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Background. Drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) are
present in some antiretroviral therapy (ART)–naive patients. They may result from de novo mutagenesis or trans-
mission. To date, the latter has not been proven.

Methods. MVs were quantified by allele-specific polymerase chain reaction in 204 acute or recent seroconvert-
ers from the Zurich Primary HIV Infection study and 382 ART-naive, chronically infected patients. Phylogenetic
analyses identified transmission clusters.

Results. Three lines of evidence were observed in support of transmission of MVs. First, potential transmitters
were identified for 12 of 16 acute or recent seroconverters harboring M184V MVs. These variants were also detected
in plasma and/or peripheral blood mononuclear cells at the estimated time of transmission in 3 of 4 potential trans-
mitters who experienced virological failure accompanied by the selection of the M184V mutation before transmis-
sion. Second, prevalence between MVs harboring the frequent mutation M184V and the particularly uncommon
integrase mutation N155H differed highly significantly in acute or recent seroconverters (8.2% vs 0.5%; P < .001).
Third, the prevalence of less-fit M184V MVs is significantly higher in acutely or recently than in chronically HIV-
1–infected patients (8.2% vs 2.5%; P = .004).

Conclusions. Drug-resistant HIV-1 MVs can be transmitted. To what extent the origin—transmission vs spora-
dic appearance—of these variants determines their impact on ART needs to be further explored.

Keywords. HIV-1; primary HIV-1 infection; drug resistance; transmission; drug-resistant HIV-1 minority vari-
ants; prevalence; allele-specific real-time PCR.

Drug resistance testing is recommended before first-
line antiretroviral therapy (ART) [1]. Routine genotypic
resistance testing is based on population sequencing,

thus, missing minority variants (MVs) at levels <20%–
25% of the virus population [2, 3]. Although the im-
pact of drug-resistant human immunodeficiency virus
type 1 (HIV-1) MVs on the success of ART is still
debated [4], a substantial number of ART-naive pa-
tients harbor such variants, which can lead to rapid se-
lection of drug-resistant viruses and subsequent
treatment failure especially in the context of regimens
with a low genetic barrier to resistance [5–7].

Drug-resistant HIV-1 MVs can be frequently detected
in acutely or recently HIV-1–infected patients [8–13].
They may appear due to de novo mutagenesis [14] or
result from transmission, as assumed by others and our
group [11, 12, 15, 16], Transmission of MVs, however,
has not been proven so far.
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In this study we analyzed large data sets of drug-resistant HIV-1
MVs in acutely or recently and chronically HIV-1–infected pa-
tients, compared their frequencies in and within both groups, and
performed phylogenetic transmission cluster analyses providing
several lines of evidence that transmission of MVs occurs.

METHODS

Patients and Study Design
Between March 2002 and February 2011, plasma samples from
204 patients from the Zurich Primary HIV Infection (ZPHI)
cohort were obtained from ethylenediaminetetraacetic acid–
treated blood samples collected at the earliest available time point
during acute or recent infection and before initiation of ART.
The ZPHI study is an observational, open label, nonrandomized,
single center study (www.clinicaltrials.gov; ID NCT00537966) [9,
17, 18]. Acute and recent HIV-1 infection were defined as de-
scribed in detail elsewhere [18]. In addition, 382 samples from
treatment-naive, chronically infected patients from the Swiss
HIV Cohort Study (SHCS) were analyzed. Plasma samples were
collected between October 1994 and June 2008. The SHCS has
been approved by ethical committees from all participating insti-
tutions, and written informed consent has been obtained from all
individuals [19]. Peripheral blood mononuclear cells (PBMCs)
were obtained from potential transmitter-recipient pairs.

Viral Load and Resistance Testing
The plasma HIV-1 viral load was quantified using the Cobas
AmpliPrep/Cobas TaqMan HIV-1 Test, versions 1 and 2.0
(Roche Diagnostics) with detection limits of 40 and 20 HIV-1
RNA copies/mL plasma, respectively. Genotypic resistance
testing was performed by population sequencing (ViroSeq
version 1 [PE Biosystems]; ViroSeq version 2 [Abbott], and vir-
coTYPE HIV-1 Assay [Virco Laboratory]) and in-house
methods [20]. Drug resistance mutations were defined as rec-
ommended by the International Antiviral Society–USA Drug
Resistance Mutations Group and the surveillance drug resis-
tance mutations list [21, 22]. Proviral DNA copy numbers were
determined by quantitative polymerase chain reaction (PCR)
amplification of part of the HIV-1 gag gene and the single copy
gene CCR5 (CC chemokine receptor 5) and then calculated per
106 genomic equivalents.

