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ABSTRACT
We resolve the inner region of a massive cluster forming in a cosmological � cold dark
matter (CDM) simulation with a mass resolution of 2 × 106 M� and before z = 4.4 even 3 ×
105 M�. This is a billion times less than the cluster’s final virial mass and a substantial increase
over current �CDM simulations. We achieve this resolution using a new multimass refinement
procedure and are now able to probe a dark matter halo density profile down to 0.1 per cent
of the virial radius. The inner density profile of this cluster halo is well fitted by a power law
ρ ∝ r−γ down to the smallest resolved scale. An inner region with roughly constant logarithmic
slope is now resolved, which suggests that cuspy profiles describe the inner profile better than
recently proposed profiles with a core. The cluster studied here is one out of a sample of six
high-resolution cluster simulations, and its inner slope of about γ = 1.2 lies close to the sample
average.

Key words: methods: N-body simulations – methods: numerical – galaxies: clusters:
general – galaxies: haloes – dark matter.

1 I N T RO D U C T I O N

Recently, a great deal of effort has gone into high-resolution sim-
ulations which have revealed density profiles of cold dark matter
(CDM) haloes down to scales well below one per cent of the virial
radius (Diemand et al. 2004b, hereafter DMS04; Fukushige, Kawai
& Makino 2004; Navarro et al. 2004; Tasitsiomi et al. 2004; Reed et
al. 2005). However, the form of profile below ∼0.5 per cent of the
virial radius remained unclear and there was no clear evidence for
a cusp in the centre, i.e. no significant inner region with a constant
logarithmic slope. Galaxy cluster haloes would be the ideal systems
to resolve cusps numerically because of their low concentration. In a
galaxy or dwarf halo, the inner power law is much harder to resolve
because it lies at a smaller radius relative to the size of the system.

The existence of a core or a cusp in the centre of CDM haloes
has important observational consequences and is the crucial point
in many tests of the CDM theory. Comparisons of dark matter sim-
ulations to rotation curves of low surface brightness (LSB) galaxies
seem to favour constant density cores for most observed systems
(e.g. Flores & Primack 1994; Moore 1994; Salucci & Burkert 2000;
deBlock et al. 2001; see, however van den Bosch & Swaters 2001;
Swaters et al. 2003; Simon et al. 2005). However, these compar-
isons still depend to some extent on extrapolations of the simulated
profiles toward the centre: Stoehr (2004) extrapolate to a constant
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density core and claim that the discrepancy to LSB galaxy rotation
curves is much smaller than previously believed.

The strength of the γ -ray signal from dark matter annihilation
depends on the square of the dark matter density and the calculated
flux values spread over several orders of magnitude, depending on
how one extrapolates the density profiles from the known, resolved
regions down into the centres of the galactic halo and its subhaloes
(Calcaneo-Roldan & Moore 2000; Stoehr et al. 2002; Prada et al.
2004; Bertone & Merrit 2005). Small, very abundant, Earth to solar
mass subhaloes could be very luminous in γ -rays if they are cuspy
(Diemand, Moore & Stadel 2005).

The highest resolutions in cosmological simulations are reached
with the widely used refinement procedure (e.g. Bertschinger 2001).
First, one runs a simulation at uniform, low resolution and selects
haloes for resimulation. Then, one generates a new set of initial
conditions using the same large-scale fluctuations and higher reso-
lution and additional small-scale fluctuations in the selected region.
With this technique Navarro, Frenk & White (1996) were able to
resolve many haloes with a few ten thousand particles and to infer
their average density profile, which asymptotes to an ρ(r ) ∝ r−1

