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S U M M A R Y
In most geophysical inverse problems the properties of interest are parametrized using a fixed
number of unknowns. In some cases arguments can be used to bound the maximum number of
parameters that need to be considered. In others the number of unknowns is set at some arbitrary
value and regularization is used to encourage simple, non-extravagant models. In recent times
variable or self-adaptive parametrizations have gained in popularity. Rarely, however, is the
number of unknowns itself directly treated as an unknown. This situation leads to a trans-
dimensional inverse problem, that is, one where the dimension of the parameter space is a
variable to be solved for.

This paper discusses trans-dimensional inverse problems from the Bayesian viewpoint. A
particular type of Markov chain Monte Carlo (MCMC) sampling algorithm is highlighted which
allows probabilistic sampling in variable dimension spaces. A quantity termed the evidence
or marginal likelihood plays a key role in this type of problem. It is shown that once evidence
calculations are performed, the results of complex variable dimension sampling algorithms can
be replicated with simple and more familiar fixed dimensional MCMC sampling techniques.
Numerical examples are used to illustrate the main points. The evidence can be difficult
to calculate, especially in high-dimensional non-linear inverse problems. Nevertheless some
general strategies are discussed and analytical expressions given for certain linear problems.

Key words: evidence, inverse problems, model comparison, parametrization.

1 I N T RO D U C T I O N

The study of inverse problems has a long history in the geosciences,
dating back to the pioneering work of Backus & Gilbert (1967,
1968, 1970). Over the past 30 years there has been a strong focus on
estimating parameters, that is, building models of the Earth which
satisfy data and are in some sense ‘close’ to the real Earth, or have
properties in common with it. The usual approach is to choose some
suitable parametrization of the physical property of interest and then
use the data to estimate its free parameters. If a suitable set of param-
eters exist and can be found, then an earth model has been built and
there is a temptation to try and interpret its features. Geophysicists,
however, have been aware since the work of Backus and Gilbert that
uniqueness is not guaranteed (and indeed non-uniqueness almost
always is). Furthermore Occam’s razor suggests that simple mod-
els should be preferred over complex ones (Constable et al. 1987;
Parker 1994), and so the focus is therefore on building models with
as few degrees of freedom as necessary to fit the data. In many data-
fitting problems it is common practice to minimize the number of
unknowns required to fit the data. A range of statistical techniques
have been developed for judging whether the introduction of ex-

tra unknowns is warranted by the data, for example, F-tests. One
question that has received much less attention in the geosciences is
asking whether the data itself can provide information on the num-
ber of unknowns, that is, treating the number of unknowns as one of
the unknowns. This is what we mean by a trans-dimensional inverse
problem.

In contrast to developments in the geosciences, Bayesian statis-
ticians have considered the problem of a variable numbers of
unknowns for some time, and more recently proposed innovative
methods for its solution. The Bayesian, or probabilistic approach to
inverse problems has its detractors. Central to the Bayesian approach
is the idea that the state of knowledge about a set of unknowns can be
described by a probability density function (PDF). Non-Bayesians
would argue that this is inappropriate because the physical proper-
ties of interest are not random variables (there is only one Earth).
Furthermore the dependence of Bayesian techniques on subjective
prior information is a disadvantage and potentially unsafe, since ex-
tra information is injected into a problem that may not be intended
or desired (see Backus 1988b, for an example). The Bayesian re-
sponse might be that it is our state of knowledge about the un-
knowns which is being described by a PDF and the not the variables
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themselves. Statisticians like Denison et al. (2002) readily acknowl-
edge that there is no natural way to encode complete ignorance about
model parameters within a Bayesian formulation, but many also ar-
gue that one nearly always has some form of prior information,
however weak. It has even been claimed that the Bayesian approach
is really just a mathematical formulation of logical scientific rea-
soning (Jaynes 2003). For a more expansive summary of the issues
and arguments see (Backus 1988a; Scales & Snieder 1997; Scales
& Tenorio 2001; Jaynes 2003).

While Bayesian and non-Bayesian approaches often result in the
same answer for a data inference problem, what is not widely appre-
ciated is that Bayesian methods offer novel solutions to the model
comparison problem (Bernardo & Smith 1994; Denison et al. 2002;
Mackay 2003). This is where two or more alternate ways of ex-
plaining data are compared, each being based on differing hypothe-
ses, formulations or perhaps involving different assumptions in the
model building process. Bayesian techniques allow quantitative as-
sessment of the level of the support provided to each hypothesis by
the data.

In this paper we concentrate on a particular example of the com-
parison problem. Specifically we discuss Bayesian approaches to
trans-dimensional inverse problems, that is, where the number of
unknowns is itself an unknown. We describe some probabilistic
sampling approaches for dealing with this problem that have be-
come popular in the statistical literature. We show how these trans-
dimensional sampling techniques may be replicated using more fa-
miliar techniques for fixed dimensional sampling. In this discussion
we highlight the role of the ‘evidence’ or ‘marginal likelihood’,
a quantity which has largely been ignored in the geosciences and
elsewhere. We argue, in agreement with others, that this is an over-
sight and that the evidence has a number of important uses, both in
trans-dimensional inverse problems and more generally for model
comparison. We highlight the role of the evidence and its inter-
pretation through some simple but illustrative examples. We also
discuss ways of calculating it for fully non-linear problems with
few unknowns and for linear or linearizable problems with many
unknowns.

2 B AY E S I A N I N F E R E N C E
A N D S A M P L I N G

Bayesian inference centres on the use of Bayes’ theorem (Bayes
1763) which can be written as

p(x | d) = p(d | x)p(x)

p(d)
, (1)

where p(x | d) is the a posteriori probability density of a vector of
unknowns x given the data d; p(d | x) is the likelihood of observing
data d given a particular x, and p(x) is the a priori probability den-
sity of x, that is, what we know about x before measuring the data d.
(For brevity the terms ‘prior’ and ‘posterior’ are often used to refer
to these two probability density functions.) Note that the vertical bar
in terms like p(x | d) indicate conditional dependence, which means
that quantities to the left are variable and to the right are fixed. To
make quantitative use of (1) knowledge of data error statistics is
required, as well as prior information in the form of a probability
density function. In geophysical inverse problems data errors may
arise from a multitude of sources and their proper characterization
in terms of a single PDF may be difficult, or impossible. Similarly
representation of all prior knowledge in terms of PDFs can be prob-
lematic. In cases where some simple form of likelihood in (1) is
appropriate but its defining parameters (e.g. variance) are unknown,

then statisticians often make use of a hierarchical construction. In
this case parameters controlling the type of prior and likelihood are
themselves treated as variables (known as hyper-parameters) and as-
signed a prior PDF (see Malinverno & Briggs 2004, for a discussion
and examples). In geophysical studies the importance of geological
prior information has been widely recognized and some innovative
ways of incorporating it into Bayesian methods have been proposed
(Mosegaard & Tarantola 1995; Curtis & Lomax 2001; Curtis &
Wood 2004).

In a similar vein, uncertainty in the forward problem can be in-
corporated into the inference problem by assigning PDFs associated
with variables in the forward problem that are uncertain. As with the
hyper-parameters, it is usually most convenient to marginalize these
parameters out. An early geophysical example of such a procedure
is given in Jackson (1995).