Allele-Specific Real-Time PCR for Quantification of K103N,
Y181C, M184V, and N155H Drug-Resistant HIV-1 MVs
Viral RNA and DNA from 0.5–1 mL plasma and PBMCs, re-
spectively, were analyzed by allele-specific PCR (AS-PCR)
quantifying MVs. The AS-PCR assays for the K103N, Y181C,
and M184V mutations have been described elsewhere [7, 10,
23], and the N155H AS-PCR is described in the Supplementary
data. The PCR conditions, amplicon purification, and data
analysis are described elsewhere [9, 10, 23], and the K103N

AS-PCR has been further validated in a blinded, multicenter
comparison of sensitive methods for detecting MVs [24]. Each
AS-PCR has a dynamic range of 6 logs and a detection limit of
10 HIV-1 DNA copies per reaction. The discriminatory abilities
were 0.01% for the K103N-, 0.2% for the Y181C- and M184V-,
and 0.3% for the N155H mutation. However, to compare the
prevalences of those MVs in different patient groups, we chose a
similar cutoff of 0.3% for all MVs. A detailed description of the
establishment and validation of the AS-PCR assays, including
their discriminatory abilities and the calculation of the limit of de-
tection in samples with viral loads <8334 HIV-1 RNA copies/mL
(ie, not reaching the cutoff of 0.3%) are given in Supplementary
Figures 1 and 2 and Supplementary Table 1.

C2-V3-C3 Loop Sequencing
Clonal sequencing of C2-V3-C3 env fragments was performed
as described elsewhere [18], and population sequencing of
C2-V3-C3 env fragments was performed using the same
conditions.

Phylogenetic Analyses
All available HIV-1 pol sequences (in total 18 586 sequences
obtained from the SHCS drug resistance database [25]) were
aligned using the profile HMM method (hmmalign, HMMER
version 3.0; http://hmmer.janelia.org [26]) and used to calculate
a distance matrix with DNADIST software employing the F84
model with a transition-transversion ratio of 2.0 (PHYLIP Phy-
logeny Inference Package version 3.69; distributed by
J. Felsenstein, Department of Genetics, University of Washing-
ton, Seattle). A total of 2206 sequences were selected, based on
their genetic distance <1.5% from any of the ZPHI sequences,
and used to search for potential transmission clusters. Neigh-
bor joining phylogenetic trees were inferred by the MEGA4
Tamura Nei 6-parameter model [27] and bootstrapping (1000
replications), and HIV-1HXB2 was used as the reference strain.

Statistical Analyses
Prevalences of mutations were compared with Fisher exact test,
and the Mann–Whitney U test was used for group comparison;
both tests were performed with Stata 11 SE software (Stata-
Corp). All P values are 2 sided, and the level of significance was
set at P < .05.

RESULTS

Patient Characteristics
From January 2002 through February 2011, a total of 265 pa-
tients were included in the ZPHI cohort. Genotypic resistance
testing was performed by population sequencing before ART in
all but 1 patient. Of the 3 RT drug resistance mutations tested
with AS-PCR, the Y181C and M184V mutations were not de-
tected in any patients, and the K103N mutation was detected in
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2, who were excluded from the K103N MV analysis. Drug-
resistant HIV-1 MVs were retrospectively quantified by AS-PCR
in 204 patients, of whom 181 were infected with HIV-1 subtype
B (88.7%). Sixty-one of the 265 patients were not included for
the following reasons: too many mismatches in the primer
binding sites of the AS-PCR assays (31 patients; HIV-1 non-B
subtype), no plasma sample available (14 patients), dropping out
of the study (7 patients), inability to confirm acute or recent
HIV-1 infection at the time of study entry (8 patients), and un-
detectable viral load in 1 elite controller. The AS-PCR assays
failed repeatedly in 10 (K103N), 25 (Y181C), 8 (M184V), and
11 (N155H) of 204 patients for unexplained reasons. The
M184VAS-PCR assay was not applicable in 1 patient owing to
too many primer mismatches. Baseline samples were available
for the M184V and K103N determinations for all patients
(n = 204) but not anymore for 26 patients (Y181C) and 8 pa-
tients (N155H).

