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SUMMARY
In this paper, we present the work related to the application
of a visual odometry approach to estimate the location of
mobile robots operating in off-road conditions. The visual
odometry approach is based on template matching, which
deals with estimating the robot displacement through a
matching process between two consecutive images. Standard
visual odometry has been improved using visual compass
method for orientation estimation. For this purpose, two
consumer-grade monocular cameras have been employed.
One camera is pointing at the ground under the robot,
and the other is looking at the surrounding environment.
Comparisons with popular localization approaches, through
physical experiments in off-road conditions, have shown the
satisfactory behavior of the proposed strategy.

KEYWORDS: Mobile robots; Robot localization;
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1. Introduction
Robot localization is defined as the process in which a mobile
robot determines its current position and orientation relative
to an inertial reference frame.1 In the context of off-road
mobile robots, localization techniques have to deal with
particular features of off-road conditions, such as a noisy
environment (vibrations when the robot moves, disturbance
sources, etc.), changing lighting conditions, high degrees of
slip, etc.

One of the most popular solutions for the mobile robotics
community is wheel-based odometry (or odometry).2, 3 This
technique is considered as relative or local localization,
that is, robot location is incrementally calculated from an
initial point. Odometry employs simple geometric equations
(mobile robot kinematics) with wheel encoders that provide
angular velocities of the wheels. Then the position and
orientation are calculated by integrating these velocities.
The main drawbacks of using wheel-based odometry are
as follows: (i) Since encoder measurements are integrated,
the noise is also integrated, and thus it causes an unbounded
growth of errors along time and distance; and (ii) it is based on
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the assumption that wheel revolutions can be converted into
linear displacement relative to the terrain, this assumption is
limited in slip conditions.

An attractive alternative is the use of absolute or global
techniques. These techniques determine the position of the
robot with respect to a global reference frame, for instance,
using beacons or landmarks.4–6 The most popular technique
is Global Positioning System (GPS), which is based on
satellite signals to determine the absolute position of an
object on the Earth (longitude, latitude, and altitude).7 The
main drawbacks of absolute techniques are as follows: (i) It
requires a costly installation of beacons/markers on the area
where the robot operates, and (ii) the mobile robot can
only navigate over the area in which landmarks are located.
Furthermore, the particular problems related to GPS are as
follows: (i) The satellite signal is lost in partially covered
areas (nearby trees, buildings, etc.); (ii) it cannot be used
in covered areas (greenhouses, mines, etc.) or in space
exploration;7 and (iii) the consumer-grade GPS provides
poor accuracy (several meters). Although more expensive
solutions such as Differential GPS (DGPS) or Real-Time
Kinematics GPS (RTK-GPS) can improve that accuracy
significantly.

On the other hand, techniques that estimate robot location
using visual information (images) are being successfully
applied to off-road mobile robots, especially in space
robotic exploration missions.8–11 One of the most popular
approaches is visual odometry, which is defined as the
incremental online estimation of robot motion from image
sequences using an on-board camera.12, 13

In this paper, we present the work related to the
application of a visual odometry approach based on template
matching technique to estimate the location of a mobile
robot operating in off-road conditions. Standard visual
odometry has been improved using visual compass method
for orientation estimation purposes. This issue constitutes
the main contribution of this paper. Comparisons of this
strategy with other localization techniques (e.g., wheel-
based odometry) through physical experiments show a
satisfactory behavior of the proposed scheme. Here, the
results obtained using a tracked mobile robot available at the
University of Almerı́a (Spain), called Fitorobot,14 are shown.
Furthermore, successful results have also been obtained using
the CRAB rover available at the ASL, ETH Zürich (Switzer-
land).15 Videos related to the physical experiments are
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available at http://www.ual.es/personal/rgonzalez/videosVO.
htm.

The paper is organized as follows. Section 2 describes the
methodology to estimate the robot location combining the
position obtained using visual odometry and the orientation
using the visual compass method. Section 3 is devoted to
implementation issues. Physical experiments are discussed
in Section 4. Finally, conclusions and discussions about
physical experiments are detailed in Section 5.

2. Methodology
Visual odometry constitutes a straightforward-cheap method
to estimate the robot location.9, 16, 17 A single consumer-
grade camera can replace a typical expensive sensor suite
(encoders, IMU, GPS, etc.). It is especially appropriate for
off-road applications, since the visual information is used to
estimate the actual velocity of the robot, thereby minimizing
slip phenomena.17 The main limitations of vision-based
techniques are mainly related to the light and imaging
conditions (i.e., terrain appearance, camera parameters, etc.)
and the computational cost.