cusp. Other authors used fitting functions with steeper (−1.5) cusps
(Fukushige & Makino 1997; Moore et al. 1998, 1999; Ghigna et al.
2000). Small-mass CDM haloes have higher concentrations due to
their earlier collapse (Navarro et al. 1996) but the slopes of the inner
density profiles are independent of halo mass (Moore et al. 2001;
Colı́n et al. 2004). Open, ‘standard’ and lambda CDM cosmologies,
i.e. models with (�M, ��) = (0.3, 0.0), (1.0, 0.0) and (0.3, 0.7) yield
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Table 1. Parameters of the simulated cluster. At z = 0 the viral mass is 3.1 × 1014 M� and the virial radius is 1.75 Mpc. N HR is the number of high-resolution
particles and mHR is the mass and εHR the force softening length of these particles. For the multimass runs we also give the masses (mLR) and softenings (εLR)
of the next heavier particle species. Softening lengths are given at z = 0; ‘[c]’ indicates that a constant softening in comoving coordinates was used and ‘[p]’
indicates that the softening was constant in physical units after z = 9 and constant at 10 times this value in comoving units before z = 9. The resolved scales
are constant in physical units and give the innermost radius we expect to resolve with the given mass resolution. N vir,eff is the actual number of particles within
the virial radius at z = 0 for runs D6, D9 and D12. For the multimass runs it is the number needed to reach the same resolution in the inner part by carrying out
a conventional refinement of the entire system. All runs are 300-Mpc cubes with periodic boundaries; well outside the cluster-forming region the resolution is
decreased (as in DMS04).

Run zstart zend εHR N HR mHR εLR mLR rresolved η Time- N vir,eff

(kpc) (M�) (kpc) (M�) (kpc) step

D5 52.4 0 4.2[p] 4 898 500 3.0 × 108 – – 16.2 0.25 (1) 1.0 × 106

D6 36.13 0 3.6[p] 31 922 181 1.8 × 108 – – 13.5 0.2 (1) 1.8 × 106

DM6se 36.13 0 3.6[p] 922 968 1.8 × 108 3.6[p] 3.8 × 1010 13.5 0.2 (1) 1.8 × 106

DM6le 36.13 0 3.6[p] 922 968 1.8 × 108 38.6[p] 3.8 × 1010 13.5 0.2 (1) 1.8 × 106

D9 40.27 0 2.4[p] 31 922 181 5.2 × 107 – – 9.0 0.2 (1) 6.0 × 106

DM9 40.27 0 2.4[p] 3 115 017 5.2 × 107 15[p] 1.4 × 109 9.0 0.2 (1) 6.0 × 106

D12 43.31 0 1.8[p] 14 066 458 2.2 × 107 – – 6.8 0.2 (1) 1.4 × 107

DM25 52.4 0.8 0.84[c] 65 984 375 2.4 × 106 9[c] 3.0 × 108 3.3 0.25 (2) 1.3 × 108

DM25lt 52.4 0.8 0.84[p] 65 984 375 2.4 × 106 9[p] 3.0 × 108 3.3 0.25 (1) 1.3 × 108

DM50 59.3 4.4 0.36[c] 16 125 000 3.0 × 105 6[c] 3.75 × 107 1.7 0.25 (2) 1.0 × 109

equal inner profiles (Fukushige & Makino 2003; Fukushige et al.
2004). There is some indication that models with less small-scale
power such as warm dark matter lead to shallower inner profiles (e.g.
Colı́n, Avila-Reese & Valenzuela 2000; Reed et al. 2005). Different
equation of states of the dark energy component lead to different
collapse times and halo concentrations but it is not clear yet if it also
affects slopes well inside of the scale radius (Macciò et al. 2004;
Kuhlen et al. 2005). Most current simulations do not resolve a large
enough radial range to determine both the concentration and the
inner slope; at the current resolution these parameters show some
degeneracy (Klypin et al. 2001).

Recently, a large sample of �CDM haloes resolved with a mil-
lion and more particles was simulated (Springel et al. 2001; Navarro
et al. 2004; Tasitsiomi et al. 2004; Gao et al. 2005; Reed et al.
2005) and the best resolved systems contain up to 25 million par-
ticles (DMS04; Fukushige et al. 2004). However, even these very
large, computationally expensive simulations resolved no inner re-
gion with a constant logarithmic slope. Navarro et al. (2004), Stoehr
et al. (2002) and Stoehr (2004) introduced cored profiles which seem
to fit the simulation data better than the cuspy profiles proposed ear-
lier by Navarro et al. (1996) and Moore et al. (1999). This better fit
was interpreted as indication against cuspy inner profiles. However,
these cored profiles have one additional parameter and therefore it
is not surprising that they fit the data better. DMS04 have shown
that an NFW-like profile with the inner slope as an additional free
parameter fits the highest-resolution profiles just as well as cored
profiles. Some theoretical arguments seem to favour cusps (e.g.
Binney 2004; Hansen & Moore 2005) but make only vague predic-
tions about the inner slopes. A recent model combines simulation
results and analytical arguments to predict an inner slope of −1.27
(Ahn & Shapiro 2005). At the moment higher-resolution simulations
seem to be the only way to decide the core versus cusp controversy.