Chronically HIV-1–infected patients were included from the
SHCS when they fulfilled the following criteria: (1) chronic
HIV-1 infection, as defined by the presence of a first positive
HIV test ≥6 months before sampling; (2) plasma sample avail-
able before first ART with a viral load of >1000 HIV-1 RNA
copies/mL; (3) no detection of K103N, Y181C, or M184V/I
mutation by routine genotypic resistance testing before first
ART (in 2 patients, the K103N mutation was retrospectively de-
tected as the major virus population in the plasma sample used

for AS-PCR, and these patients were excluded from the K103N
MV analysis). Plasma samples from 382 patients were analyzed
with AS-PCR; 93.7% of those patients were infected with HIV-
1 subtype B. The AS-PCR assays failed repeatedly in 47
(K103N), 10 (Y181C), 15 (M184V), and 23 (N155H) patients
for unexplained reasons. The AS-PCR assays were not applica-
ble in 9 (K103N), 4 (Y181C), and 4 (M184V) patients because
of too many primer mismatches. Baseline samples were avail-
able for the M184V and K103N determinations for all patients
(n = 382) but not anymore for 33 patients (Y181V) or 213 pa-
tients (N155H).

Transmission Clusters and Possible Transmission of Drug-
Resistant MVs
Transmission clusters were discovered by phylogenetic analysis
of 446 HIV-1 pol sequences from 262 ZPHI patients together
with 1760 related sequences, which were selected by screening
the entire SHCS drug resistance database containing all routine
genotypic resistance testing by population sequencing [25].
Sixteen ZPHI patients harbored M184V MVs, and 12 patients
could be localized in clusters together with potential transmit-
ters. These were further explored, and in 4 clusters the most
likely transmitters had a history of virological failure and selec-
tion of M184V viruses before presumed transmission. All 4 re-
cipients were classified as acutely HIV-1 infected (Fiebig stages
IV, IV, V/VI, and VI [28]; estimated time of infection, ≤90 days

Table 1. M184V-Harboring HIV-1 MVs in Plasma and PBMCs From Pairs of Recipients and Potential Transmitters

Patient ID Time Pointa (Stage)

M184VMV in Plasma

Viral Load, RNA,
Copies/mL
Plasma

M184VMV in PBMCs
Proviral

Load DNA,
Copies/106

GE
Mean ± SD,

%
RNA

Copies/mL
Mean ± SD,

%

DNA
Copies/106

GE

1A (likely
transmitter)

1 (virological failure) . . . . . . . . . 28.4 ± 0.8 5 19
2 (approx 8.4 wk after ETT) <0.3 <1641 547 000 <0.6 <1 166

ZPHI 1 3 (approx 8.6 wk after ETT;
Fiebig stage V/VI)

0.4 ± 0.0 349 87 300 <0.7 <1 143

2A (likely
transmitter)

4 (virological failure) . . . . . . . . . 34.4 ± 1.7 54 157

5 (approx 7.4 wk after ETT) 0.4 ± 0.0 676 169 000 3.0 ± 0.3 10 318

ZPHI 2 6 (approx 8 wk after ETT;
Fiebig stage IV)

0.4 ± 0.0 204 51 100 <0.8 <1 130

3A (likely
transmitter)

7 (virological failure) . . . . . . . . . <4.3 <1 23

8 (approx 14.4 wk before ETT) . . . . . . . . . 4.2 ± 0.4 12 280

9 (approx 11.6 wk after ETT) <0.3 <648 216 000 . . . . . . . . .
ZPHI 3 10 (approx 3.6 wk after ETT;

Fiebig stage IV)
0.4 ± 0.1 3720 930 000 <2.0 <1 49

4A (likely
transmitter)

11 (virological failure) . . . . . . . . . 93.6 ± 0.5 55 59
12 (approx 14.4 wk before ETT) <0.3 <780 260 000 1.9 ± 0.1 14 748

ZPHI 4 13 (approx 11 wk after ETT;
Fiebig stage VI)

0.7 ± 0.1 3290 470 000 <0.3 <2 782

Abbreviations: approx, approximately; ellipses (. . .), not performed; ETT, estimated time of transmission; GE, genomic equivalents; HIV-1, human
immunodeficiency virus type 1; MV, minority variant; PBMCs, peripheral blood mononuclear cells; ZPHI, Zurich Primary HIV Infection study.
a Time points 1–13 as indicated in Figure 2.
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before sampling; Table 1). Individual subtrees clipped from the
neighbor joining tree, including a total of 2206 sequences, show
the phylogenetic analysis of HIV-1 pol sequences of those 4
clusters (Figure 1A). The likely transmitters were confirmed by
phylogenetic analysis of their HIV-1 env C2-V3-C3 sequences
combined with clonal sequences isolated from the recipients
(Figure 1B).

