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We study the structure of Mordell–Weil groups of elliptic curves over number fields of

degrees 2, 3, and 4. We show that if T is a group, then either the class of all elliptic

curves over quadratic fields with torsion subgroup T is empty or it contains curves of

rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result

for cubic and quartic fields. On the other hand, we find a group T and a quartic field K

such that among the elliptic curves over K with torsion subgroup T , there are curves

of positive rank, but none of rank 0. We find examples of elliptic curves with positive

rank and given torsion in many previously unknown cases. We also prove that all elliptic

curves over quadratic fields with a point of order 13 or 18 and all elliptic curves over

quartic fields with a point of order 22 are isogenous to one of their Galois conjugates

and, by a phenomenon that we call false complex multiplication, have even rank. Finally,

we discuss connections with elliptic curves over finite fields and applications to integer

factorization.
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1 Introduction

For an elliptic curve E over a number field K, the Mordell–Weil theorem states that the

Abelian group E(K) of K-rational points on E is finitely generated. The group E(K) is

isomorphic to T ⊕ Zr, where T is the torsion subgroup and r is a nonnegative integer

called the rank of the elliptic curve.

The aim of this paper is to study the interplay of the rank and torsion group of

elliptic curves over quadratic, cubic, and quartic number fields. More explicitly, we will

be interested in the following question: given a torsion group T and d∈ {2,3,4}, what

can we say about the possible ranks of elliptic curves with torsion T over number fields

of degree d?

A natural starting point is to wonder what can be said over Q. Let T be a possible

torsion group of an elliptic curve over Q, that is, it is one of the 15 groups from Mazur’s

torsion theorem [20, Theorem 8]. What can be said about the rank? The short answer is:

nothing. For all we know, it might be 0, it might be positive, it might be even, or it might

be odd. As we will later show, this is in stark contrast with what happens over number

fields. Note that already in [15] torsion groups T and number fields K are given such that

every elliptic curve over K with torsion T has rank 0.

We start by examining a very basic question: how many points can an elliptic

curve have over a quadratic, cubic, or quartic field and what group structure can these

points have? As there exist elliptic curves with infinitely many points over Q, it is clear

that an elliptic curve can possibly have infinitely many points over any number field. So,

this question is closely related to determining for which finite groups T there exists an

elliptic curve over a field of degree 2, 3, or 4 with torsion T and rank 0.

Over Q, the answer to this question is known by Mazur’s torsion theorem [20,

Theorem 8]; it is an easy exercise to find an elliptic curve with fixed torsion and rank 0

over Q. An elliptic curve over Q has 1, . . . ,10,12,16, or infinitely many rational points.

We prove a similar result over all the quadratic fields using a theorem of Kami-

enny, Kenku, and Momose [14, Theorem 3.1; 18, Theorem (0.1)], which tells us which

groups appear as torsion of elliptic curves over quadratic fields. We find, for each of

these torsion groups, an elliptic curve over some quadratic field having that particular

torsion group and rank 0.

Note that if one fixes a number field and not just the degree, the situation is a bit

different. Mazur and Rubin [21, Theorem 1.1] have proved that for each number field K

there exists an elliptic curve over K such that the rank of E(K) is 0. A natural question

is whether the following generalization is true: if T is a group that appears as a torsion

group of an elliptic curve over K, does there exist some elliptic curve with torsion T and
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rank 0? We prove that the answer is no, by giving an example of a quartic field K such

that every elliptic curve with torsion Z/15Z over K has positive rank.

It is known which groups appear infinitely often as a torsion group of an elliptic

curve over a cubic field [12, Theorem 3.4]. For each group T from this list, we find a curve

over a cubic field with rank 0 and torsion group T . In addition we find an example of a

curve over a cubic field with torsion Z/21Z, which was not previously known to occur

over cubic fields. This curve turns out to have rank 0. More about this curve and the

proof that it is the unique rational elliptic curve which acquires 21-torsion over a cubic

field can be found in [24].

We do the same for quartic fields, using the analogous result [11, Theorem 3.6].

It is not known if any other groups can appear as torsion groups of elliptic curves over

quartic fields.

Next, we examine elliptic curves with given torsion and positive rank over fields

of degrees 2, 3, and 4. This problem has extensively been studied over Q; see for exam-

ple [6] for a list of references and rank records with given torsion. Over quadratic fields

Rabarison [25, Section 4] found examples of elliptic curves with given torsion and posi-

tive rank for all except possibly four torsion groups. We find examples of elliptic curves

with positive rank unconditionally for all these groups.