Here we present simulations of one of the galaxy clusters from
DMS04 with two orders of magnitude better mass resolution. Our
results give strong support to cuspy inner profiles. This increase
in resolution was made possible with only a moderate increase in
computational cost by using a new multimass refinement technique
described in Section 2. In Section 3 we present our results and in
Section 4 the conclusions.

2 N U M E R I C A L E X P E R I M E N T S

Table 1 gives an overview of the simulations we present in this pa-
per. All runs discussed in this paper model the same �CDM cluster
labelled ‘D’ in DMS04. With a mass resolution corresponding to
1.3 × 108 and 1.04 × 109 particles inside the virial radius of a clus-
ter, DM25 and DM50 are the highest-resolution �CDM simulation
performed so far. Due to the large number of particles and the cor-
responding high force and time resolution, these runs take a large
amount of CPU time. Fortunately, the inner profiles of CDM clusters
are already in place around redshift one and evolve little between z =
4 and z = 0 (Fukushige et al. 2004; Tasitsiomi et al. 2004; Reed
et al. 2005). Therefore, one does not have to run the simulations to
z = 0 to gain insight into the inner density profile. We stop DM50
at z = 4.4, DM25 at z = 0.8 and use the medium-resolution runs
D5 and D12 to quantify the low-redshift evolution of the density
profile of the same cluster. Run DM25 was completed in about 2 ×
105 CPU hours on the zBox supercomputer.1 The convergence ra-
dius of run DM50 is 1.7 kpc, estimated using the r ∝ N−1/3 scaling
and the measured converged scales from DMS04.

2.1 Multimass refinements

Often in cosmological N-body simulations one uses high-resolution
particles only where one halo forms and heavier particles in the
surroundings to account for the external tidal forces. One usually
tries to defines a large enough high-resolution region to minimize or
avoid mixing of different mass particles within the region of interest.
One exception is Binney & Knebe (2002) who used particles of two
different masses everywhere to estimate the amount of two-body
relaxation in cosmological simulations. In plasma simulations, on
the other hand, multimass simulations have been successfully used
since the 1970s (e.g. Dawson 1983, and references therein). Here
we apply this idea to increase the resolution in the core of one cluster
halo in a cosmological N-body simulation.

The refinement procedure is usually applied to entire virialized
systems, i.e. one marks all particles inside the virial radius of the

1 See http://www-theorie.physik.unizh.ch/∼stadel/zBox/.
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selected halo and traces them back to the initial conditions. Then one
refines the region that encloses the positions of the marked particles.
Usually the region is further increased to prevent any mixing of
low-resolution particles into the virial radius of the final system. In
DMS04 all particles within 4 comoving Mpc in the initial conditions
were added to the high-resolution region. This ensures that only light
particles end up within the virial radius of the final cluster and it
also has the advantage that haloes in the outskirts of the cluster (out
to two or three virial radii) are still well resolved (Moore, Diemand
& Stadel 2004). However, with this procedure only between one-
fourth to one-third of all the high-resolution particles end up in the
cluster.

If one is only interested in the inner regions of a halo, it is possible
to use a new, more efficient way of refinement. Instead of refining the
whole virialized system, we only refine the region where the inner
particles come from. This allows us to reduce the size of the high-
resolution region considerably, because most of particles that end up
near the centre of the system start in a very small region, compared
to the region which one finds by tracing back all the particles inside
the virial radius. Using this technique, it is possible to reduce the
computational cost of a CDM cluster simulation by at least one order
of magnitude at equal force and mass resolution in the inner region.
Of course, now one has different mass particles inside the final
virialized structure, and therefore we must verify that significant
equipartition and relaxation (Binney & Knebe 2002; Diemand et al.
2004a) are not occurring and affecting the final results. In Section
2.3 we show that the density profiles of such multimass clusters (runs
DM6le and DM9) are the same as those of fully refined clusters at
equal peak resolution (runs D6 and D9).