Generally, there are two ways to estimate the location
of a mobile robot using the visual odometry paradigm.
The most popular method is called optical flow.13, 18, 19 It is
based on tracking distinctive features between successively
acquired images.18 In this case, an image is matched with
the previous one by individually comparing each feature on
them and finding candidate matching features based on the
Euclidean distance of their feature vectors. Afterwards, the
velocity vector between these pairs of points is calculated
and the displacement is obtained by using these vectors.18

Optical flow is especially advisable for textured scenarios,
such as urban and rough environments.8, 11, 20 This approach
has been tested using single,16 stereo,21 and omnidirectional
cameras.20

A slightly different approach is the template matching
method.22–24 It avoids the problem of finding and tracking
features, and instead it looks at the change in the appearance
of the world (images). For that purpose, it takes a template
or patch from an image and tries to match it in the previous
image. The main difference with optical flow is that now no
identification or tracking of features are involved, and there is
no need to measure image velocities at different locations.25

The appearance-based method has been successfully applied
employing single26, 27 and omnidirectional cameras.24

The main difference between the optical flow and template
matching approaches is that when the scene is low-textured,
the number of detected and tracked features (single patterns)
is low, which can lead to poor accuracy of motion estimate.8

This fact means that optical flow can fail on almost featureless
scenarios (such as sandy soils, urban floors, etc.) where
images with few high gradients are grabbed. On the other
hand, the template matching approach works properly in
low texture scenarios, since a larger pattern (template) is
employed, and, therefore, the probability of a successful
matching is increased.24

Previous discussion motivates why the template matching
method has been selected in this work. However, it is
important to remark that if the matching process fails (false

matches), the robot motion estimate can become degraded. In
order to minimize this shortcoming, especially undesirable
estimating robot orientation, a second camera is added. This
solution is inspired by two recent works, in which a method
called visual compass was proposed to estimate rotational
information from omnidirectional cameras.20, 24 The visual
compass technique is based on the use of a camera mounted
vertical to the ground on a mobile robot. Then, a pure rotation
on its vertical axis results in a single column-wise shift of
the appearance in the opposite direction. In this way, the
rotation angle is retrieved by matching a template between
the current image (after rotation) and the previous one (before
rotation).20

In this section, the steps carried out to estimate the
robot location using visual odometry based on the template
matching method are explained. Our strategy takes two
image sequences as input. One image sequence comes from
a single standard camera pointing at the ground under the
robot, and the second one comes from a camera looking at
the environment. The former is employed to estimate the
robot longitudinal displacement (Section 2.2), and the latter
is employed to estimate the robot orientation (Section 2.3).
Firstly, the mathematical formulation of template matching
is briefly described in the following subsection.

2.1. Template matching
The template matching method is defined as the process
of locating the position of a sub-image inside a larger
image. The sub-image is called the template and the larger
image is called the search area.22, 23 This process involves
shifting the template over the search area and computing
the similarity between the template and a window in the
search area. This is achieved by calculating the integral of
their product. When the template matches, the value of the
integral is maximized. There are several methods to address
the template matching, see refs [28 and 29] for a review.
Here, the cross-correlation solution has been implemented
(a trade-off was realized comparing different methods and
the best result, fewer false matches, was obtained using the
cross-correlation approach). It is based on calculating an
array of dimensionless coefficients for every image position
(s, v) as22, 29

R(s, v) =
h−1∑
i=0

�−1∑
j=0

(T (i, j ) − T̄ (i, j ))(I (i + s, j + v)

−Ī (i + s, j + v)), (1)

where h ∈ R
+ and � ∈ R

+ are the height and the width
of the template, respectively, T (i, j ) and I (i, j ) are the pixel
values at location (i, j ) of the template and the current search
area, respectively, and T̄ (i, j ) and Ī (i, j ) are the mean values
of the template and current search area, respectively. These
mean values are calculated as

T̄ (i, j ) = 1

(�h)

h−1∑
a=0

�−1∑
c=0

T (a, c), (2)
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Fig. 1. (Colour online) Visual odometry based on template matching using a camera pointing at the terrain under the robot.

and

Ī (i + s, j + v) = 1

(�h)

h−1∑
a=0

�−1∑
c=0

I (a + s, c + v). (3)

Now, in order to avoid changes in the brightness between
the template and the current image, every correlation
coefficient is normalized.28 For that purpose, it is divided
by the standard deviation

N(s, v) =
√√√√

h−1∑
i=0

�−1∑
j=0

T(i, j )2I(i + s, j + v)2, (4)

where T(i, j ) = T (i, j ) − T̄ (i, j ) and I(i + s, j + v) =
I (i + s, j + v) − Ī (i + s, j + v).

Finally, the normalized cross-correlation becomes

R̃(s, v) = R(s, v)

N(s, v)
. (5)

Notice that the value of R̃ changes between −1 and +1,
and the closer the R̃ to +1, the more similar the template and
the current image. For that purpose, the best match is defined
as

R̃M = max(R̃(s, v)), (6)

where R̃M is the maximum value of the array R̃ and (sM, vM )
is the position of that point.

2.2. Estimating robot displacement
This subsection focuses on the estimation of the robot
longitudinal displacement using the images taken by the
camera pointing at the ground.