Other criteria were also used to define the most likely trans-
mitters. None of the potential transmitters were receiving treat-
ment at the estimated time of transmission (Figure 2), and all
potential transmitters had a high viral load at the time of trans-
mission (Figure 2). Potential transmitter-recipient pairs be-
longed to the same risk group (men who have sex with men)
and originated from the same geographic regions.

In the following analysis, we focused on the 4 clusters that in-
cluded most likely transmitters with a history of virological
failure and the potential to transmit preselected drug-resistant

variants as MVs. All 4 potential transmitters experienced ART
failure and selected the M184V mutation as major virus popu-
lation 0.5 to 9.4 years before transmission (Figure 2). By popu-
lation sequencing, the M184V mutation was not detectable any
more during the time window of likely transmission (Figure 2);
AS-PCR was then performed on plasma samples as close as
possible to the time of transmission. The M184V mutation was
detected in 1 potential transmitter at similar levels as in the recipi-
ent (0.4%; Table 1). In the remaining 3 potential transmitters, the
M184V mutation was not detectable (<0.3%) in the plasma virus
population at the estimated time point of transmission.

Next, proviral DNA was analyzed by AS-PCR to investigate
the presence of the M184V mutation in the PBMC compart-
ment, which can retain previously replicating variants. Notably,
PBMCs from 3 of the 4 potential transmitters harbored the
M184V mutation as MVs in frequencies of 1.9%–4.2%
(Table 1). The M184V mutation was not present in proviral

Figure 1. Phylogenetic trees of human immunodeficiency virus type 1 (HIV-1) pol (A) and C2-V3-C3 env (B) sequences of acutely HIV-1–infected patients
and their potential transmitters who selected the M184V mutation before transmission. A, Individual subtrees extracted from a large neighbor joining tree
inferred from 2206 pooled HIV-1 pol sequences of all Zurich Primary HIV Infection (ZPHI) cohort patients and of all cohort patients harboring closely related
virus (genetic distance <1.5%). Potential transmitters are shown in blue, recipients in red. Open circles represent additional HIV-1–infected patients in the
clusters. HIV-1 pol sequences were obtained by routine genotypic resistance testing using population sequencing. Bar denotes 1% nucleotide divergence.
B, Neighbor joining tree constructed with clonal HIV-1 env C2-V3-C3 sequences isolated from plasma of ZPHI cohort patients and respective bulk sequenc-
es from the probable transmitters. Bootstrap values corresponding to 1000 replications are indicated beside the presumed ancestral nodes. HIV-1HXB2 was
included as outgroup. Bar denotes 5% nucleotide divergence.
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DNA from the potential transmitter 1A or in any of the 4 recip-
ients at the estimated time point of transmission (Table 1).

M184V vs N155H Mutations as MVs in Acutely or Recently HIV-
1 Infected Patients
The M184V mutation was detected as a MV in 16 of 195
acutely or recently HIV-1–infected patients (8.2%), Y181C was
detected in 4 of 153 (2.6%), K103N in 4 of 192 (2.1%), and
N155H in 1 of 185 (0.5%) (Figure 3A), at frequencies of 0.4%–

8.3%, 0.5%–0.7%, 0.83%–3.76%, and 0.9% (Figure 4A), respec-
tively. The difference between the very commonly detected mu-
tation M184 V and the particularly uncommon integrase
mutation N155H was significant (P < .001). This was also the

case when the analysis was restricted to only patients who were
infected with HIV-1 subtype B and belonged to the risk group
of men who have sex with men (P < .001; Figure 3B). Both
groups of acutely or recently HIV-1–infected patients—those
harboring and not harboring drug-resistant HIV-1 MVs—
showed no differences in CD4+ T cell count, viral load, HIV-1
subtype, sex, risk group, Fiebig staging, or time between esti-
mated time of infection and sampling (Table 2).