The denominator in (1) is the integral of the likelihood times the
prior over the model space. The term p(d) normalizes the posterior

p(d) =
∫

p(d | x)p(x)dx, (2)

and has been called the marginal likelihood or ‘evidence’. In words
(1) may be written

posterior = likelihood × prior

evidence
. (3)

Note from (2) that the evidence is not directly a function of the
model parameters x because they are ‘integrated out’. Possibly for
this reason, and also that it can be difficult to calculate, it has largely
been ignored in the treatment of inverse problems, especially within
geophysics (see for example Tarantola 2005). Recently, however,
there have been claims that this is an oversight and indeed the
evidence is a useful quantity that should be calculated for all in-
verse problems (Malinverno 2000; Skilling 2004). In this paper we
discuss the evidence further and show how it plays a crucial role
in the model selection problem, which arises when deciding be-
tween competing theories or choices of parametrization in an inverse
problem.

The primary objective of Bayesian inference is to learn about
the model x from the data d. Statisticians often do this through
some form of sampling procedure, that is, draw random samples x∗

i ,
(i = 1, . . . , n) whose density distribution follows that of the poste-
rior. With the samples in hand, one can estimate any quantities of
interest. Common choices are the model xMAP which maximizes the
posterior in the model space. Others are the expected model,

E{x} =
∫

xp(x | d) dx ≈ 1

n

n∑
i=1

x∗
i , (4)

the model covariance matrix

Ci, j =
∫

xi x j p(x | d) dx − E{xi }E{x j }, (5)

and marginals of x

M(xi ) =
∫

. . .

∫
p(x | d)

k∏
j=1
j �=i

dx j , (6)

where k is the number of unknowns represented by the vector x,
and x j is the jth component of x. If samples from the posterior
are available then all three types of quantity can be easily calculated
through ensemble averages, as shown in (4) (see Sambridge 1999, for
examples). The primary issue for statisticians is to design algorithms
that efficiently sample the posterior and allow accurate estimation
of the integrals (4)–(6) for a given number of samples, n.
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In geophysics one is often concerned with model estimation, that
is, finding some optimal model from data. In the special case where
the likelihood and prior take Gaussian forms, and the data model
relationship is linear, the posterior p(x | d) is a multidimensional
Gaussian where the most likely model (xMAP) equals the average or
expected model (E{x}). In this case some algebra shows that (4)
and (5) correspond to the familiar least-squares solution and model
covariance matrix, respectively (e.g. see Tarantola & Valette 1982;
Tarantola 2005). While statisticians favour sampling from poste-
riors, geophysicists have tended to use optimization algorithms to
locate single optimal solutions and then calculated model covariance
matrices using local (derivative) information about the solution (see
Menke 1989; Aster et al. 2005). The latter has the advantage of
being practical when the number of unknowns is high (say 102–
106), but requires the inverse problem to be linear or linearizable.
For inverse problems with fewer unknowns, say 102–103, Bayesian
sampling of posterior PDFs is a viable approach and has been used
widely in geophysical studies (see Mosegaard & Sambridge 2002,
for a review).

2.1 Model comparison and the evidence

The model comparison problem arises when two or more compet-
ing theories, or hypotheses, are to be tested against data. (Note that
here the term ‘model’ is used to describe a mathematical formula-
tion rather than a vector of unknowns). For example, in seismology
a hypothesis might be that the global database of teleseismic trav-
eltime phases can be adequately fit assuming seismic wave speed
varies only with depth. In this case a competing hypothesis might
be that lateral variations in wave speed are needed to fit the data.
In geochronology, two competing hypotheses may involve differing
numbers of geological components needed to fit a set of age mea-
surements in a rock. The common theme in the hypotheses consid-
ered here is that they each have an associated number of parameters
which differ between competing hypotheses.

If two hypotheses are labelled H1 and H2 then Bayes’ theorem
can be used to determine the relative plausibility of each given the
data. We have

p(H1 | d)

p(H2 | d)
= p(d |H1)p(H1)

p(d |H2)p(H2)
. (7)

In words (7) says that the posterior ratio equals the evidence ratio
times the prior ratio. The prior ratio measures how much we favour
one hypothesis over the other before we collect any data. This may
or may not be unity depending on the problem in hand. The evidence
ratio measures how well the two theories predict the data. As the
left-hand side increases we prefer H1 over H2, given the data d.

Hypotheses are often introduced in the initial formulation of an in-
verse problem, for example, in choosing an appropriate parametriza-
tion for x, or by using simplifying approximations in the physics
relating d and x. Therefore, more strictly each term in (1) and (2)
should have been written with a conditional dependence on the un-
derlying hypotheses, that is,

p(x | d,H) = p(d | x,H)p(x |H)

p(d|H)
, (8)

and

p(d |H) =
∫

p(d | x,H)p(x |H)dx. (9)

In this case the vector x represents parameters resulting from hy-
pothesis H. We see that the likelihood term in (7) is the marginal

dd1

d2

p ( d | H ) H1 

H2 

Figure 1. An illustration of natural parsimony explained in terms of predic-
tive power of two hypotheses, H1 and H2. The horizontal axis is the range
of the data space and the vertical axis is the value of the evidence p(d |H)
Here the simpler theory, H1 makes precise predictions over a limited range
of data (d1), while the more complex theory H2 has a larger range in data
space (d2). Due to normalization the predictive capability of H2 has lower
amplitude in the data range predicted by both theories. After Mackay (2003).

likelihood or evidence given by (9), which is obtained by integrating
the posterior over the model parameters. Hence p(d |H) measures
how well the hypothesis H explains the data taking all possible
combinations of its parameters into account. From (7) we see then
that the ratio of the evidence values is the factor which converts
the prior support between two competing theories to the posterior
support, and in this way tells us whether the data have increased or
decreased the support for H1 over H2. In the statistical literature
this term is often called the Bayes factor (For discussions see Aitkin
1991; Bernardo & Smith 1994; Kass & Raftery 1995; Denison et al.
2002).

A property of Bayesian inference, perhaps not widely recognized
within geophysics, is that of ‘natural parsimony’. This means that it
incorporates Occam’s razor, that is, given a choice between a simple
and complex model that provide similar fits to data, it will favour the
simpler one. Note that this is without any preference for the simpler
model being expressed in the prior on the number of unknowns.
(Mackay 2003, Ch. 28) explains Bayesian parsimony by noting that
simple models tend to make precise predictions while complicated
ones can make a greater variety of predictions. If two competing
theories are available, as in (7), and H2 is more complicated (has
more free parameters) than H1, then H2 will be able to fit a wide
range of data values and after normalization will have on average
a lower predictive probability in the range covered by both theories
(see Fig. 1). This suggests that the evidence will tend to be higher
for the simpler model, H1, and lower for the more flexible model
H2. We see then that the key factor which incorporates Occam’s
principle into Bayesian inference is the evidence.

Skilling (2004, 2005) has argued that the evidence is a useful
transportable quantity, in that two different analyses of data (i.e. in-
volving different assumptions) may be performed years apart, but so
long as the evidence values are available the results may be quanti-
tatively compared. The study with the higher evidence corresponds
to the more successful fitting of the data. Examples of the parsi-
monious nature of Bayesian inference can be seen in the numerical
results presented later in this paper. For more detailed discussions of
parsimony and examples the reader is referred to Malinverno (2000,
2002), Denison et al. (2002) and Mackay (2003).

In contrast to model estimation, techniques for model compar-
ison are much less used by geophysicists. However, since inver-
sion studies are always based on assumptions, (e.g. to simplify
the physics of the forward problem, or to parametrize the inverse
problem with a fixed number of unknowns) then in principle one
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might expect Bayesian model comparison to find many applications.
Malinverno (2000), Malinverno & Briggs (2004) have argued along
similar lines and showed how the evidence term in (7) may be used
to perform model comparison over differing parametrizations in an
inverse problem. In this paper we concentrate on a particular ex-
ample of model comparison, the case of choosing the number of
unknowns in the parametrization of an inverse problem. The phi-
losophy is on letting the data decide between models with differing
numbers of unknowns, rather than having the choice fixed in ad-
vance. This has been an area of growing interest within the Earth Sci-
ences, for example through adaptive parametrizations in seismic to-
mography (Sambridge & Rawlinson 2005), and thermochronology
(Stephenson et al. 2006), as well as in mixture modelling in
geochronology (Jasra et al. 2006). In addition the Bayesian sam-
pling algorithm described below has already begun to make its mark
in both seismic and electrical resistivity sounding problems where
the numbers of layers in a 1-D model is treated as an unknown (see
Malinverno 2000; Malinverno & Leaney 2005, for details).

