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S U M M A R Y
I invert a large set of teleseismic phase-anomaly observations, to derive tomographic maps of
fundamental-mode surface wave phase velocity, first via ray theory, then accounting for finite-
frequency effects through scattering theory, in the far-field approximation and neglecting mode
coupling. I make use of a multiple-resolution pixel parametrization which, in the assumption of
sufficient data coverage, should be adequate to represent strongly oscillatory Fréchet kernels.
The parametrization is finer over North America, a region particularly well covered by the data.
For each surface-wave mode where phase-anomaly observations are available, I derive a wide
spectrum of plausible, differently damped solutions; I then conduct a trade-off analysis, and
select as optimal solution model the one associated with the point of maximum curvature on
the trade-off curve. I repeat this exercise in both theoretical frameworks, to find that selected
scattering and ray theoretical phase-velocity maps are coincident in pattern, and differ only
slightly in amplitude.

Key words: scattering theory, seismic resolution, tomography, upper mantle.

1 I N T RO D U C T I O N

Tomographic images of the Earth seen in the literature are generally

based on the ray-theory, or JWKB approximation. In practice, the

momentum equation is solved in the limit of infinite frequency, with

an application of the WKB approximation (e.g. Bender & Orszag

1978); the problem is thus separated into transport and eikonal equa-

tions, and seismic rays can be introduced as the characteristics of

the eikonal equation (Červeny 1985). It follows that a seismic mea-

surement approximately depends only on the velocity structure en-

countered along the ray path; for example, a body wave traveltime

anomaly can be written as a line integral of slowness perturbations

along the ray path, with respect to the reference model, and a lin-

ear tomographic inverse problem can thus be set up (e.g. Boschi &

Dziewonski 1999).

Away from this limit, that is, as frequency decreases, it gradually

becomes meaningless to speak of seismic rays, and the dependence

of seismic measurements on the Earth’s structure away from the

JWKB ray path becomes more important; as long as the JWKB ap-

proximation is still applied, it is then believed that resolution (the real

velocity anomaly of smallest volume that can be properly mapped

through tomography) is limited by the wavelength of the inverted

seismic measurements.

Many authors have attempted to go beyond ray theory, and in-

corporate finite-frequency effects in their forward models of seis-

mic wave propagation: proposed alternative approaches involve the

summation of normal modes (Woodhouse & Girnius 1982; Clévédé.

& Lognonné 1996; Capdeville 2005), often simplified via the far-

field (asymptotic) approximation (Snieder 1986a, 1987; Snieder &

Nolet 1987; Li & Tanimoto 1993; Li & Romanowicz 1995; Dahlen

et al. 2000; Hung et al. 2000; Tanimoto 2003; Zhou et al. 2004;

Yoshizawa & Kennett 2005), or the expensive numerical integration

of the equations of motion (e.g. Komatitsch et al. 2002). On the

other hand, few accounted for finite-frequency effects in the formu-

lation of inverse problems: the only published attempts in global to-

mography, all based on various formulations of perturbation theory

(scattering, or, as we will dub it hereafter, Born theory), are those

of Snieder (1987, 1988), Ritzwoller et al. (2002) (where Fréchet

kernels were replaced with boxcar or Gaussian functions), Spetzler

et al. (2002) and Zhou et al. (2005) in the context of surface wave

dispersion; Li & Romanowicz (1996) (and, later, other authors from

the Berkeley group), whose NACT approximation has the merit of

accounting for mode coupling, providing 2-D waveform sensitivity

kernels; Montelli et al. (2004a,b), who inverted body wave travel-

time observations made at relatively long period.

Montelli et al. (2004a) claimed to have mapped anomalies of high

spatial frequency (ascending plumes in the mantle, characterized by

low seismic velocity), that would not have been visible through tra-

ditional, ray theoretical tomography; the general character of their

images, however, does not seem to be much perturbed by the intro-

duction of the more sophisticated theory. Finite-frequency effects

should have an even stronger impact on surface wave tomography,

which is based on the longer-period (typically 30–150 s) compo-

nent of seismograms, further away from the high frequency limit;
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nevertheless, Spetzler et al.’s (2002, fig. 3) comparison of Born ver-

sus ray theoretical tomographic maps does not evidence any coher-

ent pattern, making it hard to prove that the application of scattering

theory leads to an effective improvement of the images.

Spetzler et al. (2002) made use of a tomographic parametrization

of relatively low resolution: spherical harmonics up to degree 40

(1681 free parameters). It is possible that phase-velocity anomalies

of high spatial frequency, that would have been retrieved, thanks to

the Born-theory formulation, could not be properly described by

the degree-40 harmonic parametrization; in other words, the resolu-

tion gained by the application of scattering theory could have been

lost owing to the long spatial wavelength of the parametrization

(Appendix A).

I repeat Spetzler et al.’s (2002) exercise, describing surface wave

phase velocity in terms of a grid of approximately equal-area pixels,

with a lateral extent of 3◦ ×3◦ at the equator. In North America (70◦E

to 130◦E, and 15◦N to 60◦N), a region particularly well sampled

by seismic sources and stations, I replace the 3◦ × 3◦ grid with

a finer one, subdividing each pixel in nine smaller ones (lateral

extent of 1◦ × 1◦ at the equator); this parametrization (6720 free

parameters) should be globally at least as accurate as that of Spetzler

et al. (2002), and much better within the high-resolution region.