We do the same for cubic and quartic fields and find many instances of elliptic

curves with previously unknown Mordell–Weil groups.

When searching for elliptic curves with given torsion and positive rank, we

noticed that all constructed elliptic curves with 13-torsion and 18-torsion over quadratic

fields and all constructed elliptic curves with 22-torsion over quartic fields appeared to

have even rank. In Section 4, we prove that this is not a coincidence and that all elliptic

curves with 13-torsion and 18-torsion over quadratic fields and all elliptic curves with

22-torsion over quartic fields have even rank indeed. The explanation involves Q- and

K-curves, where K is a quadratic field, and a phenomenon that we call false complex

multiplication.

In Section 5, we examine the connections and applications of our results to ellip-

tic curves over finite fields. In the elliptic curve factoring method [19], one looks for

elliptic curves whose number of points over Fp for p prime is likely to be smooth, that

is, divisible only by small primes. It is now a classical method (see [1, 23]) to use elliptic

curves E with large rational torsion, as the torsion injects into E(Fp) for all primes p≥ 3

of good reduction. This in turn makes the order of E(Fp) more likely to be smooth.

One can get more information about the heuristic probability of an elliptic curve

to have smooth order if the torsion of the curve is examined over both the rationals and
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number fields of small degree. We give an explicit example of two curves such that the

one with smaller rational torsion has smooth order more often and discuss the implica-

tions of this for choosing elliptic curves for factoring.

We used Magma [3], Pari [30], and Sage [28] for most of our computations.

2 Curves with Prescribed Torsion and Rank 0

We first examine elliptic curves over quadratic fields. By a theorem of Kamienny [14,

Theorem 3.1], Kenku, and Momose [18, Theorem (0.1)], the following 26 groups can

appear as a torsion group of an elliptic curve over a quadratic field:

Z/mZ for 1 ≤ m ≤ 18, m �= 17,

Z/2Z ⊕ Z/2mZ for 1 ≤ m ≤ 6,

Z/3Z ⊕ Z/3mZ for m = 1,2,

Z/4Z ⊕ Z/4Z. (1)

We used the RankBound() function in Magma and the program mwrank [5] for

rank computations. Over quadratic fields, Magma can easily prove that the rank of the

curves we are going to list in Theorem 2.1 is 0, so to check the rank, one does not need

to employ any of the tricks used in the proof of Theorem 2.3.

Note that it is easy to find examples with a torsion group that appears over Q and

rank 0. By standard conjectures (see [8]), half of all elliptic curves should have rank 0.

One first finds a curve E/Q with given torsion and rank 0. Then one finds a square-free

d∈ Z such that the quadratic twist E (d) has rank 0. The curve EQ(
√

d) has rank 0 as well,

and its torsion is likely the same as that of EQ. We still give explicit examples, as we

feel that this is in the spirit of this paper. For the rest of the groups, one can find infinite

families of elliptic curves with given torsion in [10] and [25, Section 4] and then search

for rank 0 examples.

Theorem 2.1. For each group T from (1), there exists an elliptic curve over a quadratic

field with torsion T and rank 0. �

Proof. In Table 1, we give explicit examples of elliptic curves with rank 0. For all the

curves listed, one checks that the rank is indeed 0 using a 2-descent. �
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It is known which torsion groups appear infinitely often over cubic fields [12,

Theorem 3.4]:

Z/mZ for 1 ≤ m ≤ 20, m �= 17,19,

Z/2Z ⊕ Z/2mZ for 1 ≤ m ≤ 7. (2)

The elliptic curve with 21-torsion over a cubic field, which can be found in Table 3, is the

only known example of an elliptic curve over a cubic field with a torsion subgroup that

is not in the list (2).

As the computation of rank bounds becomes more time-consuming in the cubic

case, we first compute the parity (assuming the Birch–Swinnerton-Dyer conjecture) of

the rank of the elliptic curve using the RootNumber() function in Magma and eliminate

the curves with odd rank.

Theorem 2.2. For each group T from (2), there exists an elliptic curve over a cubic field

with torsion T and rank 0. �

Proof. We give explicit examples in Table 2; again, one can easily check that each curve

has rank 0. We obtained our curves from [9]. �

As with cubic fields, it is known which torsion groups appear infinitely often

over quartic fields [11, Theorem 3.6]:

Z/mZ for 1 ≤ m ≤ 24, m �= 19,23,

Z/2Z ⊕ Z/2mZ for 1 ≤ m ≤ 9,

Z/3Z ⊕ Z/3mZ for 1 ≤ m ≤ 3,

Z/4Z ⊕ Z/4mZ for 1 ≤ m ≤ 2,

Z/5Z ⊕ Z/5Z,

Z/6Z ⊕ Z/6Z. (3)

It is unknown whether there exists an elliptic curve over a quartic field with a torsion

subgroup that is not in the list (3).