In this paper we apply the multimass refinement to the cluster
‘D’ from DMS04. This cluster is well relaxed and isolated at z = 0
and has an average density profile and inner slope close to the mean
value. First, we mark all particles within one per cent of the virial
radius in the final halo and trace them back to the initial conditions.
Then we add all particles within one comoving Mpc of a marked
particle to the set of marked particles, and finally we add all particles
which lie on intersections of any two already marked particles on
the unperturbed initial grid positions. After these two steps, there is
region with a fairly regular triaxial boundary which contains only
marked particles. The number of marked particles grows by almost
a factor of 8 during these additions, but it is still more than a factor
of 2 smaller than the number of particles in the final cluster and a
factor of 10 smaller than the original high-resolution volume used
in DMS04. The computational cost with our code and parameters
is roughly proportional to the number of high-resolution particles,
and therefore we gain about a factor of 10 with this reduction of the
high-resolution region. Probably one can reduce the high-resolution
volume further and focus even more of the computational effort into
the innermost region, we plan to explore this possibility with future
simulations.

2.2 Code and parameters

The simulations have been performed using PKDGRAV, written by
Joachim Stadel and Thomas Quinn (Stadel 2001) using the same
cosmological and numerical parameters as in DMS04 with a few
changes given below and in Table 1. The cosmological parameters
are (�m, ��, σ 8, h) = (0.268, 0.732, 0.7, 0.71). The value of σ 8 =
0.9 given in DMS04 is not correct: during the completion of this
paper we found that, due to a mistake in the normalization, our initial
conditions have less power than intended. This lowers the typical

formation redshifts and halo concentrations slightly but does not
affect the slopes of the inner density profiles.

We use the GRAFICS2 package (Bertschinger 2001) to generate the
initial conditions. The particle time-step criterion 	ti < η

√
ε/ai ,

where ai is the acceleration of particle ‘i’, gives almost constant
time-steps in the inner regions of a halo (see fig. 2 in DMS04),
but the dynamical times decrease all the way down to the centre.
Therefore, the time-step criterion was slightly modified, to make
sure enough time-steps are taken also near the halo centres. Instead
of

	ti < η
√

ε/ai (1)

we now use

	t < min
(
η
√

ε/ai , η/4
√

Gρi

)
, (2)

where ρ i is the density at the position of particle ‘i’, obtained by
smoothing over 64 nearest neighbours. We used η = 0.25 for runs
DM25 and DM50. Note that in the inner region of a CDM halo
ρ(r ) � 0.6 ρ(<r ), i.e. 0.8

√
Gρ(ri ) � √

Gρ(<ri ). Therefore, the
condition (2) with η = 0.25 ensures that at least 12 time-steps per
local dynamical time 1/

√
Gρ(<ri ) are taken.

The time-steps are obtained by dividing the main time-step
(t 0/200) by a factor of 2 until condition (2) is fulfilled. In runs
DM25 and DM50 the smallest particle time-steps are t 0/51200.
According to fig. 2 in DMS04, this time-step is sufficient to resolve
smaller scales than 0.1 per cent of the virial radius, i.e. less than the
limit set by the mass resolution, even in run DM50.

The smaller time-steps in the inner regions of the cluster are
crucial. In Fig. 1 we compare two runs which only differ in the time-
step criterion. DM25lt was run with the standard criterion (1) and
η = 0.2; for run DM25 we used the more stringent, computationally
more expensive criterion (2) and η = 0.25. The difference in CPU
time is about a factor of 2. At z = 0.8 the densities in run DM25lt are
clearly lower out to 0.003 virial radii, which also affects part of the
region we aim to resolve with this run (r resolved = 0.0019r vir). Due
to the high computational cost of these runs, we cannot perform a
complete series of convergence test at this high resolution. However,
due to the monotonic convergence behaviour of PKDGRAV for shorter
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Figure 1. Density profiles in physical (not comoving) coordinates at red-
shifts 4.4 and 0.8. The two runs have equal mass resolution but different
time-steps and softening. The arrow indicates the resolution limit set by the
particle mass. The run with the larger time-steps and softening underesti-
mates the dark matter density outside the resolution scale.
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time-steps (Power et al. 2003) we are confident that DM25 is a better
approximation to the true CDM density profile of this cluster.

Our time-stepping test confirms that the time resolution in DMS04
was sufficient to resolve the minimum scale of 0.3 per cent virial
radii set by their mass resolution. For the purpose of this work,
i.e. to resolve a region even closer to the centre, smaller time-steps
are necessary. These two runs illustrate nicely how a numerical
parameter or criterion that passes convergence tests performed at low
or medium resolution can introduce substantial errors if employed
in high-resolution runs.