The database I invert, updated from Ekström et al. (1997), includes

∼30 000 summary dispersion observations, which guarantees that

the inverse problem is not underdetermined. As recently suggested

by Godey et al. (2003), comparison of Born versus ray theoretical

maps in this region should tell us more about the importance of

finite-frequency effects in global tomography.

2 T H E O R Y

The earliest exhaustive work on the application of single-scattering

theory to surface wave propagation is that of Snieder (1987); here I

will give a brief, and deliberately, simplistic outline of his treatment.

Green’s problem (e.g. Dahlen & Tromp 1998, section 4.1.7) asso-

ciated with the Earth’s elastic oscillations following an earthquake

can be written as

LG = F, (1)

where G is Green’s tensor, F a tensor of impulsive forcing terms,

directed like the reference axes, and L an operator that combines

Newton’s law and Hooke’s law (Snieder 1986a, or Snieder 1987,

chapter 2, eqs 15 and 16). First, a JWKB solution of eq. (1) is found

(in the far-field approximation); let us call it G 0; we can think of it

as the zeroth-order solution.

We next use G 0 to find the effects δG on the Green tensor, of

small 3-D perturbations in the Earth’s elastic parameters [density

ρ (x), seismic velocities v P (x) and v S(x), with x denoting position].

We replace ρ, v P and v S with ρ + δρ(x), v P + δv P (x) and v S +
δv S(x) in the formula for L, thus obtaining the perturbed operator

L + δL . The perturbed problem is then

(L + δL)(G0 + δG) = F. (2)

After subtracting eq. (1) from (2), and neglecting second-order

terms,

LδG + δLG0 = 0, (3)

or

LδG = −δLG0, (4)

which is equivalent to the original Green’s problem (1), with F

replaced by the non-impulsive forcing −δLG 0. By virtue of the

properties of the Green tensor, δG is then found by a simple con-

volution of G 0 with the new forcing term −δLG 0 (Snieder 1986a,

1987, chapter 2, eqs 17–21).

A similar approach is followed by Dahlen et al. (2000), and im-

plicitly by Montelli et al. (2004a,b). Its major shortcoming is that,

as Dahlen et al. (2000) themselves noted, the solution is ‘grounded

upon an approximate JWKB solution’: the infinite-frequency limit

is not explicitly removed, but dealt with by perturbing linearly to

first-order the zeroth-order solution found in that limit; there is no

proof that this should accommodate the non-linear relation between

seismic measurements and the Earth’s seismic properties, that ex-

ists in a finite-frequency regime (i.e. in the real world). Hung et al.
(2000), however, have validated the results of Dahlen et al.’s (2000)

scattering theory by comparison with numerical calculations, where

no approximation is required.

After some algebra, Snieder (1986a) found a relation (involving

the summation of normal modes before and after scattering) between

δG and δρ(x), δv P (x) and δv S(x), which forms the basis of a tomo-

graphic inverse problem: a seismic measurement can be expressed

in terms of δG, while δv P , etc., form the unknown tomographic

model to be derived (again, the reasoning of Dahlen et al. 2000, is

qualitatively analogous).

A further step is required if maps of surface wave phase velocity

(rather than δv P , etc.) are to be inverted for. Working in the far-field

approximation (Snieder 1986b, 1987, chapter 3, eqs 8.2 and 8.3)

shows that conversions between different modes can be neglected

if seismic heterogeneities are smooth and relatively weak; he can

then relate directly δG, and therefore a surface wave measurement,

to the phase velocity associated with a certain surface wave mode

(Snieder 1986b, or 1987, chapter 3, eq. 9.3; Snieder 1987, chapter 8,

sections 2 and 3; Snieder 1988; Zhou et al. 2004, Section 6 and

eq. 6.2). This leads to eq. (9) of Spetzler et al. (2002), who used

Snieder’s (1987) treatment to introduce phase-velocity Fréchet ker-

nels, that is, a function K (ω, θ , φ) such that a relative phase-anomaly

measurement δϕ/ϕ(ω) can be written as

δϕ(ω)

ϕ(ω)
=

∫
�

K (ω, θ, φ)
δc(ω, θ, φ)

c(ω)
d�, (5)

where θ and φ denote colatitude and longitude, respectively, ω fre-

quency, � the unit sphere and c phase velocity (which here I assume

to be laterally constant in the reference model). The Fréchet kernels

K (ω, θ , φ) are also often referred to as sensitivity functions, partial

derivatives, ‘banana-doughnuts’, etc. Based on their eq. (9), Spetzler

et al. (2002, eq. 16) found algebraically an analytical expression for

K (ω, θ , φ), namely

K (ω, θ, φ) =

− sin(θ )
√

R sin(	)

	

√
ω sin

[
πωR
c(ω)

(θ − π
2

)2 sin(	)

sin(φ) sin(	−φ)
+ π

4

]
√

c(ω) sin(φ) sin(	 − φ)
,

(6)

valid in a reference frame where both source and station lie on the

equator, and with 	 denoting epicentral distance and R the Earth’s

radius.

Like Snieder (1987), Zhou et al. (2004) proceeded by mode

summation in the far-field approximation; they, however, account

for coupling between modes, to derive sensitivity functions relat-

ing surface wave measurements to 3-D heterogeneities in shear

and compressional velocity, and density. Only in a subsequent step

(section 6 of their paper), they started to neglect mode coupling: this

allowed them to reduce their 3-D sensitivity functions to 2-D, and

establish a relationship between surface wave measurements and
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2-D heterogeneities in phase velocity; the results of their procedure

are consistent with those of Spetzler et al. (2002).