The computation of upper bounds on the rank of elliptic curves over quartic

fields becomes much harder if it is done directly over the quartic field. However, we

will use the fact that if an elliptic curve E is defined over a number field K and L is an
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extension of K of degree 2, that is, L = K(
√

d), d∈ K and d is not a square, then the rank

of E(L) is the sum of the rank of E(K) and the rank of E (d)(K). This can reduce the com-

putation of the rank of an elliptic curve over a quartic field down to the computation of

two ranks over quadratic fields or four computations over Q. Again, we always compute

the conjectural parity of the rank of the elliptic curve before the actual computation of

the rank.

Theorem 2.3. For each group T from (3), there exists an elliptic curve over a quartic

field with torsion T and rank 0. �

Proof. We give explicit examples of such curves in Table 3. We used curves defined over

smaller fields wherever possible. Curves that could not be obtained in such a way were

obtained from [10].

Unlike in Tables 1 and 2, here the computation of the rank is usually very hard.

We solve one example, (2,16), in detail to give a flavor of how our curves were obtained.

We start our search by looking for elliptic curves E over the rationals with tor-

sion Z/2Z ⊕ Z/8Z and rank 0, where P is a point of order 8 and Q is of order 2 such that

P and Q generate the complete torsion. Next, we search for a point R∈ E(Q̄)with 2R= P .

There will be four such choices for R. We can obtain the field of definition of the points

R by factoring the 16th division polynomial of our elliptic curve. There will be five fac-

tors of degree 4: one for each choice of R, and a fifth one that will generate the field

of definition of the point Q1 satisfying 2Q1 = Q (over the field of definition of Q1, our

elliptic curve will have torsion isomorphic to Z/4Z ⊕ Z/8Z). Over each field K, we check

the conjectural parity of our starting elliptic curve over K. If it is odd, we eliminate the

field and move to the next. If we get a curve E that has even rank over Q(
√

d1,
√

d2), then

we check the parity of the curves E (d1), E (d2), E (d1·d2) and eliminate the field if any of the

curves have odd rank. If all the fields are eliminated, we move to the next elliptic curve.

After some searching we find the elliptic curve

y2 = x3 + 12974641/13176900x2 + 16/14641x

over the field Q(
√−330,

√−671). One can easily compute that the ranks of E and E (−671)

are 0 by 2-descent in mwrank, but proving that the other two twists, E (−330) and E (1830),

have rank 0 cannot be done by 2-descent. Actually, both curves have the 2-primary part

of their Tate–Shafarevich group isomorphic to Z/4Z ⊕ Z/4Z, which can be checked by
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doing an 8-descent in Magma. In fact, the Tate–Shafarevich group of E (−330) is conjec-

turally isomorphic to Z/12Z ⊕ Z/12Z. However, one can prove that the twisted curves

have rank 0 by approximating the L-value L(E,1) and using Kolyvagin’s result that an

elliptic curve E over Q with L(E,1) �= 0 has rank 0. We used Sage for this computation. �

From Theorems 2.1–2.3, we obtain the following result about the number of

points of elliptic curves over number fields of degrees 2, 3, and 4.

Corollary 2.4.

1. An elliptic curve over a quadratic field has 1, . . . ,16,18,20,24, or infinitely

many points. All of the cases occur.

2. There exist elliptic curves over cubic fields with 1, . . . ,15,16,18,20,21,

24,28, and infinitely many points.

3. There exist elliptic curves over quartic fields with 1, . . . ,17,18,20,21,

22,24,25,27,28,32,36, and infinitely many points.

4. Up to isomorphism, there exist only finitely many elliptic curves over cubic

and quartic fields for which the number of points is not in these lists. �

The last part depends on Merel’s theorem [22]: for all d≥ 1, there are only finitely

many groups that occur as torsion subgroups of elliptic curves over number fields of

degree d. We also note that no curves with a different number of points are currently

known. By [12, Theorem 3.4], we know that there are only finitely many curves with

torsion Z/21Z over cubic fields. In all other cases, we do not know whether all the listed

possibilities occur infinitely often.