2.3 Testing the multimass technique

Reducing the high-resolution region in the way described in
Section 2.1 produces multimass virialized systems, i.e. haloes where
particles of different mass are mixed up with each other. The inner
regions are dominated by light particles and the region near the virial
radius by heavier particles. However, one will find particles of both
species everywhere in the final halo and one has to worry if this
mixing introduces numerical effects, such as energy transfer from
the outer part to the inner part (from the heavy to the light particles)
due to two-body interactions. This could lead to numerical flatten-
ing of the density profile and make heavy particles sink to the centre
(Binney & Knebe 2002; Diemand et al. 2004a).

To check if the multimass technique works for cosmological sim-
ulations we reran the simulations D6 and D9 from DMS04 using
a reduced high-resolution region. We call these multimass runs
‘DM6se’, ‘DM6le’ and ‘DM9’ (see Table 1). The next heavier parti-
cles in the surrounding region are 216 times more massive in DM6se
and DM6le and 27 times more massive in DM9. The heavier particles
in DM6le and DM9 have larger softening to suppress discreteness
effects while DM6se uses the same small softening for both species.
Fig. 3 shows that the density profiles of the fully refined run D9 and
the partially refined run DM9 are identical over the entire resolved
range. Fig. 2 shows that the same is true for run DM6le; the larger
mass ratio of 216 does not introduce any deviation form the density
profile of the fully refined run.

A small softening in the heavier species (run DM6sl) does in-
troduce errors in the final density profile (Fig. 2). The total mass
profile is shallower near the resolved radius and has a high-density
bump below the resolved scale. The light particles are more ex-
tended and the bump is caused by a cold, dense condensation of six
heavy particles within 0.004rvir. These six heavy particles have a
three-dimensional velocity dispersion of only 273 km s−1, while the
light particles in the same region are much hotter, σ 3D = 926 km s−1.
They are hotter than the particles in the same region in runs D6 and
DM6le (both have only light particles in this inner part), and the
dispersions are 722 km s−1 for D6 and 708 km s−1 for DM6le.

These tests indicate that the reduced refinement regions work
well in runs D9M and DM6le and therefore we used the same re-
finement regions to set up the higher-resolution run DM25. In this
run the heavier particles are 125 times more massive than the high-
resolution particles and they have a softening of 9 kpc. For run DM50
we refined only the inner part of the most massive cluster progen-
itor at z = 4.4 in the same way as the final cluster in runs DM6le,
DM6se, DM9 and DM25. In run DM50, the heavier particles are
also 125 times more massive than the high-resolution particles.

Fig. 3 shows how the initially separated species of light and heavy
particles mix up during the the runs DM9, DM25 and DM50. The
density profiles of DM6le and DM9 do not suffer from numerical
effects due to the multimass set-up. This indicates that the same is
true for run DM25, which has the same refinement regions. In run

Figure 2. Tests of the multimass refinement technique. The upper three
lines shows the total density profile at z = 0 from the fully refined run D6
(solid lines) and the multimass runs DM6se (dashed) and DM6le (dashed
dotted). The lower lines (same line styles, offset by two magnitudes for clar-
ity) show the density profiles of the two particle species, i.e. of the light ones
(lines without symbols) and of the heavier ones (lines with symbols: filled
squares for D6se, open circles for D6le). The vertical dashed line indicates
the innermost resolved scale. In the multimass run with more softened heav-
ier particles (D6lh) the inner profile is dominated by light particles and is
identical to the fully refined run of the same cluster (D6). When the heavier
particles have short softenings, some of them spiral into the centre due to
dynamical friction and transfer heat to the light particles. This affects the
total density profile, i.e. it is lower near the resolved scale and has a bump
due to a condensation of cold, massive particles very close to the centre.

DM50, the amount and location of mixing at z = 4.4 relative to
r200 is very similar to the situation for DM9 at z = 0.0; therefore,
we expect DM50 to have the same density profile as a fully refined
cluster, i.e. as a cluster resolved with a billion particles.

3 I N N E R D E N S I T Y P RO F I L E S

Here we try to answer the question if the inner density profiles of
dark matter haloes have a constant density or a cusp ρ(r ) ∝ r−γ . At
resolutions of up to 25 million particles within the virial radius there
is no evident convergence toward any constant inner slope (DMS04;
Fukushige et al. 2004).