In the following, I will use Spetzler et al.’s (2002) formula

for K (ω, θ , φ), projecting it on a pixelized, rather than harmonic

parametrization.

3 B O R N - T H E O R Y TO M O G R A P H Y

I implement eq. (6) and repeat Spetzler et al.’s (2002) calculation

of scattering-based Fréchet kernels at a discrete set of teleseismic

epicentral distances (20◦–179◦, with 1◦ increments), for a source lo-

cated at (0◦, 0◦) and stations along the equator. Examples are given

in Fig. 1, for two different periods and two epicentral distances.

Having been derived in the far-field approximation, expression (6)

for K (ω, θ , φ) is singular near source and receiver, which may lead to

major problems in tomographic applications; the singularity is taken

care of, somewhat arbitrarily but effectively, by replacing scatterer-

to-source and scatterer-to-receiver distances with some small, but

finite, ε as they approach 0 (J. Spetzler, private communication,

2004). Also, following Spetzler et al. (2002) I average the Fréchet

Figure 1. Fréchet kernels, for epicentral distances 	 = 90◦ and 170◦, and surface wave periods T = 35 s and 150 s (as indicated), from Spetzler et al.’s (2002)

expression (coincident for Love or Rayleigh waves). At any location, the plotted value equals the ratio of a relative phase anomaly observed at the station, to a

localized relative phase-velocity anomaly at that location, for that source–station geometry and in the absence of other heterogeneities. I first compute kernels

for one source at (0◦, 0◦) and equally spaced stations along the equator, then interpolate and rotate them to account for real source–station geometries (see

Fig. 2).

derivatives over a frequency band of 2	ω = 5 mHz around the cho-

sen frequency ω, ‘since phase-velocity measurements at a single

frequency are not possible owing to the finite sampling of the seis-

mograms and the finite parametrization of the dispersion curve in the

measurement process’ (Spetzler et al. 2002). The chosen value for

2	ω approximately equals the accuracy of dispersion measure-

ments considered here (i.e. the spacing between splines parametriz-

ing the measured dispersion curves in Ekström et al. 1997, fig. 1).

Incidentally, averaging over frequency has a smoothing effect

on K (ω, θ , φ), damping its oscillations away from its first

maximum.

I have tested my code against that written by Spetzler et al. (2002),

and found coincident results.

Confirming previous studies on the subject, scattering kernels

are maximum away from the JWKB ray path (which, in the case

of constant reference phase velocity, coincides with the great-circle

arc connecting source and station), and small (but non-zero) on the

ray path itself (Fig. 1). The reader is referred to Spetzler et al. (2002,

section 2.4, fig. 2) for a more thorough discussion of Fréchet kernels

and their properties.
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After finding Fréchet kernels and storing them on disk, the next

step is to set up the tomographic inverse problem

A · x = d, (7)

where x is the vector of solution coefficients (each of its entries the

constant value of δc/c, at the chosen frequency, within a certain

pixel), d the vector of relative phase anomalies, and

Ai j =
∫

jth pixel

Kith datum
(ω, θ, φ) d� (8)

(Woodhouse & Girnius 1982, eqs 56 and 57).

I have then written an algorithm that (i) reads phase anomalies

from Ekström et al.’s (1997) database, updated and averaged into

‘summary’ data as mentioned by Boschi & Ekström (2002), (ii)

finds for each datum the appropriate K (ω, θ , φ) by spline inter-

polation between Fréchet kernels previously calculated at discrete

epicentral distances, (iii) rotates K (ω, θ , φ) from the equator to the

source–station geometry associated with the datum in question, and

projects it onto the grid of pixels defined above (Fig. 2), to find A and

AT · A.

Rotating pre-computed kernels is faster than computing a kernel

directly for each source–station couple in the database.

The matrix AT · A is useful for a rigorous evaluation of model

resolution (e.g. Boschi 2003), and in case a direct, rather than iter-

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 2. Two examples of Fréchet kernels rotated and projected onto my pixel grid. The oscillatory behaviour of kernels is more faithfully reproduced within

the more finely parametrized region (North America). Shown here are the average values of kernels within each pixel; this is different from the corresponding

entries of A, which involve multiplication by the pixel area.

ative inversion algorithm is to be applied to find the least-squares

solution of (7). Here, I have experimented with both LSQR (itera-

tive) and Cholesky factorization (direct), to find coincident results;

because of the sparsity of A (denser than in the ray-theory case, but

still very sparse), LSQR is much faster and thus preferable.

4 R E G U L A R I Z A T I O N A N D T R A D E - O F F

I next invert the database of Ekström et al. (1997), updated as ex-

plained by Boschi & Ekström (2002), to derive phase-velocity maps

both in the Born-theory formulation described above, and the tradi-

tional JWKB approximation (e.g. Ekström et al. 1997).