As shown in Fig. 1, at sampling instant, t = τ − 1, the
robot takes a picture of the ground under it. At the following
sampling instant, t = τ , the template matching approach is
employed to find a defined template from the previous image

in the current image. Finally, the pixel displacement (�s,
�v) is calculated as

�s = Tx − sM,

�v = Ty − vM, (7)

where �s ∈ R, �v ∈ R are the longitudinal and lateral pixel
displacements from the image sequence taken by the camera
pointing at the ground, (Tx, Ty) is the position of the top left
corner of the template (rectangle region centered at previous
image), and (sM, vM ) is the point of maximum correlation
(see Eq. (6)). Notice that, for notational convenience, the
time dependence on previous variables has been omitted.

Afterwards, camera units must be translated to physical
world units using the camera calibration parameters,

�x = �s
Z

f
g
x

,

�y = �v
Z

f
g
y

, (8)

where �x ∈ R, �y ∈ R are the camera longitudinal and
lateral displacements in physical world units, respectively,
Z ∈ R

+ is the height of the camera above ground (see
Assumption 1), and f

g
x ∈ R, f

g
y ∈ R are the focal lengths

of the camera pointing at the ground.

Assumption 1. It is assumed that the distance between the
camera and the ground is almost constant (see Remark 1).

Remark 1. We would like to remark that although on non-
smooth surfaces the distance between the downward camera
and the ground is not fixed due to vibrations, it is reasonable
to assume this variation as zero or zero-mean, since such
little oscillations are cancelled out during the experiment.30

Notice that on a rougher surface an IMU sensor or a laser
sensor should be used to estimate the height of the camera,
leading to a 3D localization.27 Recently, a novel approach
consists in using telecentric cameras.31 These cameras are
electronically modified in such a way that the lens keeps the
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same field of view, regardless of the distance between the
camera and the ground. Another possibility is to implement
a 3D visual compass approach.32

Finally, the location of the robot along time is given by
(see Remark 2)

xvo(k) = xvo(k − 1) + �x(k) cos (θvo(k)),

yvo(k) = yvo(k − 1) + �x(k) sin (θvo(k)), (9)

where [xvo yvo]T ∈ R
2 is the robot position. The estimation

of the robot orientation (θvo ∈ R) is addressed in the
following subsection.

Remark 2. Notice that the robot orientation can be
calculated using the information from the camera pointing
at the ground. In this case, it is obtained as27

�θ̂ = arctan(�y, l), (10)

where �θ̂ ∈ R is the increment in robot orientation, and
l ∈ R

+ is the distance between the camera and the robot
center (see Fig. 1). Then the orientation at each sampling
instant is given by

θ̂ vo(k) = θ̂ vo(k − 1) + �θ̂ (k). (11)

However, the resulting orientation is extremely sensitive to
systematic errors, such as inaccurate distance between the
camera and the ground plane, inaccurate distance between
the camera and the center of the robot, and false matches.
These drawbacks cause that orientation becomes less and
less accurate at each step.20 In order to minimize such effects,
the visual compass technique is employed in this work.

2.3. Estimating robot orientation: visual compass
The application of the visual compass technique to calculate
the robot orientation is explained in this subsection. The
visual compass approach was recently presented as a new
way to estimate the robot orientation using vision. It was
firstly presented in ref. [24], and it has been mainly applied
to omnidirectional camera systems.20, 33

The visual compass technique is also based on the template
matching procedure to estimate the pixel displacement
between two consecutive images. The difference is that now
a camera looking at the environment (“panoramic view”) is
employed. In this way, a change in the robot orientation
means an unidirectional pixel displacement between two
consecutive images (see Fig. 2). The procedure consists of
first obtaining the maximum correlation point between both
images using Eq. (6), and secondly, calculating the pixel
displacement (only in one direction) between the top left
corner of the template and the maximum correlation point,
that is,

�u = Ty − vM, (12)

where �u ∈ R is the pixel displacement from the image
sequence taken by the camera looking at the environment.
Finally, the rotation of the robot, �θ ∈ R, supposing that the

Fig. 2. (Colour online) Visual compass approach using a camera
looking at the environment.

camera is mounted in the center of the robot, is given by

�θ = arctan(�u, f e
x ), (13)

f e
x ∈ R being the focal length of the camera looking at the

environment. Then the orientation along time is given by (see
Assumptions 2 and 3)

θvo(k) = θvo(k − 1) + �θ(k). (14)

Assumption 2. It is assumed that the robot is moving on a
static environment. In this way, there are no moving objects
appearing in the panoramic camera.

Assumption 3. It is assumed that the mobile robots
considered in this work move at low velocities, what implies
that parallax effects are negligible. For a further discussion
on this issue, see ref. [20].