M184V Mutation in Acutely or Recently vs Chronically HIV-1
Infected Patients
The detection of MVs containing the K103N, Y181C, M184V,
or N155H mutation was compared in 204 acutely or recently

Figure 2. Time course analysis of potential transmission pairs. Viral load kinetics of the potential transmitter (blue circles) and the recipient (red circles)
are presented over time, and the estimated time of transmission is indicated (gray shaded area). Treatment history of the potential transmitter is depicted
(black and green lines represent antiretroviral therapy without or with lamivudine or emtricitabine, respectively) as well as the first-line antiretroviral
therapy of the recipient (red lines). Genotypic resistance testing by population sequencing was performed at several time points before and during the time
of transmission in the potential transmitter (black arrows); the results regarding codon 184 of the reverse transcriptase (RT) are labeled M and V for M184
and M184V, respectively. Minority M184V–comprising human immunodeficiency virus type 1 (HIV-1) variants were assessed by allele-specific polymerase
chain reaction in plasma and peripheral blood mononuclear cells at the indicated time points 1–13. These results are provided in Table 1. Abbreviations:
3TC, lamivudine; ABC, abacavir; ATV, atazanavir; ATV/r, ritonavir-boosted ATV; AZT, zidovudine; d4T, stavudine; ddC, zalcitabine; ddI, didanosine; DRV/r, ri-
tonavir-boosted darunavir; EFV, efavirenz; FPV/r, ritonavir-boosted fosamprenavir; FTC, emtricitabine; IDV, indinavir; LPV, lopinavir; LPV/r, ritonavir-boosted
LPV; SQV, saquinavir; TNV, tenofovir.
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and 382 ART-naive, chronically HIV-1–infected patients. The
latter group harbored drug-resistant HIV-1 MVs before first
ART as follows: K103N in 10 of 324 patients (3.1%) at frequen-
cies of 0.76%–22.14%, Y181C in 16 of 325 (4.9%) at frequencies
of 0.5%–13.7%, M184V in 9 of 363 (2.5%) at frequencies of
0.9%–3.2%, and N155H in none of 146 patients (Figure 3A and
Figure 4B).

In 16 of 195 acutely or recently HIV-1–infected patients
(8.2%), M184V MVs were present, compared with 9 of 363
chronically HIV-1–infected patients (2.5%), a significant diffe-
rence (P = .004; Figure 3A). The K103N and Y181C mutations
were similarly present in both patient groups (2.1% vs 3.1% and
2.6% vs 4.9%, respectively; P > .05). The N155H integrase mu-
tation was not detected in chronically HIV-1–infected patients
(Figure 3A).

As expected, the 2 groups—acutely or recently and chroni-
cally HIV-1–infected patients—differed significantly in terms
of CD4+ T cell count, which was lower in chronically infected
patients, and viral load, which was higher in acutely or recently
infected patients (Table 2). They also differed significantly with
regard to the interdependent parameters of sex, risk group, and
HIV-1 subtype (Table 2). This shows that the chosen group of
chronically infected patients well represents ART-naive patients
within the nationwide Swiss HIV Cohort Study [29]. To
exclude any bias derived from these parameters, only men who
have sex with men and infected with HIV-1 subtype B were in-
cluded in a sensitivity analysis. Again, the numbers of patients
harboring the M184V mutation as MVs differed significantly
between acutely or recently and chronically HIV-1–infected pa-
tients (P = .03; Figure 3B).

As shown for those infected acutely or recently, chronically
HIV-1–infected patients harboring or not harboring drug-re-
sistant HIV-1 MVs showed no significant differences in the pa-
rameters CD4+ T cell count, viral load, HIV-1 subtype, sex, risk
group, Fiebig staging, and time between estimated time of in-
fection and sampling (Table 2). Notably, the percentages of pa-
tients with a viral load ≥8334 HIV-1 RNA copies/mL plasma
were similar in all groups (Table 2); that is, drug-resistant HIV-
1 MVs can be detected in those patients to the defined cutoff of
0.3% without any restrictions due to too low viral loads. Thus, a
higher rate of false-negative results can be excluded in chroni-
cally infected patients despite the lower median of the viral
loads.

DISCUSSION

This study provides several lines of strong evidence that trans-
mission of drug-resistant HIV-1 MVs can occur, a phenome-
non often assumed but not proved so far. First, potential
transmitters of 4 transmitter-recipient pairs experienced ART
failure and selected the M184V mutation 0.5 to 9.4 years before
transmission. During the time of transmission, the M184V mu-
tation was no longer detected in plasma by population sequenc-
ing, but in 1 of those potential transmitters it was present as a
MV in the plasma virus population. In 3 potential transmitters,
M184V-harboring HIV-1 MVs were detected at frequencies of
up to 4.2% in PBMCs. This compartment contains ancestral
viral strains that are more likely to be transmitted than contem-
porary viral variants [30]. Thus, the PBMC compartment