In principle, if database, parametrization, units of measurement

and regularization are the same in the two cases, any discrepancy

between the maps can only result from the different order of approx-

imation applied. It is not clear, however, what it means to equally
regularize the Born- and ray-theory inverse problems. One might

think of scaling the damping parameters based on the average size

of the diagonal entries of AT · A, but a closer look at AT · A dis-

courages it: Fig. 3 shows that the introduction of Born theoretical

kernels tends to lower the mean value of diagonal entries, but simul-

taneously broadens their range, with higher maxima and lower min-

ima. This is the expected effect of a redistribution of tomographic

resolution, owing to the higher sensitivity in the immediate vicinity

C© 2006 The Author, GJI, 167, 238–252

Journal compilation C© 2006 RAS



242 L. Boschi

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

m
e

a
n

 d
ia

g
o

n
a

l 
e

n
tr

y
 o

f 
A

T
. A

20 40 60 80 100 120 140 160

1

2

3

4

5

m
a

x
 d

ia
g

o
n

a
l 
e

n
tr

y
 o

f 
A

T
. A

20 40 60 80 100 120 140 160

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

m
in

 d
ia

g
o

n
a

l 
e

n
tr

y
 o

f 
A

T
. A

20 40 60 80 100 120 140 160

period (s)

Figure 3. Values of the mean (top panel), largest (middle panel) and smallest

(bottom panel) diagonal entries of AT · A, as a function of period for Rayleigh

(black lines) and Love (red) waves, in the finite-frequency (solid) and JWKB

(dashed) cases.

of sources and stations, where K (θ , φ) is singular. Particularly at

shorter periods, a lower damping in the Born-theory case, while

justified by the smaller average of AT ·A diagonal entries, would then

result in the solution being locally underdamped because of their

higher maxima. Other comparative studies of tomographic methods

(e.g. Spetzler et al. 2001, 2002; Montelli et al. 2004b) are bound to

encounter the same difficulty.

In many applications of inverse theory, ‘trade-off curves’ are em-

ployed to establish an acceptable range of regularization schemes.

After performing numerous differently regularized inversions, a

measure of the misfit of each solution model to the data (vari-

ance, χ 2, . . .) is plotted against a measure of the complexity of

the model itself (model RMS, integrated norm of its gradient, . . .).

If a sufficiently broad spectrum of regularization schemes has been

spanned, the resulting curve should vaguely resemble the letter ‘L’

(see, e.g. Ekström et al. 1997, fig. 11), and is therefore sometimes

dubbed ‘L-curve’ (Hansen 1992): in a regime of exceedingly strong

regularization, a small growth in model complexity is typically suf-

ficient to reduce significantly the misfit, while if the regularization

constraint is too weak, the misfit remains approximately constant

even after a large growth in model complexity; the solution being

dominated by the effects of data noise and numerical instabilities.

The preferred solution should be chosen near the corner of the trade-

off curve.

Trade-off curves are by definition independent of damping; rather,

they describe the dependence on damping, of the least-squares so-

lution to the inverse problem in question. If one finds L-curves sep-

arately for both the Born-theory and ray-theory inverse problems

associated to the same database, it is then legitimate to compare the

two curves.

I have derived trade-off curves for the surface wave phase-velocity

inverse problems formulated here, prescribing no norm minimiza-

tion constraint and gradually decreasing the roughness minimization

parameter. Arguments for preferring roughness over norm mini-

mization are given, for example, by Inoue et al. (1990) or Boschi

& Dziewonski (1999). The roughness damping matrix is defined

as in Boschi & Dziewonski (1999), but accounting for the non-

uniformity of the grid and inherent changes in pixel area. Sample

trade-off curves from Born and ray theoretical inversions at four

selected surface wave modes are shown in Fig. 4. If we neglect

phase-velocity maps with gradients too high to be physical, Fig. 4

shows that Born-theory solutions systematically achieve a worse

datafit than ray-theory solutions of equal complexity. This result is,

at least, counterintuitive, as one would expect a better theoretical for-

mulation of the inverse problem to provide a better solution model, at

any level of model complexity. It is, nevertheless, consistent with the

trade-off analysis of Montelli et al. (2004b, fig. 7), and some of the

2-D tomography results of Zhou et al. (2005, fig. 20). Boschi et al.
(2006) attempted an explanation in terms of the Akaike information

criterion (Akaike 1974), and suggested that the higher complexity

(at any given level of datafit) of Born-theory tomographic images

might reflect true complexities in the Earth’s structure, not resolved

by simple JWKB theory.

4.1 Model selection by L-curve analysis

A visual analysis of L-curves is not sufficient to identify their cor-

ner, whose location depends on the definition of image complexity

and on the exaggeration of the axes. Apparently small changes in

complexity and misfit can result in very large perturbations, partic-

ularly to the short spatial wavelength component of solution mod-

els. Following Zhou et al. (2005), I define image complexity as

the ratio of integrated model roughness to model norm. After this

normalization, I calculate the curvature (e.g. Weisstein 2003) of

each L-curve, and select the solution model of complexity and mis-

fit corresponding to maximum curvature. Fig. 5 shows that points

of maximum curvature are systematically well defined and easily

identified.

C© 2006 The Author, GJI, 167, 238–252

Journal compilation C© 2006 RAS



Surface wave scattering and tomography 243

Figure 4. Trade-off curves (L-curves) resulting from ray- (black lines) and Born-theory (grey) inversions of the Harvard dispersion database: Love (left-hand

panel) and Rayleigh waves (right-hand panel) at 35 s (top panels) and 150 s (bottom panels) periods, respectively. The image roughness is defined as the

squared modulus of the dot-product of roughness damping matrix times vector of model coefficients. I normalize it, dividing by the total sum of squared model

coefficients. Misfit equals 1 - variance reduction.

Figure 5. Curvature of the L-curves from Fig. 4. For each L-curve, the point of maximum curvature identifies my preferred solution.

