any preconditioner.

The small sizes n = 2 of the tensor cause significant overhead in HTD, and we therefore
reshape the problem such that the desired eigenvector is represented by a tensor of order
d = 16 with n = 16.

The convergence of MALS is displayed in Fig. 5.7, using a maximal hierarchical rank of
40. To demonstrate the significance of employing a low-rank version of LOBPCG for the
reduced eigenvalue problems, we deliberately turned off the use of Algorithm 2 in the left
plot. In contrast, the right plot uses the strategy proposed in this paper, which implies that
Algorithm 2 is used in the last 4 sweeps. It is obvious from the execution times that the
addition of low-rank LOBPCG results in significant speed-up for larger ranks.
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Figure 5.7. MALS with full LOBPCG (left plot) and with low-rank LOBPCG (right plot), for the spin

system from Example 5.4.

6. Conclusions

We have presented and compared a number of low-rank tensor techniques for computing the
smallest eigenvalue of a symmetric, discretized high-dimensional eigenvalue problem.

It has turned out that the most straightforward approach, combining a classical iterative
method with low-rank truncation, exhibits convergence and robustness issues but may be the
only choice for certain applications. Although we have only explored the use of LOBPCG,
we expect similar findings for methods based on Krylov subspaces, which, however, have the
additional complication of not admitting a natural way to incorporate preconditioners.

We have developed a novel combination of (M)ALS with HTD and demonstrated that it
offers a very satisfying approach to a number of applications. Moreover, it has been shown
that the use of a low-rank LOBPCG method for solving subproblems in MALS is crucial in
applications featuring high ranks.

While it is conceptually not difficult to extend the presented algorithms to the computa-
tion of several eigenvalues, at least for LOBPCG, the nonsymmetric case remains open. An
interesting approach to nonsymmetric eigenvalue problems has recently been proposed by
Meerbergen and Spence in [23]. Currently, this approach is limited to second order tensors
(i.e., low-rank matrices) and its extension to high-order tensors remains to be explored.
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semester project.
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