3 Curves with Prescribed Torsion and Positive Rank

As mentioned in Section 1, Mazur and Rubin [21, Theorem 1.1] proved that over each

number field there exists an elliptic curve with rank 0. We can reinterpret this theorem

in the following way: if we look among all elliptic curves over a number field K, we

will find a rank 0 curve. It is natural to ask whether this statement holds true if one

only looks among elliptic curves satisfying some condition. We prove that the statement

is not true if one looks only at elliptic curves with prescribed torsion over some fixed

number field.

Theorem 3.1. There is exactly one elliptic curve up to isomorphism over the quartic

field Q(i,
√

5) having torsion subgroup Z/15Z, and it has positive rank. �
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Proof. (Compare [15, Theorem 5].) Over Q(
√

5) there is exactly one curve with torsion

Z/15Z, namely

E : y2 = x3 + (281880
√

5 − 630315)x + 328392630 − 146861640
√

5,

and one of the points of order 15 is

P = (315 − 132
√

5,5400 − 2376
√

5).

We take an explicit affine model of X1(15),

X1(15) : y2 + xy + y= x3 + x2,

which can be found in [31], and compute

X1(15)(Q(
√

5))	 Z/8Z.

Four of the points are cusps. The other four correspond to the pairs (E,±P ),

(E,±2P ), (E,±4P ), and (E,±7P ). Over Q(
√

5, i), no extra points of X1(15) appear,

so E remains the only curve with torsion Z/15Z. In addition, E acquires the point

(−675 + 300
√

5, (2052
√

5 − 4590)i) of infinite order over Q(i,
√

5). �

Finding elliptic curves with high rank and prescribed torsion has a long history,

which can be seen at the webpage [6], where there is a list of over 50 references about

this problem.

Finding elliptic curves over number fields with prescribed torsion and positive

rank has first been done by Rabarison [25], who studied elliptic curves over quadratic

fields. He managed to find elliptic curves over quadratic fields with positive rank and

torsion Z/11Z, Z/13Z, Z/14Z, Z/16Z, Z/3Z ⊕ Z/3Z, Z/3Z ⊕ Z/6Z, and Z/4Z ⊕ Z/4Z.

Theorem 3.2. There exist elliptic curves over quadratic fields whose Mordell–Weil

groups contain Z/15Z ⊕ Z, Z/18Z ⊕ Z2, Z/2Z ⊕ Z/10Z ⊕ Z4, and Z/2Z ⊕ Z/12Z ⊕ Z4. �

Proof. We give explicit examples of such curves in Table 4.

Suppose E is an elliptic curve with exactly one point of order 2 over some number

field K. Note that the 2-division polynomial of E , ψ2, is of degree 3, so ψ2 factors over K
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as a linear polynomial times a quadratic polynomial. This implies that there is exactly

one quadratic extension of K over which E has full 2-torsion, which can easily be found

(the splitting field of the quadratic factor).

We start with elliptic curves with high rank over Q and torsion Z/10Z and Z/12Z

over Q. Explicit examples of such curves are given in [6]. We take such a curve and use

the fact that it has exactly one rational 2-torsion point. We then apply the above method

to construct elliptic curves with high rank and torsion Z/2Z ⊕ Z/10Z and Z/2Z ⊕ Z/12Z

over some quadratic field. In this way, we find the two corresponding curves in Table 4.

To find an elliptic curve with torsion Z/15Z and positive rank, we search for

points on X1(15) and then from them construct elliptic curves. Among those elliptic

curves, we sieve for the ones that have conjecturally odd rank. Then we are left with the

problem of finding a point of infinite order on such a curve. We managed to find such a

point by looking at small multiples of divisors of the discriminant of the curve.

For elliptic curves over quadratic fields with torsion Z/18Z, the rank is always

even, as will be shown in Theorem 4.1. For curves constructed from points of X1(18) over

quadratic fields, therefore, instead of computing the root number to find candidates for

curves with positive rank, we approximate the value of the L-function L(E, s) at s = 1; if

this vanishes, then E should have rank at least 2 by the Birch–Swinnerton-Dyer conjec-

ture. In this way, we obtain the elliptic curve in Table 4. The first point of infinite order

was found by T. Preu using the PseudoMordellWeilGroup() function in Magma after a

change of coordinates to simplify the Weierstrass equation. The second point of infinite

order can be found using the action of Z[
√−2] on E(K) described in Section 4.6. �

We study the same problem over cubic and quartic fields, and find many new

examples of Mordell–Weil groups of elliptic curves. We will not give examples for the

torsion groups T such that it is trivial to find an elliptic curve with torsion T and positive

rank. Let us explain what we mean by “trivial” for cubic and for quartic fields.