I apply the same criterion to find optimal Born and ray theoretical

solutions: the resulting maps can be considered almost equivalently

regularized, and it is then legitimate to compare them visually, to

evaluate quantitatively the effects of scattering on tomography.

4.2 Synthetic test

Substituting in eq. (5) a realistic a priori model δc/c, and K (ω, θ ,

φ) as defined by (6), I compute at each considered surface wave fre-

quency a set of theoretical phase anomalies, with the same source–

station geometry as the Harvard database. I use a Box–Muller trans-

formation (e.g. Weisstein 2003) to randomly generate sets of nor-

mally distributed measurement errors, with standard deviation equal

to the estimated, real observational uncertainty at the corresponding

surface wave frequency (Ekström et al. 1997, table 2). After adding

such synthetic errors to all synthetic phase-anomaly observations, I

invert them with the same algorithm applied to real data, and con-

duct on the resulting output models a trade-off analysis as above; the

corresponding L-curves, and their curvatures, are shown in Figs 6

and 7, respectively; they indicate that inverting phase-velocity data

through Born rather than ray theory should result in a visible vertical

shift of the L-curves, with Born-theory solutions achieving a better

datafit than ray-theory ones at any level of model complexity.
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Figure 6. Same as Fig. 4, but solutions are derived from the inversion of synthetic data, as described in Section 4.2.

Figure 7. Curvature of the L-curves from Fig. 6.

Figs 6 and 7 are not consistent with Figs 4 and 5, where the said

vertical shift is either reversed in sign, or only episodical and barely

visible. I must infer that, at least at the global scale, the quality of

phase-velocity models is most likely not improved by the introduc-

tion of a Born theoretical formulation. This unexpected result could

be explained considering that comparing Figs 4–6, or Figs 5–7,

is legitimate only in the assumption that the Born theoretical for-

mulation be exact. This assumption is only valid within a certain

approximation, because (i) phase velocity can only be defined for

a relatively smooth Earth, and in the neglect of normal-mode cou-

pling, with the implications well pointed out by Zhou et al. (2005,

section 5); (ii) here, and in most other published Born theoretical

tomographic studies (e.g. Li & Romanowicz 1996; Spetzler et al.
2002; Montelli et al. 2004a,b; Zhou et al. 2005), sensitivity kernels

are derived perturbing approximate, far-field JWKB solutions of

the Earth’s momentum equation, and are subsequently not strictly

correct in the vicinity of sources and stations (Favier et al. 2004),

where they become singular (I address this issue in Appendix B be-

low); (iii) surface wave energy propagates, to a large extent, within

the Earth’s crust, which we know to be very heterogeneous both

laterally and vertically: surface wave propagation must then be a

non-linear phenomenon, while Born-theory tomography still relies

on a linearization of the inverse problem.

Alternatively, or additionally, the improvement in model quality

achieved by trading a ray theoretical for a Born theoretical for-

mulation is limited by parametrization and data coverage. Fig. 2

shows that my pixel grid describes K (ω, θ , φ) fully well only within

the high-resolution region, while datafit and image complexity
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Figure 8. Same as Fig. 4, but solutions are derived from the inversion of data whose JWKB ray path samples the high-resolution region, only. Accordingly,

only model coefficients associated with the high-resolution region are considered in the calculation of model roughness (Section 4.3).

in Figs 4–7 are calculated globally. Within North America, on

the other hand, the geographic coverage of the database I invert,

while very good, might still be inadequate to constrain short-spatial-

wavelength heterogeneities, making scattering kernels practically

ineffective.

4.3 L-curve analysis, high-resolution region

I extract from the inverted database phase anomalies associated with

JWKB ray paths sampling the more finely parametrized region (on

average, roughly a quarter of the database). I carry out a new trade-

off analysis, plotting, for each solution model, its cumulative misfit

Figure 9. Curvature of the L-curves from Fig. 8. Solutions corresponding to maximum curvature are the same, or approximately the same as those found from

Fig. 5.

to those data only, versus its roughness integrated only over the high-

resolution region itself. The results are shown in Figs 8 and 9. In

comparison with Fig. 4, both Born and ray theoretical L-curves are

shifted significantly downwards with respect to the ray theoretical

ones, indicating that refining the parametrization helps improving

the datafit without necessarily increasing image complexity.

Born and ray theoretical L-curves are, again, approximately coin-

cident, except for the case of short- to intermediate-period Rayleigh

waves (only the 35-s case is shown in Figs 8 and 9 as an example),

where the Born L-curve is well below the ray-theory one.

In summary, resolution limits enumerated in the previous sec-

tion are at least partially overcome by a refinement of nominal

resolution.
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5 R E S O L U T I O N M A T R I C E S

Tomographic resolution is generally limited by data quality and cov-

erage, adequacy of the parametrization, and accuracy of the theoret-

ical formulation used to relate seismic measurements to the Earth

structure. The conservative data selection criteria of Ekström et al.
(1997) guarantee that data quality is high (Carannante & Boschi

2006), particularly at relatively long periods (100 s and more), where

‘phase measurements. . . can be associated with a total cycle count

without difficulty’ (Ekström et al. 1997). I have intentionally over-

parametrized the solution, and proved (Fig. 2, Appendix A) that, at

least in North America, pixels are sufficiently small to reproduce

the fast oscillations of sensitivity functions. It remains to be verified

that the data coverage is sufficiently dense and uniform.