Figure 3. Differences in prevalence of drug-resistant human immuno-
deficiency virus type 1 (HIV-1) minority variants (MVs) within acutely or re-
cently vs chronically HIV-1–infected patients. The K103N, Y181C, M184V,
and N155H drug resistance mutations were measured by allele-specific
polymerase chain reaction in acutely or recently (red bars) and chronically
(blue bars) HIV-1–infected patients. Numbers of patients harboring these
MVs and numbers of tested patients per mutation are given. Statistical
analysis was performed with 2-sided Fisher exact tests; significant differ-
ences are shown for the prevalences of different drug-resistant HIV-1 MVs
within acutely or recently HIV-1–infected patients (red) and for the M184V
mutation in acutely or recently vs chronically HIV-1–infected patients
(black). A, Analysis including all patients. B, Analysis restricted to patients
being infected with HIV-1 subtype B and belonging to the risk group of
men who have sex with men (MSM).
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might reflect the source of transmitted viruses better than the
plasma virus population does. Notably, one limitation of our
study is that we cannot prove without any doubt that the recipi-
ents were infected from the potential transmitters.

Still, the question arises how it is possible that MVs were
transmitted, because it was shown that only 1 transmitted virus

serves as the founder virus in 60%–80% of patients infected via
sexual transmission [17, 31–33]. In our ZPHI cohort, approxi-
mately 11% of acutely or recently HIV-1–infected patients
show a diversity of >1% in the C2-V3-C3 region of env, sug-
gesting a heterogeneous founder virus population [17]. The 4
recipients mentioned above did not belong to this group. One

Figure 4. Detection of drug-resistant human immunodeficiency virus type 1 (HIV-1) minority variants (MVs) in plasma and peripheral blood mononuclear
cells (PBMCs) from acutely or recently and chronically HIV-1–infected patients and reproducibility/accuracy of the allele-specific polymerase chain reaction
(AS-PCR) assays for K103N, Y181C, M184V, and N155H. The K103N, Y181C, M184V, and N155H drug resistance mutations were measured with AS-PCR
in plasma of acutely or recently (A) and chronically (B) HIV-1–infected patients, as was the M184V mutation in PBMCs from the 4 potential transmitter-re-
cipient pairs (C). The values of the samples below the detection limit (dotted line, 0.3%) are represented as gray dots. The open circles represent samples
with values >0.3% but for which the corresponding viral load is too low to verify the presence of drug-resistant HIV-1 variants. Black dots represent the
samples that contained drug-resistant HIV-1 MVs. D, Each sample processing and AS-PCR run included 13 plasma samples from patients and a wild-type as
well as a 1% mutant virus control. The wild-type control contained virus particles from a HIV-1NL4–3 virus stock with a virus titer of 10 000 RNA copies in 1 mL
of plasma from an HIV-1 negative donor. The 1% mutant control was a mixture of HIV-1NL4–3 virus stock (9900 RNA copies) and the respective mutant virus
stock HIV-1NL4–3_K103N, HIV-1NL4–3_Y181C, HIV-1NL4–3_M184V, and HIV-1NL4–3_N155H (100 RNA copies) in 1 mL of plasma from an HIV-1 negative donor. Data rep-
resent results of 28–78 independent experiments in which each sample was assayed in duplicate; median and interquartile ranges are given. Abbreviation: dl,
detection limit.
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Table 2. Demographic Data and Clinical Baseline Parameters in Acutely or Recently and Chronically, ART-Naive HIV-1–Infected Patients Harboring or Not Harboring Drug-Resistant
HIV-1 MVs

Data

Acutely or Recently
HIV-1–Infected

Patients
(n = 204)

Chronically
HIV-1–Infected

Patients
(n = 382) P Value

Acutely or Recently
HIV-1–Infected
Patients Not

Harboring MVs
(n = 181)

Acutely or Recently
HIV-1–Infected

Patients Harboring
MVs (n = 23) P Value

Chronically
HIV-1–Infected
Patients Not

Harboring MVs
(n = 352)

Chronically
HIV-1–Infected

Patients Harboring
MVs (n = 30) P Value

Age, median (range), y 34 (18–70) 38 (22–71) <.001a 34 (18–70) 40 (23–64) .02a 38 (22–71) 37 (23–57) NSa

CD4+ T cell count, median
(range), cells/µL blood

399 (87–1304) 232 (0–800)
(n = 379)

<.001a 397 (87–1304) 423 (150–1041) NSa 232 (0–800)
(n = 349)