Summing up, the localization scheme presented here based
on visual odometry and visual compass operates as follows:

(1) Acquire a pair of consecutive frames from each camera.
(2) Select the template from images taken at time t = τ − 1.
(3) Match the template with the current image (t = τ ) by

using Eq. (1). Normalize the result by using Eq. (5).
(4) Estimate the pixel displacement between the template

and the maximum correlation point with Eq. (7).
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(5) Translate from camera plane to world plane using the
camera calibration parameters by means of Eq. (8).

(6) Compute the rotation angle using the visual compass
method using Eq. (13).

(7) Estimate the robot location using translation information
given by the camera pointing at the ground with Eq. (9),
and the rotation angle given by the camera looking at the
environment with Eq. (14).

(8) Repeat from Step 1.

3. Implementation Issues
In this section, the computational aspects of template
matching (Section 3.1) and the selection of the search area
and template sizes (Section 3.2) are discussed.

3.1. Computational aspects of template matching
This subsection discusses some experiments carried out to
select the most appropriate template/search area size for a
satisfactory performance of the correlation algorithm and
proper computation time.

The main drawback of template matching approach is its
computation cost, since the template has to be slid over the
whole search area. In the general case, the detection of a
single template Tm×m within a image In×n by means of a
matching process is O = m2(n − m + 1)2.22 For that reason,
two important issues to be investigated are the template size
and the search area size.

Notice that here the possibility of speeding up the
matching process from an algorithmic point of view is not
considered. This subsection only deals with determining
the template/search area size to reach a trade-off between
performance and computation time.

Firstly, the proper template size is studied, and later on,
a way to reduce the search area is analyzed. In this way,
the template is obtained as a reduced squared window of the
image taken at sampling instant τ − 1. The template origin
has been established in the image center, and the top left
corner of the template is located at27

T q(s) = Wq

2
− T

q
size

2
,

T q(v) = Hq

2
− T

q
size

2
, (15)

where T q(s, v) is the top left corner of the template, q refers
to the images taken by the camera pointing at the ground
(q = g) and to the camera looking at the environment (q =
e), Wq ∈ R

+ and Hq ∈ R
+ are the width and height of the

original image, respectively, and

T q
size = 1

ρq
Hq, (16)

is the template size being ρq ≥ 1, a reduction factor
experimentally tuned (it is explained subsequently).

Notice that the larger the template, the smaller the
probability that it is matched in the search area. This means
that if a too large template is selected, it cannot be possible to

find it in the following image. On the contrary, the smaller the
template, the higher the probability to fail into false matches.
That is, if a too small template is selected, several areas of
the following image can match with that template.

As commented previously, the second way to speed up
the correlation matching process consists in using a reduced
window of the original image instead of the whole image.
Such reduced search area is given by

Winq
w = 1

λq
Wq,

Win
q

h = 1

λq
Hq, (17)

where Winq is the size of the new reduced image, and λq ≥ 1
is a reduction factor tuned experimentally (it is explained
subsequently). Then the reduced image will start at the point
Winq(s, v) and it will have a size of Win

q
w × Win

q

h. The top
left corner of the new image is

Winq(s) = Winq
w − Win

q
w

λq
,

Winq(v) = Win
q

h − Win
q

h

λq
. (18)

In this way the computation time is decreased, since
correlation process is carried out over a smaller image as
shown in the following subsection.

3.2. Selection of the search area and template sizes
Before carrying out physical experiments, the effect of
the template and image sizes on the computation time
has been analyzed. Image sequences taken during physical
experiments are also employed here (see Fig. 7). Notice that
experiments have been carried out on a computer Intel Core
2 Duo 2.5 GHz with 3.5 GB RAM using OpenCV (Version
1.1).28

Figure 3 shows the resulting computation time varying the
template and image sizes (“Mean” is the mean computation
time of the sequence of images and “Std” denotes the
standard deviation). Here the template and image sizes
of the image sequence employed by the visual compass
method are fixed to ρe = 4 and λe = 1.7 for Eqs. (16)
and (17), respectively. As observed, larger template size
(smaller ρg) implies that the computation time is lower.
When the matching process is applied over a smaller search
area (larger λg), the computation time also decreases. The
computation time when images do not have any reduction
(black triangles) is also displayed. From this analysis,
the following reduction factors ρg = 3 and λg = 1.2 have
been selected, since they constitute a compromise between
suitable computation time (< 0.2 s) and success in the
matching process. It is important to remark that although
smaller reduction factors can be considered, these reduced
search areas lead to an unfeasible matching process. This
means that for the experiments carried out in this work if
smaller search areas were considered, the number of false
matches increases to unsuitable values, and robot location
cannot be reliably estimated.
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Fig. 3. (Colour online) Analysis of template and image sizes on computation time (images from camera pointing at the ground). The size
of the images from the Pancam is fixed.