3.1 Results of run DM25

Run DM25 has an effective resolution corresponding to 127 million
particles within the virial radius and a force resolution of 0.48 ×
10−3r vir. At this up to now unmatched resolution, the inner slope is
roughly constant from the resolved radius (see Fig. 4) out to about
one per cent of the virial radius of the final cluster.

Run D12 resolves the same cluster with 14 million particles and
shows no convergence to a constant inner slope. Note that the ‘D’
cluster is one of six clusters analysed in DMS04 and its inner profile
is not special and rather close to the sample average.

Fig. 4 indicates that there is a cusp in the centres of CDM clusters
and it becomes apparent only at this very high numerical resolution.
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The non-constant slopes just near the convergence scale are probably
due to the first signs of numerical flattening that set in at this scale.
At higher densities below the resolved scales one cannot make any
robust predictions yet, but if one has to extrapolate into this region
Fig. 4 motivates the choice of a cusp ρ(r ) ∝ r−γ with γ � 1.2.

3.2 Resolving the very inner density profile
at z = 4.4 (run DM50)

Mass accretion histories show that the inner part of CDM haloes is
assembled in an early phase of fast accretion (van den Bosch 2002;
Wechsler et al. 2002; Zhao et al. 2003) and recent high-resolution
simulations have revealed that the inner density profile does not
evolve at low redshift (Fukushige et al. 2004; Tasitsiomi et al. 2004;
Reed et al. 2005). Fig. 4 confirms that the inner density profiles of
runs D12 and D5 do not change from z = 0.8 to z = 0.

Therefore, in run DM50 we focus our computational effort even
more on the early evolution of the inner profile. We refine the inner
region of the most massive progenitor identified in run DM25 at
z = 4.4. Because the refinement region needed is much smaller than
that of DM9 or DM25 and we only run the simulation to z = 4.4,
it is feasible to go to a much better mass and force resolution. The
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Figure 5. Logarithmic slope of the density profiles of runs D5, DM25 and
DM50 at z = 4.4. The arrows indicate the estimated convergence radii. A
constant inner slope of about −1.2 is evident in the highest-resolution run
DM50. The increase of the slopes around the resolved radii is due to the
onset of numerical flattening.

high-resolution particles in run DM50 are a billion times lighter than
the final cluster.

Fig. 5 shows that the density profile of run DM50 at z = 4.4 is
cuspy down to the resolved radius (0.1 per cent of the final virial
radius). As in run DM25, the slopes begin to shallow just at the
converged scale due to numerical flattening. The profile of DM50
at z = 4.4 supports the finding from run DM25 that the inner profile
follows a steep power law ρ ∝ r−1.2. At the higher resolution of run
DM50 we find substantially higher physical densities in the cluster
centre at z = 4.4 compared to lower-resolution runs such as DM25.
This suggests that a run such as DM50 evolved to low redshift would
also yield substantially higher central densities as currently resolved
in the centres of runs such as D12 and DM25.

3.2.1 Estimating the z = 0 profile of a billion particle halo

Now we go one step further and use the information from all the
‘D’-series runs to try to estimate the density profile one would obtain
if one simulates this cluster with a billion particles all the way to
present time, a run which would be possible but extremely expensive
with today’s computational resources. From Fig. 6 we find that the
density profile of run DM25 near its resolution scale shifts upward
by a constant factor of 1.4 from z = 4.4 to z = 0.8. The density
around 0.01 r vir,z=0 is constant from z = 0.8 to z = 0 (see run D5
in Fig. 6). The inner density profile slopes are constant even longer,
i.e. from z = 4.4 to z = 0 (see Figs 4 and 5). Therefore, we estimate
the z = 0 profile of run DM50 by rescaling the z = 4.4 profile of
DM50 by a factor of 1.4 and using the z = 0 profile of run D12
outside 0.005r vir,z=0 (see Fig. 6). The extrapolated z = 0 profile
of run DM50 should be regarded as a best guess for the density
profile of an average CDM cluster resolved with a billion particles.
A (multimass) simulation with this (effective) resolution evolved to
redshift zero would be needed to check the accuracy of the estimate
performed here. Note that our conclusions are based on the z =
0.8 results from run DM25 and not on the somewhat uncertain z =
0 extrapolation proposed in this section (but they are consistent
with it).
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Figure 6. Density profiles in physical (not comoving) coordinates at red-
shifts 4.4, 0.8 and 0. Arrows mark the resolved scales of each run. The
densities in the inner part do not evolve between z = 0.8 and z = 0 and
the inner slopes remain constant even from z = 4.4 to z = 0. Using these
observations we are able to estimate the final profile of a billion particle halo
(upper solid line).