Denoting D as the roughness damping matrix, and λ the selected

damping parameter, I find the model resolution matrix

R = (AT · A + λD)−1 · AT · A (9)

after a Cholesky factorization of AT · A + λD (e.g. Boschi 2003),

both in the Born- and ray-theory cases. Independent values of λ for

the Born and ray theoretical inversions are determined from Fig. 5

as explained above.

Resolution matrices associated with equivalently regularized,

Born- and ray-theory inversions of 35-s Love wave measurements

Figure 10. Top panels: row of the 35-s Love wave resolution matrices R associated with a pixel located in northern-central America; middle panels: detail of

top panels; bottom panels: row of R associated with a pixel in New Zealand. Resolution matrices found in the scattering- (left-hand panels) versus ray-theory

(right-hand panels) approximations are compared. For each value of j, the colour of the jth pixel depends on the value of Ri j ; Ri j is a measure of fictitious

trade-off between ith and jth model parameters.

are shown, as an example, in Fig. 10; since differences in R in the

two cases are very subtle, I prefer to focus on two chosen rows,

rather than plotting the entire matrix like Boschi (2003). The jth
entry of the ith row of R, Ri j , is a measure of the fictitious trade-

off (‘smearing’) between the ith and jth model coefficients (Boschi

2003; Soldati & Boschi 2005), and plotting, for all values of j , Ri j

on the j-th pixel, I obtain a more easily readable image of fictitious

coupling between model coefficients.

In the case of perfect resolution, maps in Fig. 10 should be entirely

white, except for one red pixel at Rii = 1. For pixels within the

high-resolution region (top and middle panels of Fig. 10), typically

Rii � 1, and Ri j ∼ 1 for numerous pixels in the vicinity of the ith one

(located 2◦ South of Lake Michigan). This means that, as was to be

expected, heterogenities of lateral extent comparable to the gridsize

cannot be properly mapped, regardless of the theoretical approach.

Larger heterogeneities, however, can be imaged without a strong loss

in amplitude resolution (I find, in fact, that the size of heterogeneities

mapped within the region of interest is comparable to those outside,

as in Boschi et al. 2006), as Ri j > 0 and neighbouring pixels can

coalesce to form a coherent anomaly of longer spatial wavelength.

Outside the region of interest, in areas relatively well covered by

the data Rii ∼ 1 and Ri j � 1, smearing is, however, distributed over

a larger number of pixels (bottom panels of Fig. 10), which confirms

the utility of a locally finer parametrization.
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While coupling between close pixels follows a slightly different

geometry (with the expression of ray paths clearly visible in the

ray-theory example), the total amount of trade-off in Born- versus

ray-theory inversions appears to be practically the same.

It would be possible to enhance R both globally and locally, by

relaxing regularization, and still find ‘acceptable’ models; the rel-

atively low resolution suggested by Fig. 10 is an expression of my

conservative choice of regularization, according to the criterion set

forth in Section 4.1.

6 P H A S E - VE L O C I T Y M A P S

The finer parametrization adopted in North America results in a

downward shift of L-curves associated with data sampling the high-

resolution region, with respect to those derived from the entire data

set (Section 4.3); this suggests that the growth in nominal resolution

has effectively improved model quality.

A visual inspection of optimally regularized phase-velocity maps

in Figs 11 (Love waves) and 12 (Rayleigh), selected as explained

in Section 4, confirms that the fine, 1◦ × 1◦ grid helps resolving

expected, large velocity gradients, that a coarser parametrization

(Boschi & Ekström 2002; Boschi et al. 2006) would not have repro-

duced so faithfully.

Of the surface wave modes I have considered, Love waves at

35 s are most sensitive to the properties of the crust (Boschi &

Ekström 2002). The corresponding ray- and Born-theory maps

Figure 11. Phase velocity (expressed as per cent perturbation to PREM) of 35-s (top panel) and 150-s (bottom panel) Love waves, from the ray- (left-hand

panel) and scattering-theory (right-hand panel) formulations.

(Fig. 11) are both characterized by a strong contrast between slow

continental crust, and fast young oceanic crust, that matches geo-

physical expectations; the boundary of the imaged slow conti-

nental heterogeneity follows closely the Western North America

coastline.

At 150 s period, Love (as well as Rayleigh) wave propagation is

more importantly affected by lateral heterogeneities in the Earth’s

lithosphere and upper mantle. Accordingly, phase-velocity anoma-

lies found at this period from both approaches can be correlated with

free-air gravity observations (Nerem et al. 1994, 1995; Simons &

Hager 1997; Perry et al. 2003), or with the distribution of surface

heat flow (Nataf & Ricard 1996, fig. 7; Godey 2002, fig. 5.3).

Last, the Rayleigh wave maps of Fig. 12 are consistent with

Nataf & Ricard’s (1996, fig. 5) regionalization of continents, with

a slow region corresponding to ‘tectonic continent’, a fast cra-

ton, and δc ∼ 0 within the ‘stable platform’ in south-central and

Eastern America (compare with fig. 5.4 of Godey 2002). Rayleigh

wave 150-s maps (bottom of Fig. 12) reproduce particularly well

the boundary between craton and platform along the Ontario and

Erie lakes.

While it is encouraging that tomographic images reflect inde-

pendent geophysical observations at the regional scale, there is no

evidence here that the introduction of Born-theory results in a sig-

nificant improvement with respect to the simpler, ray theoretical

method: all the mentioned expected features are resolved equally

well by both algorithms. While a small difference exists in the
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Figure 12. Same as Fig. 11, Rayleigh waves.

amplitudes of heterogeneities mapped by Born- versus ray-theory

tomography (the former being systematically larger), the hetero-

geneity patterns derived from the two approaches can be considered

coincident.