3 T R A N S - D I M E N S I O N A L I N V E R S E
P RO B L E M S

We define a trans-dimensional inverse problem as one where the
dimension of the model space, k, is an unknown. Here we do not
distinguish between the cases where k is a measurable physical pa-
rameter, for example, the number of mineralogical components in
a rock, and where it merely represents the number of basis func-
tions chosen for a model. Some would argue that it is inappropriate
to apply Bayesian methodology to the latter case, as a prior on k
might have little meaning and be difficult to quantify. These points
are certainly debatable; however, in both cases common practice in
geophysics is to fix the number of unknowns either arbitrarily, or
using physical considerations. We view the trans-dimensional ap-
proach described here as a natural extension of common practice,
that is, where the hard constraint of imposing a fixed k is relaxed
and one asks the data to decide on the number of unknowns.

To formulate the problem from a Bayesian viewpoint we use the
conditional bar notation, ‘|’ discussed above. For example, if we let
k be the number of unknowns in the model vector x then we can
rewrite (1) and (2) as

p(x | k, d) = p(d | x, k)p(x | k)

p(d | k)
, (10)

and

p(d | k) =
∫

p(d | x, k)p(x | k)dx, (11)

to indicate that this is for the case of a fixed k-dimensional model
space. A property of PDFs is

p(x, y) = p(x | y)p(y), (12)

which says that the joint probability density for variables x and y is
equal to the probability of x given a particular value of y, times the
probability of that value of y occurring. Using (12) we have

p(x, k | d) = p(x | k, d)p(k | d), (13)

and from Bayes’ theorem applied to the dimension we also have

p(k | d) = p(d | k)p(k)

p(d)
. (14)

Combining (10), (13) and (14) we get

p(x, k | d) = p(d | k, x)p(x | k)p(k)

p(d)
, (15)

which is Bayes’ theorem for the variable dimension problem. Here
the left-hand side is the joint posterior for the vector of unknowns
x and its dimension k, while p(k) is the prior on the number of un-
knowns; and p(d) is the normalization factor (or total evidence ). The
variable dimension posterior in (15) can be used for Bayesian infer-
ence in inverse problems where ‘one of the unknowns is the number
of unknowns’. Finding ways of sampling from trans-dimensional
posteriors (15) has been an active area of research in statistics cul-
minating with the breakthrough papers of Geyer & Møller (1994)
and Green (1995). The latter introduced what is became known as
the reversible jump Markov chain Monte Carlo (MCMC) algorithm.
This extended the familiar MCMC method for sampling a fixed di-
mensional space into one for a general trans-dimensional problem.
To understand the reversible jump algorithm first requires a discus-
sion of the fixed dimension case.

3.1 Fixed dimensional MCMC

The modern workhorse technique for sampling of arbitrary (fixed di-
mension) posterior PDFs as in (10) has been the MCMC algorithm.
(For summaries see Smith 1991; Gelfand & Smith 1990; Smith
& Roberts 1993). This has been used extensively for Bayesian ap-
proaches to geophysical inverse problems (Mosegaard & Sambridge
2002). To generate independent samples from an arbitrary posterior,
a random walk is performed. At each step in the chain a move is
proposed from a current model xp to a new model xq which is either
accepted or rejected. The new model xq is generated from xp in a
probabilistic manner using a (chosen) proposal distribution, which
we write as q(xq | xp). (As before terms to the right of the bar are
fixed and to the left are variable.) The model, xq is then accepted
with probability, α, given by

α = Min

[
1,

p(xq | k, d) q(xp | xq )

p(xp | k, d) q(xq | xp)

]
. (16)

In practice this means we generate a uniform random number be-
tween zero and one (U[0, 1]) and take the step from xp to xq only if
u < α. If u > α then the model position is rejected, and the algorithm
stays at xp . Clearly the acceptance value, α, is at the centre of the
whole algorithm. Expanding (16) we have

α = Min

[
1,

p(d | xq , k) p(xq | k) q(xp|xq )

p(d | xp, k) p(xp | k) q(xq | xp)

]
. (17)

This is known as the Metropolis–Hasting rule (Metropolis & Ulam
1949; Hastings 1970). The first term in the quotient (16) is the
ratio of the posterior probability of the proposed point, xq , to the
current point, xp; while the second term is the ratio of the proposal
probabilities.

Note that if the proposal distribution is chosen to be symmetric
(the usual case), then the third term in (17) cancels. Also if the pro-
posed model xq has a higher value of the posterior than the starting
model xp , then α will be equal to one. Hence a step to a model that
increases the posterior will always be accepted, and a step to a lower
value will sometimes be accepted, depending on the random number
u and ratio of the posterior PDF values. The ‘output distribution’
of the algorithm is made up of the set of models at the end of each
step, or a fixed number of steps if ‘chain thinning’ is used. (The
latter being the process by which samples are collected only inter-
mittently from the chain, to reduce unwanted correlation between
samples, see Smith (1991), Smith & Roberts (1993).) Normally a
‘burn in’ period is also employed. Which means that the early mod-
els entering into the output distribution are thrown away, because
they are biased by the starting position chosen for the random walk.
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It can be proven that using the Metropolis–Hastings rule the random
walk relaxes to the target distribution p(x | k, d), that is, the density
of the output population of samples will asymptotically follow the
fixed dimensional posterior. In practice multiple random walks can
be used from differing starting points and their results combined.

Since α in (16) only depends on the ratio of the posteriors between
any two points in the model space, p(x | k, d) need only be known
up to a multiplicative constant. This is of practical importance and
means that the evidence term in (1) need not be evaluated in or-
der to make use of MCMC sampling, which in part explains why
it has been ignored so often. The choice of proposal distribution,
xp → xq , affects the efficiency of the algorithm, that is, how many
steps are required before it relaxes to the target posterior, p(x | k, d).
Efficient and practical choices of proposal distribution are the sub-
ject of much research (Godsill 2003). A simple choice is to perturb
each component of x in succession in a fixed range,

xq
j = x p

j + u j�x j , ( j = 1, . . . , k), (18)

where xp
j and xq

j are the components of xp and xq , respectively,
u j is a U[0, 1] random number and �x j is a constant scale factor
(e.g. the prior range) for the jth component of x. A more complicated
proposal is to use a multivariate Gaussian

xq = N [µ, M], (19)

where (µ, M) are the mean and covariance matrix, respectively, of
the multivariate Gaussian. (Note that the centre of the Gaussian need
not be at the current point xp , nor aligned with the axes.) In cases
(18) and (19) the new point xq would be accepted probabilistically
using (16). Yet another class of move is to again cycle through each
component of x but set q(xq | xp) equal to the conditional of the
posterior along the axis through that point, resulting in an algorithm
known as the Gibbs sampler (see Smith 1991). In this caseα becomes
unity and hence the move is always accepted, but the cost is that the
posterior needs to be evaluated, along the entire axis through xp . (In
geophysics the Gibbs sampler was used by Rothman (1985, 1986)
for global optimization in a residual statics problem.) Note that if
the proposal distribution were equal to the posterior

q(xq | xp) = p(xq | k, d), (20)

then α would always equal 1, which would be ideal since all steps
would be accepted. However, this defeats the object of the procedure
in the first place, since a pre-requisite for using Metropolis–Hastings
is that we must have an algorithm to generate new proposal points xq

from q(xq | xp). Mosegaard & Tarantola (1995) discuss these issues
further, and provide geophysical examples of the use of (16).