Notice that, as remarked in ref. [27], there is another
important parameter to be considered in the selection of the
template size, that is, the robot velocity. It is experienced
that a smaller template size permits a high robot velocity,
and a large template size limits the robot velocity. Regarding
this issue, the images used for the experiment displayed in
Fig. 3 were collected for a robot velocity that ranges between
0.4 m/s and 0.5 m/s. Nevertheless, the selected template and
image sizes still work properly for small variations of those
velocities.

4. Results
In this section, the physical experiments carried out to
localize a tracked mobile robot using the suggested visual
odometry approach are discussed. In this case, the robot was
teleoperated on a sunlit illuminated off-road terrain. For com-
parison purposes, we collected vision data (cameras), global
position (DGPS), odometry data (encoders), and absolute
orientation (magnetic compass). The frames were grabbed
at 5 Hz and the robot velocity ranged between 0.4 m/s and
0.5 m/s. Notice that for the kind of applications in which
our mobile robot will be applied (greenhouse tasks),14 these
are considered an appropriate sampling period and velocity
range. Here the DGPS and the magnetic compass data
are considered as ground-truth for position and orientation,
respectively. Notice that the position obtained using the
DGPS is translated to relative position. For this purpose,
the global position (latitude/longitude) was converted to
Universal Transverse Mercator (UTM) grid system.7

We have tried several experiments. In this case, we firstly
present a physical experiment in which the robot was driven
along a squared trajectory where the total travelled distance
was close to 160 m. After that, we discuss a S-shaped
trajectory with a total travelled distance close to 290 m.
Finally, we show a circular trajectory in which the total
travelled distance was 65 m.

4.1. Testbed
The robot available at the University of Almerı́a (Spain) is
a tracked mobile robot called Fitorobot (see Fig. 4).14 The
mobile robot has a mass of 500 kg and its dimensions are

Fig. 4. (Colour online) Tracked mobile robot Fitorobot at the
experiment site. Observe the position of the two cameras on the
robot.

1.5-m long × 0.7-m wide. It is driven by a 20-HP gasoline
engine.

We have employed two consumer-grade cameras, Logitech
2 Mpixel QuickCam Sphere AF webcam with maximum
frame rate of 30 fps. In this case, a resolution of 640 × 480
has been employed. For calibration purposes, the Matlab’s
camera calibration toolbox has been used.34

The rest of sensors were one magnetic compass (C100,
KVH Industries Inc.), two incremental encoders (DRS61,
SICK AG), and one DGPS (R100, Hemisphere). The
performance of the DGPS under motion is about 0.20 m.
The resolution of the magnetic compass is 0.1o.
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Fig. 5. (Colour online) Images taken by the camera pointing at the ground (velocities > 1 m/s): (a) Blur effect (flat terrain); (b) vibrations
effect (bumpy terrain).

Notice the position of the cameras for visual odometry
(circles) in Fig. 4. The camera looking at the environment
was mounted on the top center of the robot. The camera
pointing to the ground in front of the robot is in the middle
of both tracks at a height of 0.49 m and the distance between
the camera and the robot center is 0.9 m.

4.2. Preliminary experiments: shadows and blur
phenomenon
From physical experiments, it was noticed that when
the robot moves at velocities greater than 1 m/s on flat
terrains, blur phenomenon corrupts the images taken by
the camera pointing at the ground (see Fig. 5(a)). Blur
phenomenon occurs when an image is captured while the
camera is moving during the exposure time or shutter
time.35 This phenomenon constitutes a difficult issue to
be removed and elaborate solutions have to be considered
to minimize its influence. For instance, in ref. [36],
authors formulate a learning policy as a trade-off between
the localization accuracy and the robot velocity. In ref.
[35], authors propose to carry out a preprocessing step
before detecting features in the image. In this work, a
preprocessing of the images, such as an enhancing filter, is

not appropriate, since it would mean to raise the computation
time assigned to the vision algorithm. Bounding the robot
velocity can be a successful solution; however, it would
entail a certain degree of conservativeness for the motion
controllers.

In relation to the image shown in Fig. 5(b), it is also
interesting to remark that blur phenomenon is stressed by
the vibrations affecting the mobile robot. It is a difficult issue
to be removed, since the tracked mobile robot employed for
physical experiments has a limited suspension mechanism
that produces unavoidable vibrations on the robot structure.
In conclusion, as a first approach in this work, visual
odometry was employed when the robot was moving at
velocities lower than 1 m/s.

Another important issue observed from outdoor physical
experiments is the problem found in environments with
changing lighting conditions, which can lead to shadows in
the images taken by the camera pointing at the ground (see
Fig. 6). After analyzing many experiments, it was concluded
that when there are shadows in the images, the risk for false
matches increases highly. For this reason, this phenomenon
has been deeply studied and two approaches to minimize its
effect have been proposed.

Fig. 6. (Colour online) Position and image acquired by groundcam with shadows. (a) Height of the groundcam. (b) Shadows in the
groundcam.
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Fig. 7. (Colour online) Result of template matching in the experiment site (gravel soil). (a) Panoramic view. (b) Ground view.