7 C O N C L U S I O N S

Following the works of Snieder (1987) and Spetzler et al. (2002), I

have made use of scattering (Born, banana-doughnut,. . .) theory to

derive global Love and Rayleigh wave phase-velocity maps from the

updated Harvard fundamental-mode dispersion database (Ekström

et al. 1997).

To investigate the improvement in model quality achieved, thanks

to Born theory, I compare Born and ray theoretical tomographic

images, derived from the same database and with the same

parametrization and inversion algorithm. Born theory should en-

hance tomographic resolution, to correctly map anomalies of extent

smaller than the wavelength of inverted observations (Spetzler et al.
2001, 2002; Sieminski et al. 2004); for a Born- versus ray-theory

comparison to be meaningful, it is then crucial that the parametriza-

tion be fine enough to resolve such anomalies (Fig. 13, Appendix A).

I make use of a non-uniform pixel grid, finer over North America,

a region particularly well covered by the data.

To correctly evaluate the significance of differences between Born

and ray theoretical tomographic results, one must make sure that the

procedures devised in the two cases are otherwise exactly equivalent:

parametrization, regularization and inversion algorithms should be

the same. It is easy to write Born and ray theoretical tomographic

software based on the same pixel grid and, for example, LSQR

routine; but regularization is a trickier issue. Different sensitivity

functions redistribute element amplitudes in the matrix to be in-

verted, and regularization must be redefined accordingly. I show

in Fig. 3 that this cannot be reduced to a simple scaling of the

damping parameters, and propose in Section 4.1 a criterion to iden-

tify equivalently regularized Born and ray theoretical solutions, that

can be compared. My approach rests on the trade-off, or L-curve

(Hansen 1992) analysis, used to determine acceptable regulariza-

tion schemes in damped inverse problems. In practice, I plot the

fit achieved by solution models against a measure of their com-

plexity, and select as optimal model the one corresponding to the

point of maximum curvature of the plot. At any given surface wave

mode, ray and Born theoretical phase-velocity maps selected with

this criterion can be considered equivalently regularized and can be

compared.

The comparison between Born- and ray-theory trade-off curves

(Fig. 4) shows that images based on Born theory are systemati-

cally more complicated than ray-theory ones, explaining the data

equally well; or, a Born-theory solution systematically reduces data

variance less than the ray-theory solution of equal complexity (see

also Boschi et al. 2006). This result contradicts theoretical expec-

tations based on a synthetic test, and in the assumption that the

Born-theory solution be close to exact (Section 4.2). This situation
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Figure 13. Spherical harmonic expansions, up to degree 40, of 35-s Fréchet

kernels, at epicentral distances 90◦ (top panel) and 170◦ (bottom panel).

Compare with the top panels of Fig. 1: the harmonic expansion tends to

smooth the kernels significantly.

is only partially reversed when the trade-off analysis is limited to

the high-resolution region, and to phase-anomaly observations that

are most sensitive to it (Section 4.3).

Perhaps the most likely explanation to this controversial result is

proposed by Zhou et al. (2005), who noted that the phase-velocity

inverse problem is complicated by the strongly oscillatory nature of

the corresponding kernels (Figs 1 and 2): according to Zhou et al.
(2005, fig. 16), oscillations in the sidebands of K (ω, θ , φ) result

from the neglect of azimuthal dependence in surface wave scatter-

ing, required to describe the latter as a 2-D phenomenon (i.e. in

terms of a set of phase-velocity maps) while it is, strictly speak-

ing, 3-D. Zhou et al. (2005) inverted phase-anomaly data to derive

Figure 14. L-curve analysis results from analytical versus numerical kernels

are compared: (top panel) same as Fig. 4, 150-s Love waves only, the red curve

corresponds to numerical kernel inversions; (bottom panel) same as Fig. 8,

that is, only data most sensitive to the high-resolution area are considered.

The graph in the bottom panel is enlarged with respect to the top panel, to

emphasize the slight downward shift of the numerical kernel L-curve (again

in red).

3-D maps of shear-velocity heterogeneity in the mantle and, accord-

ingly, their trade-off analysis is in better agreement with theoretical

expectations.

Another, potentially important limiting factor of scattering the-

ory, as it is formulated here and in most of the literature (e.g. Spetzler

et al. 2002; Montelli et al. 2004a,b; Zhou et al. 2004, 2005), is the

far-field approximation on which it is grounded (Snieder 1987), re-

sulting in K (ω, θ , φ) being singular at seismic source and receiver,

and not strictly valid in their vicinity (e.g. Favier et al. 2004). At

least one proof that K (ω, θ , φ), albeit singular, be integrable exists

(Friederich 1999, appendix E), and is in agreement with the relative

stability of the Born theoretical inverse problem. In Appendix B

(Figs 14 and 15), I use numerical results from Peter et al. (2006)

to drop the said far-field approximation, and repeat the L-curve and

visual tomographic analyses. I conclude that the loss in model qual-

ity resulting from the far-field approximation is not relevant at the

present level of resolution. It might become important, for exam-

ple, for experiments aimed at resolving small-scale heterogeneities

underlying a dense array of receivers.