Over cubic fields, the trivial T are those that already appear as torsion groups

of elliptic curves over Q, as well as Z/14Z and Z/18Z. Namely, let E be an elliptic curve

over Q with positive rank and torsion Z/7Z or Z/9Z. Then over the cubic field generated

by a root of the 2-division polynomial, E has torsion Z/14Z or Z/18Z, respectively. In

this way, one can construct elliptic curves with Mordell–Weil groups Z/14Z ⊕ Z5 and

Z/18Z ⊕ Z4; see [6].

Over quartic fields, the trivial T are those that already occur over the rational

numbers or a quadratic field, those of the form Z/4nZ, where Z/2nZ occurs over Q, and

those of the form Z/2Z ⊕ T ′, where T ′ occurs over a quadratic field and has exactly one
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element of order 2. Let E be an elliptic curve over Q with positive rank and torsion

Z/2nZ, and let R∈ E(Q̄) be a point such that 2R generates this torsion group. Then

E has torsion at least Z/4nZ over the field of definition of R. In this way, one can

construct elliptic curves with Mordell–Weil group containing Z/16Z ⊕ Z6, Z/20Z ⊕ Z4,

and Z/24Z ⊕ Z4. Now let E be an elliptic curve over a quadratic field K with pos-

itive rank and torsion T ′, with T ′ as above. Then E has torsion at least Z/2Z ⊕ T ′

over the quartic field K(E [2]). In this way, one can construct elliptic curves over quar-

tic fields with Mordell–Weil groups containing Z/2Z ⊕ Z/14Z ⊕ Z, Z/2Z ⊕ Z/16Z ⊕ Z,

Z/2Z ⊕ Z/18Z ⊕ Z2, and Z/6Z ⊕ Z/6Z ⊕ Z6. (See [13] for an example of an elliptic curve

with Mordell–Weil group containing Z/3Z ⊕ Z/6Z ⊕ Z6 over Q(
√−3).)

Theorem 3.3. There exist elliptic curves over cubic fields whose Mordell–Weil groups

contain Z/11Z ⊕ Z2, Z/13Z ⊕ Z, Z/15Z ⊕ Z, Z/16Z ⊕ Z, Z/20Z ⊕ Z, Z/2Z ⊕ Z/10Z ⊕ Z,

Z/2Z ⊕ Z/12Z ⊕ Z, and Z/2Z ⊕ Z/14Z ⊕ Z.
�

Proof. We give explicit examples of such curves in Table 5. For torsion group Z/11Z,

we search through the curves constructed in [12], and quickly find a rank 2 curve among

the smallest cases. For the other torsion groups, we construct elliptic curves with given

torsion using [9], sieve for elliptic curve with conjecturally odd (and thus positive) rank,

and then find points on the curves obtained. �

Theorem 3.4. There exist elliptic curves over quartic fields whose Mordell–Weil

groups contain Z/17Z ⊕ Z, Z/21Z ⊕ Z, Z/3Z ⊕ Z/9Z ⊕ Z, Z/4Z ⊕ Z/8Z ⊕ Z, and Z/5Z ⊕ Z/

5Z ⊕ Z. �

Proof. Explicit examples of such curves are given in Table 6. We obtain our curves

from [10] and use the same strategy as in Theorem 3.3 to obtain points of infinite order

on them. �

From the results in this section, we can draw the following conclusion. Let d≤ 4,

and let T be a group that occurs infinitely often as the torsion group of an elliptic curve

over a number field of degree d. Then there exists an elliptic curve with positive rank

and torsion T over a number field of degree d, except possibly for d= 4 and T = Z/22Z.

4 False Complex Multiplication

In this section, we describe a phenomenon that, for an elliptic curve E over a quadratic

field L having torsion Z/13Z, Z/16Z, or Z/18Z, gives E(L) a module structure over
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the ring Z[t]/(t2 − a) for some a∈ Z. We say that E has false complex multiplication

by Q[t]/(t2 − a); a precise definition of false complex multiplication will be given in

Section 4.1. A similar phenomenon occurs for elliptic curves with torsion Z/22Z over

quartic fields.

Theorem 4.1. Let E be an elliptic curve over a number field L.

1. If [L : Q] = 2 and E has a rational point of order 13, then L is real and E has

false complex multiplication by Q(
√−1).