First, the position and the height of the camera pointing at
the ground were studied carefully. In this case, the camera
was mounted in front of the robot between both tracks at a
height of 0.49 m, see Fig. 6(a). This distance was obtained as
a trade-off between shadow-reduction and template matching
performance, that is, higher distance leads to more features
but shadows can appear. On the contrary, shorter distance
corresponds to smaller field of view, where the probability
of shadows in the images is reduced. However, it can lead to
featureless images.

Secondly, a threshold filter has been tuned. It compares
the current pixel displacement with the previous ones; if
the difference is greater than the threshold (experimentally
selected), then the current value is considered as an outlier.
In this way, these peaks or outliers, due to false matches, are
partially compensated. As shown in the following subsection,
this filter works properly and requires a small computation
time.

4.3. Physical experiments in off-road conditions
Several trajectories were tested to check the performance
of the suggested localization approach. In this case, three
experiments were selected. In the first one, the robot was
driven along a rectangular trajectory of approximately 55-m
long and 20-m wide. The total travelled distance was close
to 160 m. In the second experiment, the robot was driven
along an S-shaped trajectory with three parallel paths to the
x-axis of 80 m and two perpendicular paths of 20 m. The
total travelled distance was close to 290 m. Finally, a circular
trajectory is selected, the total travelled distance was close to
65 m. Notice that trajectories similar to those selected here
are usually employed in off-road mobile robotics, see, for
instance, refs. [12, 20, 27]. The sampling period was Ts =
0.2 s and the robot velocity ranged between 0.4 m/s and 0.5
m/s.

The compared localization techniques are visual odometry
with visual compass trajectory (denoted as “VO + VC”
in the figures), visual odometry using only the downward
camera (see Remark 2; referred to as “VO”), and the wheel-
based odometry (denoted as “Odo”). The position ground-
truth comes from a DGPS (labelled as “DGPS”), and the

orientation ground-truth comes from a magnetic compass
(denoted as “Compass”).

4.3.1. Experiment 1. Rectangular trajectory. In this
experiment, the robot was manually driven on a sunlit
illuminated gravel terrain following a rectangular trajectory.
In this case, the lighting conditions did not produce any
significant shadows during the experiment.

Figure 7 shows two frames employed by the vision-based
localization technique during this experiment. The pixel
displacement is marked by the green line and the red circle,
the template is labelled by the blue rectangle, and the black
rectangle means the reduced area in which the matching
process is carried out.

Figure 8 shows the resulting trajectories. It is observed that
the visual odometry with visual compass trajectory closely
follows the ground-truth, while the wheel-based odometry
estimate diverges largely from the ground-truth, particularly
odometry fails at turns. The trajectory obtained using the
image sequence from the camera pointing at the ground to
estimate orientation is also plotted, and it has a similar result
to that obtained using the approach combining information
from both cameras (visual odometry with visual compass).

A deeper analysis is obtained looking at Fig. 9. Here,
the error between each localization method and the ground-
truth is shown quantitatively. In this case, the Euclidean
distance between the initial and the final positions of the
robot in the four parts of the trajectory is calculated, that
is, two parallel paths to the x-axis (Parts 1 and 3) and two
perpendicular ones (Parts 2 and 4). From these data, it is
observed that the visual odometry with the visual compass
approach achieves the smallest error. Another vision-based
technique also achieves an admissible error. The relative
mean errors with respect to the total travelled distance are
1.45% for visual odometry with visual compass, 2.33% for
visual odometry alone (using only the downward camera),
and 16% for wheel-based odometry.

Figure 10 displays the orientations. Here, it is checked that
the orientations obtained through the visual odometry-based
approaches follow properly the ground-truth. The mean ori-
entation errors are 8.2o for visual odometry with visual com-
pass, 14.1o for visual odometry, and 39.37o for wheel-based
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Fig. 8. (Colour online) Experiment 1. Rectangular trajectory.
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Fig. 9. (Colour online) Experiment 1. Comparison of the Euclidean
distance with respect to the ground-truth.

odometry. In this figure, it is possible to observe the
unavoidable error growth phenomenon for odometry-based
solutions, that is, the deviation between the ground-truth and
the rest of techniques increases along the travelled distance
(integration of the noises and the error over time).

In Fig. 11, the longitudinal (�s) and lateral (�u) pixel
displacement values related to the visual odometry with the
visual compass approach are shown. Notice that values close
to zero mean small displacements (low velocity), and high
values mean large displacements (high velocity). In this plot,
it is observed that the points are aligned in two directions,
being this effect due to the pixel displacements during straight
motions, �s component, and during turns, �u component.
It is checked that template matching is highly robust with
few outliers (false matching or unsuccessful matching). It is
important to point out three interesting conclusions from this
plot. Firstly, since the robot always turns in the same sense (to
the left side), lateral pixel displacement (�u) is also aligned
in one direction. Secondly, when the robot is turning, it does

0 20 40 60 100 120 140 16080

0

50

100

150

200

250

300

350

270

Orientations

Travelled distance (m)

O
rie

nt
at

io
n 

(d
eg

)

 

 

VO
VO + VC
Compass
Odo

Fig. 10. (Colour online) Experiment 1. Orientations.
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Fig. 11. (Colour online) Experiment 1. Lateral and longitudinal
pixel displacements (VO + VC).

not move forward, since, as observed, �s is close to zero at
turns. Finally, note that in the range �s = (−20, −40) pixel,
�u is zero, which means the moment in which the robot is
stopping before turning.