A visual investigation of equivalently regularized phase-velocity

maps (Section 6) shows (i) that both Born and ray theoretical re-

sults are in agreement with independent, regional-scale geophysical
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Figure 15. Phase velocity of 150-s Love waves, from ray-theory (top panel),

analytical scattering-theory (middle panel) and numerical scattering-theory

(bottom panel) formulations. Units and colour-scale are as in Figs 11 and

12.

observations; (ii) that, even at the regional scale, differences in the

pattern of phase-velocity heterogeneity mapped via Born versus ray

theory are negligible; (iii) that differences in amplitude are more

visible, but still very small compared to perturbations in solution

models resulting from small perturbations to the value of the damp-

ing parameter. Ray theory is still a valuable tool for surface wave

phase-velocity tomography.
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A P P E N D I X A : S P H E R I C A L H A R M O N I C

P A R A M E T R I Z A T I O N

When phase velocity is described as a linear combination of spher-

ical harmonics (Spetzler et al. 2002), eq. (8) is replaced by

Ai j =
∫

�

Kith datum
(ω, θ, φ)Ylm(θ, φ) d�, (A1)

where Y lm(θ , φ) is the degree l, order m, real spherical harmonic

(e.g. Dahlen & Tromp 1998, appendix B), and a one-to-one corre-

spondence is defined between values of j (column-index of A) and

l, m couples.

As long as spherical harmonics are normalized, this is equivalent

to stating that Ai j equals the l, m coefficient of a spherical harmonic

expansion of K i th datum(ω, θ , φ).

It is then convenient to first find (by numerical integration) the

harmonic coefficients of K (ω, θ , φ) for a source at (0◦, 0◦) and

stations located along the equator, and later, for each datum, rotate

to the proper source–station geometry the kernel associated with

the same epicentral distance. This procedure is analogous to the one

I have followed with my pixel parametrization, but in the case of

spherical harmonics it is particularly simple, as K (ω, θ , φ) can be

rotated by a simple dot-multiplication between a quickly determined

rotation matrix, and the vector of K (ω, θ , φ)’s harmonic coefficients

(e.g. Dahlen & Tromp 1998, section C.8.6).

Despite its elegance, the spherical harmonic parametrization

might not be adequate to represent features of high spatial frequency,

unless very high values of l are considered. Spetzler et al. (2002)

employed a spherical harmonic expansion up to degree 40; I fol-

low their procedure to find the corresponding harmonic coefficients

of K (ω, θ , φ), and I show in Fig. 13 the spherical-harmonic ver-

sion of some of the Fréchet kernels illustrated in Fig. 1; it is clear

that a degree-40 harmonic expansion is not sufficient to represent

these very heterogeneous functions; unless higher-degree coeffi-

cients of K (ω, θ , φ) are accounted for, a certain loss of resolution is

unavoidable.

This issue is particularly important in the context of Born the-

oretical tomography, where, assuming that the data coverage be

adequate, resolution should not be limited by the wavelength of

inverted observations (Spetzler et al. 2001, 2002; Sieminski et al.
2004).

My pixelized parametrization (see Fig. 2) is a way to avoid the

problem altogether.
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A P P E N D I X B : N U M E R I C A L

S E N S I T I V I T Y K E R N E L S

Peter et al. (2006) found phase-velocity sensitivity kernels for iso-

lated surface wave modes, applying an adjoint approach similar to

that of Tromp et al. (2005) to a finite-difference membrane-wave

algorithm (Tanimoto 1990; Tape 2003). Like Spetzler et al.’s (2002)

approach, Peter et al.’s (2006) approach is only strictly valid in the

neglect of mode coupling and in the assumption that lateral hetero-

geneity in upper mantle structure be smooth. Peter et al.’s (2006)

numerical kernels differ, however, from Spetzler et al.’s (2002)

ones, in that they are non-zero also for perturbations in phase ve-

locity at azimuths >π/2 with respect to the source–station great

circle, which Spetzler et al. (2002) neglected; more importantly,

they differed from most analytically calculated sensitivity kernels

(Li & Tanimoto 1993; Li & Romanowicz 1995 1996; Dahlen

et al. 2000, and following publications by the Princeton

group; Yoshizawa & Kennett 2005) in that they are not

grounded upon a far-field approximation, and should be as

valid in the vicinity of source and receiver as they are away from

them.

Limiting myself to Love waves at 150 s, I conduct an L-curve

analysis (as in Section 4) of Born theoretical inversions based on

Peter et al.’s (2006) numerical sensitivity kernels, and show the

results in Fig. 14. At the global scale (top panel), the new L-curve

does not visibly differ from those at the bottom left-hand panel of

Fig. 4 (reproduced in Fig. 14 for convenience). If, as in Section 4.3,

only data most sensitive to structure underlying North America are

considered (bottom panel), the L-curve resulting from numerical

sensitivity kernels lies everywhere below the others; the difference

is, however, barely detectable, and still very small compared to the

theoretical prediction of Fig. 6.

After selecting a preferred numerical kernel solution model with

the criterion described in Section 4.1, I plot it in Fig. 15, accom-

panied by the corresponding Born and ray theoretical tomographic

results from Fig. 11. Differences in pattern and amplitude of hetero-

geneities found from numerical versus analytical sensitivity kernels

are certainly not larger than those found between Born and ray theo-

retical results, that is, they are negligible. This is in agreement with

Hung et al.’s (2000) comparison of analytical (far-field) and numer-

ical kernels, and with Friederich’s (1999, appendix E) proof that the

far-field kernels’ singularity at source and receiver is integrable.
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