212 (0–740) NSa

HIV-1 RNA load, median (range),
log10 copies/mL plasma

5.3 (2.7–8.0) 4.9 (3.0–7.0) <.001a 5.3 (2.7–8.0) 5.6 (3.2–7.5) NSa 4.9 (3.0–7.0) 4.6 (3.8–6.9) NSa

Patients, No. (%)
VL ≥8334 copies/mL plasmab 188 (92.2) 345 (90.3) NSc 168 (92.8) 20 (87.0) NSc 316 (89.8) 29 (96.7) NSc

VL <8334 copies/mL plasmad 16 (7.8) 37 (9.7) 13 (7.2) 3 (13.0) 36 (10.2) 1 (3.3)

HIV-1 subtype B 181 (88.7) 358 (93.7) .04c 158 (87.3) 23 (100) NSc 328 (93.2) 30 (100) NSc

HIV-1 subtype non-B 23 (11.3) 24 (6.3) 23 (12.7) 0 24 (6.8) 0

Male 194 (95.1) 301 (78.8) <.001c 172 (95.0) 22 (95.6) NSc 274 (77.8) 27 (90.0) NSc

Female 10 (4.9) 81 (21.2) 9 (5.0) 1 (4.4) 78 (22.2) 3 (10.0)
MSM 167 (81.9) 197 (51.6) <.001c,e 147 (81.2) 20 (87.0) NSc,e 178 (50.6) 19 (63.3) NSb,c

Heterosexual 33 (16.2) 118 (30.9) 30 (16.6) 3 (13.0) 113 (32.1) 5 (16.7)

IDU 1 (0.5) 56 (14.7) 1 (0.6) 0 50 (14.2) 6 (20.0)
IDU or heterosexual 2 (1.0) 11 (2.9) 2 (1.1) 0 11 (3.1) 0

Needle stick 1 (0.5) 0 1 (0.6) 0 0 0

Fiebig stage
I–IV 80 (44.2) 12 (52.2) NSc,f

V–VI 94 (51.9) 10 (43.5)

Unknown 7 (3.9) 1 (4.4)
Acute infection (≤90 d after ETI)g 148 (81.8) 21 (91.3) NSc

Recent infection (>90
to ≤180 d after ETI)g

33 (18.2) 2 (8.7)

Time of sampling after ETI,
median (range), wk

6.3 (2.1–26.6) 6.0 (1.7–18.1) NSa

Abbreviations: ART, antiretroviral therapy; ETI, estimated time of infection; heterosexual, heterosexual transmission; HIV-1, human immunodeficiency virus type 1; IDU, injection drug use; MSM, men who have sex with
men; MVs, minority variants; NS, not significant; VL, viral load.
a Mann–Whitney U test.
b For the detection of MVs to levels down to 0.3%, the viral load has to be ≥8334 HIV-1 RNA copies/mL plasma.
c Fisher exact test.
d In samples with a viral load <8334 HIV-1 RNA copies/mL plasma, the cutoff for allele-specific polymerase chain reaction has to be individually calculated.
e MSM vs non-MSM.
f Fiebig stage I–IV vs V–VI.
g Estimated as described elsewhere [17].
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likely possibility is that with the previously chosen cloning ap-
proach the resolution may have been too low to detect minority
species. We postulate that >1 virus is transmitted and that each
virus within the viral quasispecies has a certain probability of
being transmitted. As a theoretical example, assume that a re-
cipient is exposed to 1000 viruses, of which 10 cross the
mucosal barrier, and assume that 2% of the viruses carry a
drug-resistance mutation. Then the probability is 16.8% that 1
of those 10 transmitted viruses contain a drug-resistance muta-
tion, given that transmission is a stochastic process. One of
those viruses, or sometimes more, generates the founder virus
population. Because drug resistance mutations are often associ-
ated with a decrease of viral fitness, it is unlikely that the drug-
resistant virus variant will be the founder virus. However, it is
assumable that the transmitted drug-resistant HIV-1 MV repli-
cates at very low frequencies, as seen in our 4 recipients. In previ-
ous longitudinal analyses of viral populations in chronically HIV-
1–infected patients, we have shown that drug-resistant HIV-1
viruses can replicate at low levels in the absence of ART and
within a major virus population of drug-sensitive viruses [16, 23].

Although we could just include 4 transmission-recipient
pairs, we were able to analyze plasma and cell samples from
both the potential transmitters and the recipients very close to
the estimated time point of transmission. In 1 case report, a
mother-to-child-transmission of a drug-resistant HIV-1 MV is
assumed [15], but uncertainty remains because the analyzed
child’s and mother’s samples were taken approximately 3 and
6.5 years, respectively, after the estimated time of transmission.