3.2 Reversible jump MCMC

The reversible jump algorithm of Green (1995) extends the use of the
Metropolis–Hastings rule to cases where the proposal distribution
not only moves a point within the current model (or state) space,
but also between state spaces, of different dimension or type, that
is, the step can include movement from a vector xp of length k to
a vector xq of length k′. Fig. 2 illustrates schematically the general
situation of moving between each pair of state spaces.

In the reversible jump algorithm the proposal distribution in (16)
is replaced with a two step procedure. We first generate r, random
numbers (represented by the vector u), using a chosen distribution
g(u), and then calculate the proposed model xq , using u and the
current model xp and some chosen (one to one invertible) function,
h,

xq = h(xp, u). (21)

State 1

State 2

State 3

x1

(x1

(x1, x2, ..., x10)

, x2)

k1 = 1

k2 = 2

k3 = 10

p(k2 | d ) / p(k1 | d )

p(k1 | d ) / p(k2 | d )

Figure 2. A schematic illustration of the reversible jump MCMC algorithm
sampling across three independent state spaces. The number of variables in
each (k j , j = 1, . . . , 3) differs between states. In general the meaning of
each variable, x j , could differ as well between states, but here only a simple
addition and subtraction is shown. The arrows represent the jumps between
states. The average number of successful jumps is controlled by the ratio of
the total posterior probability in each state.

The only restriction on the transformation h is that it is a diffeo-
morphism (i.e. both h and its inverse are differentiable). Note that
this formulation is quite general and each of the simple proposal
distributions in (18) and (19), for the fixed dimension sampling,
correspond to particular choices for h, r and g(u). For example, in
(18) the right-hand side corresponds to the transformation function
h(xp , u), the distribution for the random number generation, g(u)
is uniform, U[0, 1]; and the number of random numbers generated,
r = k. The introduction of the transformation (21) may seem unnec-
essarily awkward; however, the real power is seen when one realizes
that now xp need not be the same dimension as xq . Furthermore the
underlying parametrization associated with xp and xq need not be
the same either. With (21) we may step between any two parameter
spaces, that is, xq may have more, the same, or less variables than
xp and each component of xq may be a function of all components
of xp . Note that if between any two states the dimension changes by
the simple addition of new components then a random number is
generated for each new variable and hence r = k ′ − k, that is, one
random number is required for each new component. Green (1995)
showed that within this general framework the Metropolis–Hasting
rule becomes

α = Min

[
1,

p(xq , k ′ | d) g′(uq )

p(xp, k | d) g(up)
|J |

]
, (22)

where g(up) and g′ (uq ) are the PDFs of the random numbers used
in the forward step xp → xq and the corresponding reverse step
xq → xp , respectively. More specifically we can write the forward
and reverse transformations as,

xq = h(xp, up) (23)

and

xp = h′(xq , uq ) (24)
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where random vectors up and uq are of size r and r′, respectively,
and we have k + r = k ′ + r ′. (Note: in the common case of state
xq being an addition of one extra variable to xp then r = 1, r ′ = 0.)
The Jacobian of this transformation is needed in the Metropolis–
Hastings rule (22). Since the transform and its inverse in (23) and
(24) exist by definition, then the Jacobian also exists and is given by

|J | =
∣∣∣∣ ∂(xq , uq )

∂(xp, up)

∣∣∣∣ (25)

The matrix J is of size (k + r ) × (k ′ + r ′), and its role is to account
for the scale changes in the transformation from xp → xq . Note that
the posterior in (22) is now the variable dimension posterior given by
(15) and not the fixed dimension one used previously. Since the more
general formalism describes both the fixed and variable dimension
cases, (22) reduces to (16) with appropriate choices of (h, r, g(u)).
For more discussion on the details of the algorithm and form of the
Jacobian in special cases the reader is referred to Denison et al.
(2002) and Green (2003).

As an example, imagine that we have three possible states with 1,
2 and 10 unknowns, respectively. To simplify notation we use k = 1,
2, 10 to label the states as well as represent the number of unknowns
in each state. (In general, however, more than one state may have
the same number of unknowns.) If the relationship between states k
and k′ is a simple addition of variables (i.e. k ′ > k), then the forward
transformation (23) from model xp (of length k) to model xq (of
length k′) is given by

xq
i = x p

i , (i = 1, . . . , k) (26)

xq
i = u p

i−k �x (i = k + 1, . . . , k ′), (27)

where xp
i is the ith component of xp , �x is a constant scale length

associated with each state (e.g. the range of allowed values of x i ) and
up

j is a uniform random number U [0, 1]. The reverse transformation
(24) is then given by

x p
i = xq

i , (i = 1, . . . , k). (28)

In this case r is the number of random numbers required in the
forward transformation

r = k ′ − k, (29)

and r′ is the number of random numbers needed in the reverse trans-
formation, which is zero. Hence J is a matrix of size k ′ × k ′. Some
simple algebra shows that the Jacobian of the forward transforma-
tion (27) is given by

|J | = (�x)r = (�x)k′

(�x)k
. (30)

If we let the prior for x be a constant over the interval �x in all
variables, then we have

p(x | k) = 1

(�x)k
, (k = 1, 2, 10), (31)

and if we also let the prior for the dimension, k be

p(k) = Pk

(P1 + P2 + P10)
, (32)

where P k is the prior probability for dimension k. Using (15) we
see the posterior ratio for the jump from k to k′ is

p(x, k ′ | d)

p(x, k | d)
= p(d | xq , k ′)(�x)k Pk′

p(d | xp, k)(�x)k′ Pk
. (33)

If the forward and reverse proposal distributions g(u), g′(u) are the

same, then inserting (13) and (20) into (22) we get the acceptance
probability for the jump

α = Min

[
1,

p(d | xq , k ′) (�x)k Pk′ (�x)k′

p(d | xp, k) (�x)k′ Pk (�x)k

]
, (34)

which simplifies to

α =
[

1,
p(d | xq , k ′) Pk′

p(d | xp, k) Pk

]
. (35)

Therefore the probability of a jump between different dimensional
states being accepted does not depend on the size of the space itself,
since the �x terms cancel. Hence all states are treated equally by
the algorithm and there is no ‘inbuilt’ bias of accepting moves to
one state or the other.

By setting the likelihood to one in (35) we get the criterion for
sampling from the prior

α =
[

1,
Pk′

Pk

]
. (36)

This tells us that when applying the reversible jump algorithm to
the prior the number of transitions between any two states will be
equal to the ratio of the prior probabilities for those states, which
by definition should be the case. For the posterior the same step is
modulated by the likelihood ratio. For the case k = k ′ sampling is
within a single state space and we get

α =
[

1,
p(d | xq , k)

p(d | xp, k)

]
, (37)

which is exactly the same as the fixed dimension Metropolis algo-
rithm encountered earlier with symmetric proposal distributions.