4.3.2. Experiment 2. S-shaped trajectory. In this experiment,
a longer trajectory, in which the robot changed direction
several times, was tested. Furthermore, in some parts of the
experiment site, the lighting conditions produced shadows
that affected the performance of the vision-based localization
strategies.

Figure 12 shows the resulting trajectories. It is observed
that the visual odometry with the visual compass trajectory
does not follow accurately the ground-truth mainly for one
reason. As checked during the first perpendicular path to
the x-axis and the second parallel path, the trajectory is
shorter than the ground-truth. This fact is due to false matches
obtained from the camera pointing at the ground caused by
shadows (see Fig. 15(b)). This erroneous behavior is worst
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Fig. 12. (Colour online) Experiment 2. S-shaped trajectory.

in the case of visual odometry alone, since, now, longitudinal
displacement and orientation are obtained from the camera
pointing at the ground. The largest deviation is obtained
during the first perpendicular path to the x-axis. Again, the
wheel-based odometry diverges largely from the ground-
truth, particularly, odometry fails at turns.

In Fig. 13, the error between each localization technique
and the ground-truth is displayed. In this case, the Euclidean
distance between the initial and the final position of the robot
is calculated in five parts, that is, three parallel paths to
the x-axis (Parts 1, 3, and 5) and two perpendicular ones
(Parts 2 and 4). As expected, the visual odometry with visual
compass approach obtains an admissible error except during
the second and the third paths. The relative mean errors
with respect to the total travelled distance are 2.46% for
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Fig. 14. (Colour online) Experiment 2. Orientations.

visual odometry with visual compass, 7.60% for wheel-based
odometry, and 19.50% for visual odometry.

In Fig. 14, the orientations are plotted with respect to
the travelled distance. Here the erroneous behavior of the
visual odometry approach during the first parallel path to
the x-axis is noticed. The visual odometry with the visual
compass approach estimates the orientation properly and
follows the ground-truth. The mean orientation errors are 4.8o

for visual odometry with visual compass, 10.2o for wheel-
based odometry, and 148.2o for visual odometry. The mean
orientation error for the case of visual odometry cannot be
considered as a comparable value, since it has a large standard
deviation.

In Fig. 15(a), the longitudinal (�s) and lateral (�u) pixel
displacement values are shown. In contrast to the previous
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Fig. 13. (Colour online) Experiment 2. Comparison of the Euclidean distance with respect to the ground-truth.
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Fig. 15. (Colour online) Experiment 2. Template matching using both cameras. (a) Lateral and longitudinal displacement. (b) Longitudinal
displacement (groundcam).

experiment, now the pixels related to the lateral displacement
(�u) are aligned in two directions (right and left turns).
Notice that the turns to the right side were carried out at higher
linear velocity than the turns to the left side. In this case, there
are some outliers, when the robot moved in straight line
(�s < −40 pixel), which can explain the small deviation
obtained at the end of the first parallel path to the x-axis (see
Fig. 12). On the other hand, in Fig. 15(b), the longitudinal
pixel displacements (�s) with respect to the acquired images
are displayed. As noticed, during the samples (1200, 1600),
there is an erroneous behavior (false matches). This behavior
explains why the trajectories obtained with the vision-based
approaches are shorter than the ground-truth during the first
perpendicular path to the x-axis. The false matches found
in the interval (2300, 2800) explain why the trajectories are
shorter than the ground-truth during the second parallel path
to the x-axis.

A deeper understanding of the erroneous behavior of the
visual odometry approach is obtained by analyzing Fig. 16.
Recall that, for the case of visual odometry alone, the
robot orientation comes from the lateral pixel displacement
obtained from the camera pointing at the ground (see
Remark 2). As checked in Fig. 16(a), many outliers appear in
the �v component; compare it with the visual compass pixel
displacement (�u) obtained from the camera looking at the
environment in Fig. 15(a). In Fig. 16(b), notice that these
outliers occur within two intervals in which false matches
appeared due to shadows (see Fig. 15(b)).