Second, the prevalence of drug-resistant HIV-1 MVs in
acutely or recently HIV-1–infected patients mirrors the preva-
lence of those mutations in ART-experienced patients, a group
of potential transmitters [34], and acute seroconverters in Swit-
zerland [35] as monitored by population sequencing. The very
common mutation M184V was the most frequently detected
drug resistance mutation, followed by the NNRTI mutations
Y181C and K103N. The so-far particularly uncommon inte-
grase mutation N155H was almost absent in acutely or recently
HIV-1–infected patients. Of note, during the investigated time
period, selection pressure on integrase was virtually absent in
the Swiss HIV-1–infected population because the first integrase
inhibitor was approved for salvage therapy only in 2008 [36].
Thus, any detection of the N155H mutation might reflect the
level of de novo mutagenesis. Note that biases due to different
assay sensitivities can be excluded because the same cutoff was
chosen for all AS-PCR assays.

If sporadic appearance alone was the reason for the emer-
gence of drug-resistant HIV-1 MVs in ART-naive, acutely or
recently HIV-1–infected patients, a more similar distribution of
these mutations would be expected, provided that transitions
occur 2–3-fold more often than transversions, especially during
the early phase of infection [37]. The M184V and Y181C muta-
tions are transitions, and the K103N and N155H mutations are

transversions. However, the observed 16-fold difference in the
prevalences of N155H and M184V mutations as MVs cannot
be explained by preferential transitions. In addition, a higher
rate of Y181C mutation and a lower rate of K103N mutation
would have been expected. Thus, sporadic appearance alone
cannot explain the observed pattern in the prevalence of drug-
resistant HIV-1 MVs in acutely or recently HIV-1–infected pa-
tients.

HIV-1 RNA structure and other sequence characteristics
could potentially favor the sporadic appearance of certain mu-
tations as it was shown for the K65R mutation in HIV-1
subtype C [38]. However, to our knowledge this has not yet
been described for the M184V mutation. In addition, this po-
tential explanation is not in concordance with our observation
that the prevalence of the M184V mutation is significantly
lower in chronically than in acutely or recently HIV-1–infected
patients.

Hypothetically, ineffective pre- and/or postexposure prophy-
laxis could explain the higher prevalence of the M184V muta-
tion compared to the N155H mutation, because most of the
prophylaxis regimens contain either 3TC or FTC but not an in-
tegrase inhibitor; thus, a failing prophylaxis would lead to the
selection of the M184V mutation. The use of preexposure pro-
phylaxis can be excluded in our patient cohort, because almost
all patients were included before its success was reported at the
end of 2010 [39], and it has not yet been introduced in Switzer-
land. Postexposure prophylaxis can also be ruled out in our pa-
tients. So far, only 2 of the 204 patients were undergoing
postexposure prophylaxis during the time of transmission, as
verified by systematic interviews. In both patients, drug-resis-
tant HIV-1 MVs were not detected.

Third, the prevalence of drug-resistant HIV-1 MVs in chroni-
cally HIV-1–infected patients and the comparison with acutely
or recently HIV-1–infected patients reflect exactly what is ex-
pected to follow after transmission of such MV drug-resistant
viruses. The minor population harboring the M184V mutation
vanishes over time due to its lower replication capacity [40], and
the K103N and Y181C mutations remain unchanged owing to
their negligible impact on viral fitness [41].

In summary, sporadic appearance of drug-resistant HIV-1
MV might occur, but our observations cannot be explained
solely by de novo mutagenesis. Thus, we show for the first time
that drug-resistant HIV-1 MVs can be transmitted. The origin
of drug-resistant HIV-1 MVs may have clinical implications,
because it is conceivable that transmitted MVs might be able to
establish a pool of latently infected cells more easily and pro-
foundly than sporadically appearing MVs and that transmitted
MVs might not tend to disappear as readily as sporadically ap-
pearing ones. The latter phenomenon has been observed in 1 of
our ZPHI patients, who harbored the K103N mutation as a
MV during primary HIV-1 infection, a variant that reappeared
and persisted during treatment interruption of early ART [16].
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Thus, the origin of drug-resistant HIV-1 MVs might help to
explain the observed and still puzzling different clinical out-
comes in ART-naive patients harboring those MVs and begin-
ning ART.
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