A point to note about the reversible jump algorithm is that since
the acceptance probability in (22) uses the variable k posterior in
both the numerator and denominator then the normalizing constant,
p(d) (i.e. the total evidence), cancels just as the conditional evi-
dence, p(d | k), cancelled in the fixed dimension case. Hence, again
the posterior only needs to be known up to a single constant of
proportionality across all dimensions. Another point to note is that
there is some freedom in choosing the combination (h, r, g(u)) and
different choices can lead to the same algorithm. For example, in
the above problem one could redefine the random numbers, u j in
(18) as the complete perturbation to xp

j rather than a U [0, 1] random
variable multiplied by the scale factor �x. By repeating the algebra
above we find that this trivial change results in a Jacobian of unity,
but as a consequence the ratio of the PDFs of the random numbers
is changed. We get

g(up) = 1

(�x)r
, g′(uq ) = 1, (38)

which gives,

g′(uq )

g(up)
= (�x)k′

(�x)k
, (39)

and so overall acceptance probability in (35) is unchanged. By ar-
ranging for the Jacobian to be unity in this way, the whole process
looks much more like the familiar fixed dimension MCMC sampler.
Exploiting this flexibility can be of help in designing particular jump
proposals.

A useful special case of the reversible jump algorithm is where the
only transitions allowed are between states with just one unknown
extra or one less. This is often referred to as birth–death MCMC.
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For this case the Jacobian is again unity and at each time step a birth
is proposed and accepted with probability

α = Min

[
1,

p(d|xq , k + 1)

p(d | xp, k)

dk+1

bk

]
. (40)

and then a death is proposed and accepted with probability

α = Min

[
1,

p(d|xq , k − 1)

p(d | xp, k)

bk−1

dk

]
. (41)

where d k is the assigned probability of a death when the model has
k unknowns (jump to the state with k − 1 unknowns), and bk is the
probability of a birth when the model has k unknowns (jump to a
state with k + 1 unknowns). Typically one has bk = d k = 1/2 for
k = 2, . . . , kmax − 1 with b1 = d kmax = 1, bkmax = d 1 = 0. Here
it has been assumed that the value of the new parameter during the
birth step has been generated according to the conditional prior (see
Denison et al. 2002, p36 for details). This case is the most easiest
to implement since it is very similar to the the fixed dimension
MCMC algorithm in (16). See Denison et al. (2002) and Carlin &
Chib (1995) for examples.

While trans-dimensional MCMC is well established in the statis-
tical community, awareness in the Earth Sciences is currently not
widespread, especially in the context of inverse problems. Reversible
jump MCMC was first applied in the geophysical literature by
Malinverno & Leaney (2000) to the inversion of zero-offset vertical
seismic profiles. (For a more complete treatment see Malinverno
& Leaney 2005). Subsequent work was by Malinverno (2002) who
applied it to electrical resistivity sounding. More recently, it has
been used as the basis of new approaches to modelling in ther-
mochronology (Gallagher et al. 2005; Stephenson et al. 2006) and
spatial statistics (Stephenson et al. 2005). Although the approach
is gaining recognition there remain important practical issues to
be addressed, not least of which is the design of efficient proposal
distributions for the dimension jump (see Brooks et al. 2003). Fur-
thermore, translating a particular algorithm into computer software
is often a non trivial task. As a first step in addressing these issues
Green (2003) proposed an ‘Automatic’ reversible jump MCMC al-
gorithm for general use, and also made a computer code available
(see below). The power of that implementation is that the transfor-
mation between state-space variables in (21) is completely at the
discretion of the user, and the Jacobian and proposal distributions
are determined automatically.

Green (2003) claims that the automatic sampler implementa-
tion of reversible jump is efficient for relatively small dimensional
problems, say up to 30 unknowns. However, Malinverno & Leaney
(2005) were able to apply their reversible jump scheme to an earth
model with up to 100 layers. Below we compare the reversible jump
sampler embodied in (22) to the more familiar fixed dimension
MCMC sampler (16).

3.3 Trans-dimensional inference using a fixed
dimension sampler

As has been noted above, fixed dimensional inverse problems are
common in the geosciences and fixed dimensional MCMC sam-
pling algorithms are well established in the geophysics literature.
The reversible jump algorithm, on the other hand, is both new to
geophysics and arguably more complicated to implement. Certainly
there are as yet no general purpose computer codes with a wide
range of applicability. In this situation we might ask then whether it
is possible to replicate the results of the reversible jump algorithm
with more familiar fixed dimensional methodologies. Here we show

how this can be done without specific introduction of the reversible
jump machinery.

Let’s assume we have an inverse problem which can be
parametrized with up to k max unknowns, and further assume that we
have performed k max independent runs of a standard MCMC sampler
each from the fixed dimension posterior (10) for k = 1, . . . , k max.
Let the models generated be x(k)

i , (i = 1, . . . , nk), where x(k) repre-
sents a vector with k components and nk is the number of samples
generated in each case. The samples we have are drawn from the
fixed dimension posterior, p(x | k, d), and what we want are samples
drawn from the variable dimension posterior, p(x, k | d). The expres-
sion that connects these two is (13). It shows that they differ only by
the factor p(k | d) which is the posterior on the dimension k. Hence
the value of the posterior on k for each dimension is the required
weight we must give to the fixed dimension samples to achieve vari-
able k sampling. If we assume, for the moment, that we have the
posterior for the dimension p(k | d) for each k, then a simple hier-
archical approach is suggested. First we choose k probabilistically
with weights P k

Pk = p(k | d)∑kmax
k′=1 p(k ′ | d)

, (42)

and then for the selected k, choose a model at random from the corre-
sponding population with uniform weight from x(k)

i , (i = 1, . . . , nk).
In this way any number of samples from the variable dimension pos-
terior can be obtained using samples drawn from the fixed dimension
sampler.

Now we return to the question of calculating the posterior on the
number of unknowns, k. From (14) we see that this is given by the
prior p(k) multiplied by the term p(d | k)/p(d), which is the ratio of
the conditional evidence (for fixed k) divided by the total evidence.
Combining (14) with (42) we get values for the probabilities, P k ,

Pk = p(d | k)p(k)∑kmax
k′=1 p(d | k ′)p(k ′)

. (43)

Hence the total evidence cancels, and again need not be calcu-
lated. Expression (43) shows that the key factor in connecting
trans-dimensional and fixed dimension MCMC sampling is the
conditional evidence for each dimension, p(d | k). As long as this
quantity is known, it is possible to replicate the output population
of a reversible jump algorithm, by probabilistically resampling, us-
ing weights pk , from the output population of a fixed dimensional
MCMC sampler.

3.3.1 A linear example

To illustrate the above ideas we consider a simple example of regres-
sion. Fig. 3 shows a set of 20 synthetically generated (x, y) pairs and
associated error bars. The y values are the data and were generated
from a straight line with intercept 0.3 and gradient 0.6, using N = 20
random x values between 0 and 1, after which Gaussian noise (σ =
0.2) was added. Fig. 3 shows best-fit curves for a first, second, third
and fourth order polynomial. For reference Fig. 4 shows three mea-
sures often used to estimate the number of unknowns needed to fit
data. These are the Chi-square values, the probability of Chi-square
and the Bayesian information criterion (BIC) (Schwartz 1978). The
Chi-square is defined as

χ 2 = 1

N

N∑
i=1

(
di − ∑k

j λ j x j−1
)2

σ 2
, (44)
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Figure 3. Input data used in the regression example. 20 pairs of (x, y) vari-
ables with error bars. The lines show best-fit constant, linear, quadratic, and
cubic polynomials.

where the unknowns are λi , (i = 1, . . . , k). The BIC is given by

BIC = −2 ∗ log(p(d | k, xMAP) + k log N . (45)

The probability of Chi-square is determined from standard statisti-
cal tables (Press et al. 1992). Each of these are ‘point’ estimates, in
that they are evaluated at a single best-fit model. For Gaussian data
errors the first term in the BIC is −2N times the Chi-square measure
of data fit in (44) while the second term (k log N) is a penalty against
increasing the numbers of parameters used to achieve the fit. In Fig. 4
each quantity is plotted as a function of the number of unknowns
in the polynomial, k. The situation is ideal for use of a Chi-square
measure in that the noise is Gaussian and the variance known. The
correct number of unknowns (k = 2) gives a Chi-square of one,
however the probability value, which measures the significance of
the fit has its peak at the incorrect value of k = 3. Using an F-test one
can calculate how much the Chi-square can change for a given level
of significance. In this case a variation of up to 0.45 is allowed be-
fore reaching the 95 per cent significance level. Since the minimum
Chi-square for k = 3 and k = 4 vary less than this, one could con-
clude that they do not provide significant improvements in fit, and
preference should be given to the k = 2. The BIC finds the solution
directly with a peak at the correct value. In this simple problem then
standard point estimates are able to pick the best solution, but they
do not provide any information on the relative levels of support for
each case.