2. If [L : Q] = 2 and E has a rational point of order 16, then E has false complex

multiplication by Q × Q.

3. If [L : Q] = 2 and E has a rational point of order 18, then L is real and E has

false complex multiplication by Q(
√−2).

4. If [L : Q] = 4 and E has a rational point of order 22, then L has a quadratic

subfield K such that E is a K-curve over L with false complex multiplication

by Q(
√−2). �

Corollary 4.2. Any elliptic curve over a quadratic number field with a point of order 13

or order 18, as well as any elliptic curve over a quartic number field with a point of

order 22, has even rank. �

We checked that there exist odd rank curves in all the other cases, so in this

sense, our result is best possible.

In the cases n= 13 and 16, we prove the following stronger result.

Theorem 4.3. Let E be an elliptic curve defined over a quadratic field L with a point of

order n= 13 or 16, and let σ be the generator of Gal(L/Q). Then

1. E is L-isomorphic to Eσ .

2. E has a quadratic twist (by an element d of OL ) E (d) that is defined over Q.

For any such d, the curve E (d) has an n-isogeny defined over Q. �

4.1 Preliminaries

Let L/K be a finite Galois extension of number fields, and let E be an elliptic curve

over L. Let ResL/K denote the Weil restriction functor. We let B denote the Abelian variety

B = ResL/K E
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of dimension [L : K] over K. It is known that the base change BL of B to L is given by

BL 	
∏

σ∈Gal(L/K)

σ E .

From this we get an isomorphism

EndL BL 	
⊕

σ,τ∈Gal(L/K)

HomL(
σ E, τ E),

where the multiplication on the left-hand side corresponds to “matrix multiplication”

on the right-hand side. Taking Galois invariants, we get an isomorphism

EndK B 	
⊕

σ∈Gal(L/K)

HomL(
σ E, E),

where the multiplication on the right-hand side is the bilinear extension of the maps

Hom(σ E, E)× Hom(τ E, E)−→ Hom(στ E, E)

(μ, ν) �−→μ ◦ σ ν.

Definition 4.4. Let L/K be a finite Galois extension of number fields. A K-curve over L

is an elliptic curve E over L that is isogenous to its Galois conjugates σ E for all

σ ∈ Gal(L/K). �

Let E be a K-curve over L, and write RE = Q ⊗Z EndL E ; this is either Q or an

imaginary quadratic field. Then Q ⊗Z HomL(
σ E, E) is a one-dimensional RE-vector space

for all σ ∈ Gal(L/K), and hence Q ⊗Z EndK(ResL/K E) is an RE-vector space of dimen-

sion [L : K].

In the sequel, we will only be interested in the case where L is a quadratic exten-

sion of K. For this we introduce the following terminology.

Definition 4.5. Let L be a number field, let E be an elliptic curve over L, and let F be

an étale Q-algebra of degree 2. We say that E has false complex multiplication by F

if there exists a subfield K ⊂ L with [L : K] = 2 such that Q ⊗ EndK(ResL/K E) contains a

Q-algebra isomorphic to F . �

Remark. Let E , L, F , and K be as in the above definition.
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1. An elliptic curve E over a number field L has false complex multiplication

if and only if E has complex multiplication or there is a subfield K ⊂ L with

[L : K] = 2 such that E is a K-curve.

2. Note that F is either Q × Q or a quadratic field. If E is an elliptic curve over L

with false complex multiplication by F , then the Q-vector space

Q ⊗Z E(L)	 Q ⊗Z (ResL/K E)(K)

has a natural F -module structure. If F is a field, this implies that the finitely

generated Abelian group E(L) has even rank. �

4.2 Families of curves with false complex multiplication constructed from involutions on

modular curves

Let n be a positive integer, and let Y0(n) be the (coarse) modular curve over Q classifying

elliptic curves with a cyclic subgroup of order n, that is, a subgroup scheme that is

locally isomorphic to Z/nZ in the étale topology. Let Y be a smooth affine curve over Q,

let E be an elliptic curve over Y, and let G be a cyclic subgroup of order n in E . Then we

obtain a morphism

Y → Y0(n).

We assume that this morphism is finite. Furthermore, we suppose given an involution

ι : Y
∼−→ Y

that lifts the Atkin–Lehner involution wn of Y0(n). In the cases we consider, n will be

1 or 2.

Pulling back E via ι gives a second elliptic curve ι∗E over Y. By the assumption

that ι lifts wn, we have

ι∗E 	 E/G.