4.3.3. Experiment 3. Circular trajectory. Finally, a circular
trajectory was tested in order to check the performance
of the proposed localization strategies estimating the robot
orientation. The most challenging issue about this experiment
is that the robot is always turning and, hence there are always
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Fig. 16. (Colour online) Experiment 2. Template matching process using groundcam. (a) Lateral and longitudinal displacement. (b) Lateral
displacement (groundcam).
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Fig. 17. (Colour online) Experiment 3. Orientations.

shadows in the images obtained from the camera pointing at
the ground. Furthermore, this circular trajectory highlights
the main inconvenience of the odometry-based localization
techniques, that is, the integration of the orientation from the
starting point that leads to inaccurate robot localization for
long-range circular trajectories.

In Fig. 17, the orientations obtained during the test are
shown with respect to the travelled distance. As advised, the
typical effect of the odometry-based solutions is observed.
Notice that the orientation obtained using the odometry-
based techniques diverges from the ground-truth (recall that
the experiments were carried out in open-loop). However,
it is interesting to remark that acceptable behavior of the
orientation is obtained using the visual compass technique.
For instance, note that outliers and mismatches highly affect
the estimated orientation using only the camera pointing
at the ground. The mean errors between the ground-truth
and orientation are 15.02o for visual odometry with visual
compass, 40.43o for visual odometry, and 107.84o for wheel-
based odometry.

Figure 18 shows the resulting trajectories. From this figure,
it is possible to understand the effect of the orientation
integration in the odometry-based localization techniques. In
this way, small orientation deviations lead to a high error in
the position along time and distance. However, it is important
to remark the acceptable behavior of the visual odometry with
the visual compass technique for the first 20 m. As observed
in previous experiments, the Euclidean distance with respect
to the ground-truth is calculated. In particular, the mean errors
with respect to the total distance travelled are 2.77% for the
visual odometry with visual compass, 4.61% for the visual
odometry, and 10.92% for wheel-based odometry.

As observed in Fig. 19, the template matching result for
the camera pointing at the ground (denoted as “Groundcam”)
suffers from outliers and false matches, especially at the
end of the experiment. This explains the behavior observed
in Fig. 17. The images employed by the visual compass
approach (labelled as “Pancam”) are not affected by shadows,
and hence there are no significant outliers during the
matching process.
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Fig. 18. (Colour online) Experiment 3. Circular trajectory.
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Fig. 19. (Colour online) Experiment 3. Lateral pixel displacements
(groundcam and pancam).

In conclusion, Table I summarizes the most important
data from the physical experiments. In this case, the mean
error with respect to the DGPS and the total travelled
distance, and the mean error with respect to the magnetic
compass are shown. In particular, it is interesting to point out
the satisfactory results obtained using the visual odometry
with the visual compass approach. Recall that in this
particular case, two consumer-grade cameras can replace
more expensive sensors, such as encoders, Doppler radar,
IMU, gyroscopes, etc.

5. Conclusions and Discussion
In this paper, we have shown the application of a visual
odometry technique based on template matching to off-road
mobile robots localization. Standard visual odometry (using
a single camera) has been improved using the visual compass
method. This strategy has been implemented using two
consumer-grade monocular cameras. Physical experiments
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Table I. Summary of localization methods.

Feature
Trajectory Rectangular S-shaped Circular

Total travelled distance (m) 160 290 65

Mean error (DGPS) (%) Odo 16.00 7.60 10.92
VO 2.33 19.50 4.61
VO + VC 1.45 2.46 2.77

Mean error (compass) (deg) Odo 39.37 10.2 107.84
VO 14.1 148.2 40.43
VO + VC 8.2 4.8 15.02

have confirmed the appropriate behavior of the proposed
scheme with a mean error lesser than 3% with respect
to the total travelled distance. Furthermore, an acceptable
computation time (<0.17 s) has been achieved taking into
account the purposes of our testbed. However, it is important
to remark that the current code can be highly optimized.

The point related to reduce the size of the search area
during the matching process can be considered as an
incipient approach to decrease the computation time. The
best improvement in which we are currently working consists
of using the robot motion to reduce accordingly the image
size and to estimate the position of the template during
the matching process. We are also considering it in terms
of a multi-objective problem (success of matching process,
reduction of template size, and reduction of image size).

The problem with shadows and blur phenomenon, and
hence with false matches, constitutes the most important
shortcoming of the vision-based localization techniques. In
this work, a deep analysis has been carried out to minimize
these issues. The height of the downward camera was
carefully selected and a threshold filter was tuned. Currently,
we are investigating two ways to minimize such undesirable
effects. Firstly, mounting the downward camera just under
the vehicle and using an artificial uniform source to light
the ground (shadows issue), and secondly, acquisition of a
new camera with a shorter exposure time (blur phenomenon
issue).

On the other hand, probabilistic techniques, such as the
Kalman filter or particle filter, will be employed fusing
the orientations obtained using visual compass and an
absolute orientation sensor. In this way, we will reduce the
unavoidable error growth of relative localization techniques.

Finally, we will study to improve the planar motion
assumption (fixed height of the camera pointing at the
ground) employing an IMU sensor or a telecentric camera.
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