Applying trans-dimensional Bayesian inference to this problem
we use the likelihood function

p(d | λ, k) = 1

(σ
√

2π )N
exp

{
− N

2
χ2

}
, (46)

and the flat priors

p(λ j | k) =
{ 1

(λU
j −λL

j )
: λL

j ≤ λ j ≤ λU
j

0 : otherwise,
( j = 1, . . . , k), (47)

p(k) = 1

kmax
, (48)

where (λL
j , λU

j ) are the upper and lower values imposed for λ j , and
k max = 4. We set the coefficient ranges to be quite broad using lower
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Figure 4. (a) Chi-squared values for maximum likelihood solutions to fitting
the data in Fig. 3 using a linear polynomial with one, two, three and four
parameters; (b) The probability of the Chi-square value for each case (note
that this measure peaks at the incorrect value of k = 3); (c) The Bayesian
information Criterion (see text) for each case in a).

limits of (0, −2, −10, −30) and upper limits of (1.2, 2, 10, 30). The
posterior for the variable k case is then the product of (46), (47) and
(48) divided by the (unknown) total evidence, as shown in (15). The
total evidence, p(d), is a constant factor for all k and hence cancels
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out in the calculation of the acceptance probability (22). [Note that
we use a flat prior here simply for illustrative purposes. Jeffreys
(1939) argued that the only way to encode complete ignorance for a
positive quantity was to set p(log k) = const. This has the advantage
of invariance under certain parameter transformations, for example,
setting k to any power results in a new variable with the same prob-
ability density, which is not true of the flat prior (48). However, the
Jeffreys prior cannot be normalized over 0 < k < ∞. For a detailed
justification for the Jeffrey’s prior the reader is referred to Jaynes
(2003).]

We use the automatic reversible jump implementation of Green
(2003). In this the proposal distributions for walks within a model
space and between model spaces are based on multivariate Gaussians
centred at the point µk with covariance matrix BkBT

k ,

q (xq | xp) = N
(
µk, Bk BT

k

)
. (49)

The covariance matrices, BkBT
k and means µk for each model

space are estimated by first sweeping through each dimension sep-
arately and applying a standard MCMC sampler [see (4) and (5)].
Implementation details of the scheme are omitted here, for full de-
tails readers are referred to Green (2003).

The reversible jump algorithm results in a chain of samples, each
of which is a vector of k-coefficients, with k itself varying between
samples. Fig. 5 shows the prior, p(k), and posterior, p(k | d), for the
number of components, k. The posterior was obtained by running the
reversible jump sampler for 106 steps, collecting every 200th sample
and tabulating the frequency of k values. The prior was set in advance
to be uniform across dimension, and Fig. 5(b) shows the result of
sampling with the likelihood in (46) set to unity. The fact that this
recovers the imposed prior is a useful check on the algorithm, and
shows that in the absence of any data there is no preference for any
dimension. Results of the reversible jump algorithm suggest support
in the ratio of 0.04, 87.02, 11.89 and 1.05 per cent for k = 1, . . . , 4,
respectively, clearly favouring the linear fit model. We see then that
when the data are introduced there is a preference for simple rather
than complex models. This is an example of the natural parsimony
property of Bayesian inference discussed in Section 2.1.

We now apply the fixed dimension MCMC sampler to the problem
and use the algorithm described in Section (3.3) to resample the
results and simulate the variable dimension posterior. In this case
each value of k is considered independently, and the posterior is
given by the likelihood (46) times the prior (47) divided by the
conditional evidence, p(d | k), which is again unknown. As in the
reversible jump case the evidence cancels out in the calculation of
α, see (16). A simple axi-symmetric Gaussian proposal distribution
is used with variances calculated from the prior (i.e. σ j = (λU

j −
λL

j )/
√

12). Note that this is not the same proposal distribution used
by the reversible jump algorithm in (49). To estimate the conditional
evidence p(d | k) for each k, we generate N s samples from the prior
(47) and numerically estimate the integral in (11) using

p̃(d | k) = 1

Ns

Ns∑
i=1

p(d |λi , k), (50)

where λi represents the coefficients of the ith sample. With N s =
106 samples the evidence values obtained for k = 1, . . . , 4 were
(0.000170, 0.36976, 0.05069, 0.00271), respectively, which are in
the ratio 0.04, 87.34, 11.98 and 0.64 per cent. (Errors on the relative
evidence are less than 0.003 per cent in all cases.) These values for
the relative evidence compare very well with the posteriors found
from the reversible jump algorithm, and (14) says they should be
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Figure 5. (a) The posterior probability density for the number of unknowns
k in the regression model calculated using the reversible jump algorithm.
Note the clear preference for two unknowns with other values of k receiving
much less support. (b) same as a) but when the prior is sampled. Note the
equal frequencies for k in the simulated samples reflect the uniform prior
imposed. Comparing (a) to (b) shows how the data increase support for the
k = 2 case at the expense of the others. The frequency scale is logarithmic.

the same for this problem. [Note that the evidence has a maximum
at k = 2 and then decreases which is in contrast to the best data fit
(shown in Fig. 4) which continues to increase with k.]

Using the relative evidence values as weights we then randomly
selected 5000 samples from the 4 × 106 fixed-k samples, to simulate
a variable-k sample. A useful way to compare the combined sample
with those from reversible jump algorithm, is to calculate a density
plot of the corresponding data fit curves, that is, for each sample
and associated k value we calculate the curve using

y(x) =
k∑

j=1

λ j x
j−1. (51)

Figs 6(a)–(d) show the density plots for each of the four fixed-k
samples, while Figs 6(e) and (f), show the variable-k posterior from
the combined and reversible jump samples, respectively. The range
in each panel is the same as Fig. 3. It is clear that the two pos-
terior simulations are almost identical, indicating that the density
of the reversible jump samples have been successfully recreated by
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Figure 6. Density of 5000 predicted regression curves for fixed dimension samples, (a) k = 1, (b) k = 2, (c) k = 3, (d) k = 4. (e) shows the density of 5000
curves calculated from randomly selected fixed k curves using the evidence values as weights (see text). (f) is for 5000 reversible jump samples with variable k.
Axes limits are the same as in Fig. 3. The similarity of (e) and (f) shows that the variable dimension sample density can be recreated from the fixed dimension
samples.

combining the fixed dimension samples. Furthermore, one sees how
the density pattern of the combined samples reflects the individual
sample densities. Clearly the pattern is dominated by k = 2 with con-
tributions from k = 3, and, to a much lesser extent k = 4, apparent at
the two extremes. This example clearly demonstrates that in a simple
linear problem the trans-dimensional sampling with the reversible
jump algorithm can be recreated with the more familiar fixed di-
mensional MCMC algorithm. For further details of how reversible
jump algorithms can be applied to a range of more complicated re-
gression problems the reader is referred to the comprehensive study
by Denison et al. (2002).