Symmetrically, ι∗E is equipped with the cyclic subgroup ι∗G of order n, which corre-

sponds to the subgroup E [n]/G of E/G; we have

(ι∗E)/(ι∗G)	 E .
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In view of this, we may fix an isogeny

μ : ι∗E → E

with kernel ι∗G. Since the morphism Y → Y0(n) is finite and therefore dominant, we have

AutY E = {±1}, and so μ is unique up to sign. Pulling back μ via ι and using the canonical

isomorphism ι∗ι∗E 	 E , we get a second isogeny

ι∗μ : E → ι∗E

with kernel G. Composing these, we get an endomorphism

a=μ ◦ ι∗μ ∈ EndY E . (4)

Note that this endomorphism does not depend on the choice of μ. Its kernel is E [n], so

again using AutY E = {±1}, we conclude that

a= ±n.

In particular, up to sign, ι∗μ is the dual isogeny of μ.

Let U be the complement of the scheme of fixed points of the involution ι on Y,

let U/ι denote the quotient, and let ResU/(U/ι) denote the Weil restriction functor from

U-schemes to (U/ι)-schemes [2, Section 7.6]. We write

B = ResU/(U/ι)E .

Because the quotient map U → U/ι is étale of degree 2, this is an Abelian scheme of

relative dimension 2 over U/ι. As in Section 4.1, we have

EndU/ιB 	 EndU L ⊕ HomU (ι
∗E, E).

We get an injective homomorphism

Z[t]/(t2 − a)� EndU/ιB
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mapping t to the endomorphism of B corresponding to μ ∈ HomU (ι
∗E, E) under the above

isomorphism.

Now let K be a number field. Specializing to arbitrary K-points of U/ι gives a

construction of K-curves, as follows. Let u∈ (U/ι)(K). Suppose that the inverse image v

of u in U is irreducible, so it is of the form Spec L with L a quadratic extension of L. Then

the fiber Ev is a K-curve over L and has false complex multiplication by Q[t]/(t2 − a). In

particular, if a is not a square, then Ev(L) has even rank.

4.3 The modular curves Y1(n)

Let n≥ 6 be an integer. The affine modular curve Y1(n) classifying elliptic curves with a

point of order n can be described as

Y1(n)	 Spec(Z[s, t,1/n,1/Δ]/(φn)),

where

Δ= −s4t3(t − 1)5(s(s + 4)2t2 − s(2s2 + 5s + 20)t + (s − 1)3)

and where

φn ∈ Z[s, t]

is an irreducible polynomial depending on n. The universal elliptic curve over Y1(n) is

given by the Weierstrass equation

E : y2 + (1 + (t − 1)s)xy + t(t − 1)sy= x3 + t(t − 1)sx2

with the distinguished point (0,0), and φn is such that its vanishing is equivalent to the

condition that (0,0) is of order n.

Since the polynomial φn is rather complicated for all but the smallest values of n,

it pays to introduce a change of variables giving a simpler-looking equation for Y1(n).

The new variables are called u and v in the examples below.

4.4 Torsion subgroup Z/13Z

We consider the modular curve Y1(13) over Q. Its compactification X1(13) has genus 2

and in particular is hyperelliptic. There are six rational cusps and six cusps with field

of definition Q(ζ13 + ζ−1
13 ).
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Let (E, P ) denote the universal pair of an elliptic curve and a point of order 13

over Y1(13). The diamond automorphism

ι= 〈5〉 = 〈−5〉

of Y1(13) is an involution since 52 is the identity element of (Z/13Z)×/{±1}. It is a lift of

the “Atkin–Lehner involution w1” (the identity) on X(1). We note that the fixed points of ι

lie outside the cusps.

Pulling back (E, P ) via ι yields a second pair ι∗(E, P ), and the definition of ι gives

an isomorphism

μ : ι∗(E, P )
∼−→ (E,5P )

over Y1(13). Pulling back μ via ι gives another isomorphism

ι∗μ : (E, P )
∼−→ ι∗(E,5P ).

We have

μ ◦ ι∗μ : (E, P )
∼−→ (E,52 P )= (E,−P ).

This implies that, in the notation introduced above, we have

a= −1,

so the Abelian variety B has the property that

End B 	 Z[
√−1].

In coordinates, the situation looks as follows. We have

φ13 = t3 − (s4 + 5s3 + 9s2 + 4s + 2)t2 + (s3 + 6s2 + 3s + 1)t + s3.