3.3 Inner slope estimates based on the enclosed mass

For a mass distribution which follows ρ(r ) ∝ r−γ all the way in
to r = 0 the slope γ can be calculated at any radius using the
local density and the mean enclosed density (Navarro et al. 2004):
γ ∗(r ) = 3[1 − ρ(r )/ρ̄(<r )]. For simulated CDM density profiles,
where γ becomes smaller towards the centre, γ ∗(r ) is an upper limit
for the asymptotic inner slope as long as both ρ(r) and ρ̄(<r ) have
fully converged at radius r. Convergence tests show that the enclosed
density ρ̄(<r ) converges slower than the local density and ρ̄(<r ) is
generally underestimated near r resolved due to missing mass within
r resolved (Power et al. 2003; DMS04). Fig. 7 shows γ ∗(r ) for the two
highest-resolution runs available at z = 4.4 and z = 0.8. We also plot
the fractions of the local densities of the two runs and the fractions
of enclosed densities to illustrate the different convergence scales of
local and cumulative quantities. Fig. 7 confirms that at the estimated
resolved scales for D12 and DM25 the local densities are within
10 per cent of the higher-resolution runs.2 The typical differences
are even smaller (about 5 per cent). The enclosed density ρ̄(<r )
however converges slower: at r resolved we find that the values are
only about 0.83 of those measured in the higher-resolution runs.
This causes the ratio ρ(rresolved)/ρ̄(<rresolved) to be underestimated
(about 0.87 of the true value). This propagates into a larger relative
error in γ ∗(r resolved), which turns out to be too low by about 0.3
for the profiles studied here (given the arrows at r resolved in Fig. 7).
The different convergence rates of local and cumulative quantities
tend to produce artificially low γ ∗(r) values and this effect becomes
especially large near r resolved. The significance of γ ∗(r) appears to
be difficult to interpret, but the convergence tests presented here and
in DMS04 suggest that γ ∗(r resolved) is not a robust upper limit for
the asymptotic inner slope.

2 We determine rresolved by demanding that the local density has to be
within 10 per cent of the value from a much higher-resolution run and in
cases where no such run is available the measured convergence radii from
lower-resolution runs are rescaled using the mean interparticle separation
r resolved ∝ N−1/3

vir (see DMS04).
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Figure 7. γ ∗(r) for the two highest-resolution runs at z = 4.4 and z = 0.8
(solid lines) and fractions of the densities of these two runs [dotted lines for
ρ(r) and dashed lines for ρ̄(<r )]. Due to different convergence rates in local
and cumulative quantities γ ∗(r) values from the lower-resolution runs lie
below the higher-resolution results in the inner part of the halo. The arrows
at rresolved correct for this effect based on the following observations. The
ratio ρ(rresolved)/ρ̄(<rresolved) is typically underestimated (0.87 of the high-
resolution value) due to a small deficit in local density (0.95 of the true value)
and a larger one in the enclosed density (0.83 of the true value) due to missing
mass in the innermost regions. Underestimating ρ(rresolved)/ρ̄(<rresolved) by
0.87 leads to γ ∗ values which are too small by about 0.3.

3.4 Cored and cuspy fitting functions

In this section we fit one cuspy and two recently proposed cored
functions to the density profiles of DM25 at z = 0.8 and to the
tentative z = 0 extrapolation from run DM50. From the previous
section we expect the cuspy function to work better in the inner part
but we try to fit also the cored profiles for comparison.

We use a general αβγ -profile that asymptotes to a central cusp
ρ(r ) ∝ r−γ :

ρG(r ) = ρs

(r/rs)γ
[
1 + (r/rs)α

](β−γ )/α . (3)

If we take α, β and γ as free parameters, we encounter strong
degeneracies, i.e. very different combinations of parameter values
can fit a typical density profile equally well (Klypin et al. 2001).
Therefore, we fix the outer slope β = 3 and the turnover parameter
α = 1. For comparison, the NFW profile has (α, β, γ ) = (1, 3, 1),
and the M99 profile has (α, β, γ ) = (1.5, 3, 1.5). We fit the three
parameters γ , rs and ρ s to the data.