3.3.2 A non-linear example

We now illustrate the role of the evidence in the non-linear problem
of mixture modelling (McLachlan & Basford 1987). This trans-

dimensional inverse problem arises in several areas of the Earth
Sciences, including fission track studies (Galbraith & Green 1990)
and other areas of geochronology (Sambridge & Compston 1994;
Jasra et al. 2006). In these problems observations may reflect an
overlapping combination of distinct geological ages, and it is im-
portant to try and recover individual components from the combined
distribution. Mixture modelling is also a problem of recurring in-
terest in statistics and the reversible jump algorithm has been suc-
cessfully applied across a range of applications (see Richardson &
Green 1997; Jasra et al. 2006, for details). Fig. 7 shows (N d = 100)
data generated from two equally weighted Gaussian distributions
with means (540, 570) and standard deviation σ = 30. Here we con-
sider a simplified version of the mixture modelling problem, where
only the number of components and the means of those components
are unknown. (The relative weights and standard deviations being
kept fixed.) For this case the likelihood function for k Gaussian
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Figure 7. Histogram of 100 synthetically created age data used in the mix-
ture modelling example. The age values were generated from two equal
Gaussian centred at 540 and 570 Ma and with standard deviations of 30 Ma.
The number of components and the mean ages are treated as unknowns in
the example. See text for details.

components is,

p(d | x, k) = 1

(σ
√

2π )Nd

Nd∏
i=1

k∑
j=1

1

k
exp

{−(di − x j )2

2σ 2

}
. (52)

The prior on x j , ( j = 1, . . . , k) is again chosen to be uniform as in
(47) with bounds equal to that of the data. The prior on the number
of components, p(k), is also uniform, as in (48), with a maximum of
7. For variable k the posterior is the product of likelihood (52) and
the two priors divided by the evidence. The resulting posterior for
this problem can be multimodal due to the more complex likelihood
function (52). For the fixed k case the posterior is proportional to
the product of the likelihood (52) and the uniform prior on the
component means only.

Both sampling algorithms are exactly as in the regression ex-
ample. Fig. 8 shows the results of the posterior on the number of
components, p(k | d), calculated with the reversible jump algorithm
compared to the evidence values, p(d | k) found with the fixed di-
mension sampling and numerical integration (50). The maximum
dimension is now 7 and the problem more complex, but the evidence
values for each k clearly give the same trend as the posterior on k.
In this case we see a greater spread of support across the number
of components, which is due to the relatively large noise in the data
(with noise standard deviation being equal to the separation of the
two real components). Nevertheless the trans-dimensional samples
have clearly picked out k = 2 as the most preferred solution.

To examine the samples produced we plot the density of all ages
on a single axis in Fig. 9. Fig. 9(a) shows density curves for all seven
fixed k runs, while Fig. 9(b) shows the variable-k posterior from
both the combined and reversible jump samples. The two variable k
samples are identical within sampling error, and again one sees how
the combined sample is made up of fixed dimension components.
Here the central peak is due to the k = 1 contribution, the high- and
low-age peaks are due to k = 2, and the skewness toward the higher
ages is due to the combination of cases k = 3, . . . , 7. Again we see
the preference toward simpler models in explaining the data.

Both the linear and non-linear examples verify that it is possible
to simulate trans-dimensional MCMC sampling using a fixed di-
mension sampler and the relative evidence values for each k. While
the latter approach is conceptually simple, we are not advocating
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Figure 8. Information on the number of components in the mixture mod-
elling problem. Blue curve shows the posterior probability density for k
found with the reversible jump algorithm. The red curve is plotted using the
evidence values found from each of the fixed dimension MCMC runs. This
shows how the fixed dimension sampling can recreate the reversible jump
posterior on the number of components.

that it is superior to the former. Computational costs are compara-
ble in these examples, but we have not experimented with efficiency
issues here. If the maximum number of unknowns is large, it is
seems likely that simply sampling each parameter space in turn us-
ing fixed dimensional MCMC will be prohibitive, since the cost
of each integration would increase significantly with dimension. A
trans-dimensional MCMC algorithm is likely to be much more ef-
ficient since, by definition, it aims to spend only the amount of time
necessary in each dimension as needed to calculate the posterior on
k, p(k | d). No doubt more efficient use of fixed dimensional sam-
pling could be devised whereby the number of sweeps at each fixed
k, N k , is adjusted in an iterative manner, using the relative evidence
estimates obtained. In addition, for real problems there is no need
for the prior on the dimension to be uniform. Indeed as we have
argued above a more sensible choice is, p(k) ∝ 1/k (equivalent to
the Jeffreys prior on k), which would help reduce the number of
samples required as the dimension increased. We have not explored
any of these options. Our intention is simply to show the connection
between the trans-dimensional sampler and a standard technique
which may be more familiar to Earth scientists. This provides a
reference method with which to test implementations of reversible
jump algorithms. At the same time we have demonstrated that the
evidence is the key quantity that connects the two.

4 C A L C U L AT I N G T H E E V I D E N C E

We conclude this paper with a brief discussion of how the evidence
might be calculated in different situations. In the two examples above
a simple integration method is sufficient. Likelihood values are av-
eraged at samples drawn from the uniform prior. This is not likely
to be practical for higher-dimensional problems or where the pos-
terior is more complex. An alternative approach can be found by
rearranging (10) to give

p(x | k)

p(d | k)
= p(x | k, d)

p(d | x, k)
. (53)
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Figure 9. A comparison of posterior densities in the mixture modelling
example. (a) shows the density of the fixed k MCMC runs with up to seven
components and (b) the weighted fixed dimension samples and the reversible
jump samples. For each curve the density plots are for all age components
plotted on a single axis. The reversible jump posterior is identical to the
weighted fixed dimension samples within sampling error. Comparing (a) and
(b) one can also see how structural features of the fixed dimension posteriors
contribute to the peaks in the variable dimension posterior. In both cases the
vertical bars represent the true values of each component age.

Since the prior p(x | k) is normalized (i.e. integrates to one), we can
integrate both sides over x to give

[p(d | k)]−1 =
∫

p(x | k, d)

p(d | x, k)
dx. (54)

A Monte Carlo estimate of (54) can be found by drawing samples,
x̃i , (i = 1, . . . , n) from the posterior, p(x | k, d). We get

p(d | k) ≈ 1∑n
i=1[p(d | x̃i , k)]−1

. (55)

Green (2003) expects the estimator (55) to have high variance, and
hence for many situations its numerical error will only slowly de-
crease with n. We evaluated (55) for the both of the numerical ex-
amples above and found convergence to be much slower than for the
rather simple procedure used in Section 3. A number of importance

sampling approaches to calculating the evidence have been proposed
by Newton & Raftery (1994); Gelfand & Dey (1994); Chib (1995);
Chib & Jeliazkov (2001). More recently Skilling (2004, 2005) has
proposed a new approach for general Bayesian sampling and in par-
ticular evidence calculations, known as ‘Nested sampling’. (General
use software has been made available implementing the latter, see
below). None of these approaches can yet be described as definitive,
and it seems sampling based methods for evidence calculations will
be an active area of research in the future.