Navarro et al. (2004) have proposed a different fitting function
which curves smoothly over to a constant density at small radii:

ln[ρN(r )/ρs] = (−2/αN)
[
(r/rs)

αN − 1
]
. (4)

Table 2. Density profile parameters of run DM25 at z = 0.8 and of DM50 extrapolated to z = 0. 	 is the root mean square of (ρ − ρfit)/ρ for the three fitting
functions used.

Redshift γ G rsG (kpc) 	G αN r s N (kpc) 	N aSWTS rmax SWTS (kpc) 	SWTS

0.8 1.20 260 0.075 0.157 233 0.076 0.130 565 0.087
0.0 1.20 283 0.059 0.162 236 0.133 0.140 518 0.179
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Figure 8. Density profile of run DM25 at z = 0.8 and fits with three different
functions.

αN determines how fast this profile turns away from a power law in
the inner part. Navarro et al. (2004) have found that αN is indepen-
dent of halo mass and αN = 0.172 ± 0.032 for all their simulations,
including galaxy and dwarf haloes.

Another profile that also curves away from power-law behaviour
in the inner part was proposed by Stoehr et al. (2002):

ρSWTS(r ) = V 2
max

4πG
10−2aSWTS[log(r/rmax)]2 1

r 2

×
[

1 − 4a log

(
r

rmax

)]
. (5)

Here, V max is the peak value of the circular velocity, rmax is the
radius of the peak and aSWTS determines how fast the profile turns
away from a power law near the centre. Stoehr (2004) found that
cluster profiles are well fitted with this formula using aSWTS values
between 0.093 and 0.15.

These three functions were fitted to the data from z = 0.8 by
minimizing the relative density differences in each of about 20 log-
arithmically spaced bins in the range resolved by DM25 (i.e. from
0.0019r vir,z=0 = 3.3 kpc to r vir,z=0 = 1750 kpc). At z = 0, we use
the resolved range of D12 for the fits (i.e. from 0.0039r vir,z=0 = 6.8
kpc to r vir,z=0). The resulting best-fitting values and the root mean
squares of the relative density differences are given in Table 2.

At z = 0.8, the average residuals of the three fits are similar, but
they are dominated by the contribution from the outer parts of the
cluster (see fig. 6 in DMS04). Figs 8 and 9 show that in the inner
part the cuspy profile describes the data better. Both cored profiles
underestimate the measured density at the resolution limit, both at
z = 0.8 and in the estimated z = 0 profile. These profiles lie below
the measured density profiles even inside rresolved where one has to
expect that the next generation of simulations will be able to resolve
even higher densities.

Figs 10 and 11 show the slopes of the simulated profile in com-
parison with the slopes of the best fits. Again it is evident that
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in the inner part the cuspy profile describes the real density run
better.

4 C O N C L U S I O N S

The main conclusions of this work are the following.

(i) It is possible to use different mass particles to resolve one halo
in cosmological CDM simulations without affecting the resulting
density profiles.

(ii) This ‘multimass’ technique allows a reduction of the neces-
sary number of particles and the computational cost by at least one
order of magnitude without loss of resolution in the central region
of the halo.

(iii) We confirm that the inner profile of a typical CDM cluster
does not evolve since about redshift one.

(iv) The logarithmic slope of the dark matter density profile con-
verges to a roughly constant value in the inner part of cluster haloes.
This probably holds also for smaller systems (such as galaxy and
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Figure 11. Logarithmic slope of the extrapolated z = 0 DM50 density
profile and of the fitted density profiles from Fig. 9.

dwarf haloes) but there it is even more difficult to numerically re-
solve the cusps.

(v) At resolutions around 10 million particles per halo, the inner
slope appears to approach zero continuously but this impression is
caused by numerical flattening of the profiles due to insufficient
mass resolution.

(vi) The cluster studied here has a central cusp ρ ∝ r−γ with a
slope of about γ = 1.2. From earlier studies (DMS04) we expect
this inner profile to be close to the average and the scatter is about
0.15.

(vii) Profiles with a core (Stoehr et al. 2002; Navarro et al. 2004)
underestimate the measured dark matter density at (and even inside)
the current resolution limit.
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