As the number of unknowns becomes large all Bayesian sampling
techniques tend to suffer from the curse of dimensionality (see Curtis
& Lomax 2001, for a discussion), and evidence calculations are
likely to become impractical with a sampling technique. It is worth
noting, however, that in some special cases analytical expressions
are available for the evidence. For example, this is the case for a
linear inverse problem with Gaussian noise and a quadratic prior.
We have

d = Ax, (56)

with likelihood

p(d | x, k) = 1

(2π )Nd /2|CD|1/2
exp

{
−1

2
(d − Ax)T C−1

D (d − Ax)

}
,

(57)

where C D is the data covariance matrix of the data noise, and prior

p(x | k) = 1

(2π )k/2|CM |1/2
exp

{
−1

2
(x − xo)T C−1

M (x − xo)

}
, (58)

where C M is the prior model covariance matrix. To make the con-
nection to large-scale inverse problems clearer it is worth noting
that the terms within the curly brackets of (57) and (58) depend
on the chi-square of data fit and a quadratic model penalty term.
Specifically, we can define χ 2(d, x) and φ(x, xo) as,

χ 2(d, x) = 1

N
(d − Ax)T C−1

D (d − Ax), (59)

and

φ(x, xo) = (x − xo)T C−1
M (x − xo). (60)

If the (fixed) number of unknowns in the inverse problem is k then the
evidence can be found by integrating the product of the likelihood
(57) and the prior (58) over the parameter space, as in (11). We get

p(d | k) = ρ(x̂, d, xo)

((2π )(Nd +k)|CD||CM |)1/2

×
∫

exp

{
−1

2
(x − x̂)T C ′−1

M (x − x̂)

}
dx, (61)

where x̂ is the usual damped least-squares solution

x̂ = (
AT C−1

D A + C−1
M

)−1 (
AT C−1

D d + C−1
M xo

)
, (62)

C ′
M is the (posterior) model covariance matrix

C ′
M = (

AT C−1
D A + C−1

M

)−1
, (63)

and

ρ(x̂, d, xo) = exp

{−N

2
χ2(d, x̂) − 1

2
φ(x̂, xo)

}
. (64)

Note that the term ρ(x̂, d, xo) depends only on the data fit and model
penalty at the least-squares solution. The evidence can be found
by noting that the integral in (61) is a k-dimensional Gaussian.
Assuming the parameter space is unbounded we have∫

exp

{
−1

2
(x − x̂)T C ′−1

M (x − x̂)

}
dx = (

(2π )k |C ′
M |)1/2

. (65)
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Substituting into (61) gives

p(d | k) = ρ(x̂, d, xo)

(2π )(Nd )/2

( |C ′
M |

|CD||CM |
)1/2

. (66)

Therefore the evidence for a particular number of unknowns, k,
depends on the data fit at the solution and a ratio of determinants of
the posterior to prior covariance matrices and as such measures the
change in shape of the PDF as the data are added. The result (66)
has been stated recently by Malinverno & Briggs (2004) in their
Appendix B; however, the result is much older than this. Its first
statement is difficult to determine, but certainly it has been derived
and used by Gull (1989) in calculating the evidence in his work in
maximum entropy, and a few words are in order to describe this.

Gull (1989) is concerned with a prior PDF which is not Gaus-
sian, but which is associated with the entropy of the image with
regard to which he is trying to make inferences. He applies the so-
called Laplace approximation for this prior PDF, which means that
he approximates it as being Gaussian; the relevant matrix C−1

M is
associated with the second term in the Taylor expansion of the log-
arithm of the prior PDF (see e.g. Mackay 2003, p. 341). He then
performs the multidimensional integral to find the evidence, giving
a formula equivalent to (66). His developments go further, however,
because he discusses the situation when one does not know C−1

M ,
but instead only a scalar multiple of it. In other words there is an
unknown parameter that scales the width of the prior PDF. Gull goes
on to show how this parameter can be chosen so as to maximize the
evidence.

To help interpret (66) consider a problem with one unknown, and
let the prior be uniform over some finite interval, σ prior and zero
elsewhere. In this case φ(x̂, xo) = 0, CM = σ 2

prior, the prior model
variance, and C ′

M = σ 2
post, the posterior variance, and the maximum

likelihood value of the best-fit model x̂ is

p(d | x̂, k) = ρ(x̂, d, xo)
(
(2π )Nd |CD|)−1/2

. (67)

Substituting into (66) gives

p(d | k) ≈ p(d | x̂, k) ×
(

σpost

σprior

)
. (68)

Note the expression is approximate because the prior is only non-
zero over a restricted region and hence the integration in (65) is no
longer over an unbounded parameter space. Expression (68) shows
that the evidence is approximately the best-fit likelihood value mul-
tiplied by the ratio of the posterior PDF width to the prior PDF
width. The latter term is often called the ‘Occam factor’. It is al-
ways less than one and measures the relative amount the PDF has
narrowed due to the data (see Malinverno 2002; Mackay 2003, for
useful discussions of the Occam factor).

Comparing inversion solutions with different numbers of un-
knowns k1 and k 2(k 2 > k 1), the best-fit (maximum) likelihood value
will tend to increase (favouring the larger k); however; the Occam
factor will tend to decrease (favouring the smaller k). The overall
value of the evidence will be a trade-off of these two quantities.
In principle then one could resolve a linear inverse problem with
differing numbers of unknowns and calculate the evidence for each.
An alternative expression to (66), and perhaps simpler for this pur-
pose is found by making use of (57), (58) and (64). In this case (66)
becomes

p(d | k) = p(d|x̂, k)p(x̂ | k)(2π )k/2|C ′
M |1/2. (69)

This says that the evidence is the product of the likelihood and
the prior evaluated at the posterior maximum (or mean), multiplied
by the root of the determinant of the posterior covariance matrix.

Strictly speaking (69) is only valid in the linear case with Gaussian
prior and likelihood in an unbounded parameter space. Provided all
three quantities have been calculated (which is relatively standard
in linear inverse problems) the evidence can be calculated using
only information at the solution. The linear example problem in
Section 3.3.1 has simple prior bounds on all unknowns and so (69)
will only be an approximation to the evidence. Nevertheless it gives
values in the ratio 0.04, 87.07, 11.67 and 1.21 per cent, for k =
1, . . . , 4, which are in good agreement with the values found through
sampling.

Using (14) we can then calculate the posterior ratio for any two
values of k

p(k1 | d)

p(k2 | d)
= p(d|x̂, k1)

p(d|x̂, k2)
× p(x̂|k1)

p(x̂|k2)
×

[
(2π )k1 |C ′

M (k1)|
(2π )k2 |C ′

M (k2)|
]1/2

× p(k1)

p(k2)
.

(70)

By repeating an inversion for selected values of k and using (70)
we may hope to map out the posterior for p(k|d) (as in Figs (5)
and (8)) for larger problems where direct numerical integration is
impractical. This approach might be useful for a range of linear
problems and even non-linear ones that can be linearized about an
optimal solution.

5 C O N C L U S I O N S

In this paper we have focused on trans-dimensional inverse prob-
lems, which we view as a natural extension to the common practice
of fixing the number of unknowns in advance. We have shown how
Bayesian tools may be used to quantitatively estimate the number of
unknowns needed in the inverse problem. The theory leads directly
to a posterior on the number of free parameters in the unknown
model. Our main aim here is to highlight the role played by the ‘ev-
idence’, a statistical quantity, awareness of which is rather limited
in the geosciences. We have shown how the evidence links inverse
problems in which the number of unknowns is fixed, with those
where the number of unknowns is a variable. We have also shown
how trans-dimensional Bayesian sampling techniques such as the
reversible jump algorithm, can be replicated using traditional fixed
dimensional sampling techniques and calculation of the evidence.
Simple examples have been used to illustrate the main points. Some
general approaches for calculating the evidence in non-linear in-
verse problems are given. These are far from definitive at present
and research in this area is set to continue. For linear inverse prob-
lems analytical expressions for the evidence and the posterior on
the dimension are available. We argue that these constitute a useful
diagnostic tool for investigating the number of degrees of freedom
in the model supported by the data.
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