We use the change of variables

u= 1/(s + 1)+ 1/(t − 1), v = u4(t − 1)+ u2;

s = v + u

u(u+ 1)2
− 1, t = v − u2

u4
+ 1.
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The modular curve Y1(13) is isomorphic to the affine curve given by

v2 − (u3 + 2u2 + u+ 1)v + u2(u+ 1)= 0,

u(u+ 1)(u3 − u2 − 4u− 1) �= 0.

The six rational cusps are given by u= 0, u= −1, and u= ∞; the six cusps defined over

Q(ζ13 + ζ−1
13 ) are given by u3 − u2 − 4u− 1 = 0.

The hyperelliptic involution sends (u, v) to (u,u3 + 2u2 + u+ 1 − v). A computa-

tion using the moduli interpretation shows that the hyperelliptic involution coincides

with 〈5〉 = 〈−5〉.
The specialization construction explained in Section 4.2 gives a family of

Q-curves. Let c ∈ Q \ {0,−1}. The inverse image of the point defined by c under the map

u: Y1(13)→ Spec Q[u,1/(u(u+ 1)(u3 − u2 − 4u− 1))]

is the spectrum of the quadratic Q-algebra

L = Q[v]/(v2 − (c3 + 2c2 + c + 1)v + c2(c + 1)).

Since Y1(13) does not have any Q-rational points, L is a field, and we obtain an elliptic

curve over L with false complex multiplication by Q(
√−1).

In fact, any elliptic curve over a quadratic field with a point of order 13 comes

from the above construction, as we will now show.

Lemma 4.6. Let X be a proper, smooth, geometrically connected curve of genus 2 over

a field k, let ι be the hyperelliptic involution on X, let K be a canonical divisor on X, and

let J be the Jacobian of X.

1. An effective divisor of degree 2 on X is in the canonical linear equivalence

class if and only it is the pull-back of a k-rational point of X/ι.

2. Let S be a finite set of closed points of X such that every k-point of J is of the

form [D′ − K], where D′ is an effective divisor of degree 2 with support in S.

Let D be an effective divisor of degree 2 on X. Then either D has support in S,

or D lies in the canonical linear equivalence class. �



2902 J. G. Bosman et al.

Proof. The first part is well known. For the second part, let D be an effective divisor of

degree 2. By assumption, D is linearly equivalent to an effective divisor D′ with support

in S. If D is not in the canonical linear equivalence class, then the complete linear system

|D| has dimension 0, so D = D′. �

Lemma 4.7. Let J1(13) denote the Jacobian of X1(13), and let K be a canonical divisor

on X1(13). The group J1(13)(Q) is isomorphic to Z/19Z, and every element of J1(13)(Q)

is of the form [D − K] with D an effective divisor of degree 2 supported on the cusps

of X1(13). �

Proof. Two distinct effective divisors of degree 2 on a curve of genus 2 are linearly

equivalent if and only if they are both in the canonical linear equivalence class. The set

of effective divisors of degree 2 supported at the cusps, which has
(

6+2−1
2

)= 21 elements,

therefore splits up into the canonical linear equivalence class consisting of 3 divisors

(defined concretely by u= 0, u= −1, and u= ∞) and 18 linear equivalence classes con-

sisting of a single divisor. We deduce that the effective divisors of degree 2 supported at

the cusps yield 19 rational points of J1(13).

One can show by a 2-descent (implemented for instance in Magma) that J1(13)

has trivial 2-Selmer group. It follows that J1(13)(Q) is a finite group of odd order.

Together with the fact that J1(13) has good reduction at 2, this implies that J1(13)(Q)

injects into J1(13)(F2). One computes the zeta function of X1(13)F2 as

Z(X1(13)F2 , t)=
1 + 3t + 5t2 + 6t3 + 4t4

(1 − t)(1 − 2t)
.

Setting t = 1 in the numerator, we see that J1(13) has 19 points over F2. This proves that

J1(13) has no other rational points than the 19 found above. �

Proof of Theorem 4.11. Let (E, P ) be a pair consisting of an elliptic curve and a point

of order 13 over a quadratic field L. Let y be the closed point of Y1(13) defined by (E, P ).

Since Y1(13) has no Q-rational points, the residue field of y is a quadratic extension

of Q, so y defines a divisor of degree 2 on Y1(13). Combining Lemmas 4.7 and 4.6, with S

equal to the set of cusps of X1(13), we see that y lies in the canonical linear equivalence

class. This implies that there is a Q-rational point x ∈ Y1(13)/ι such that y is the inverse

image of x under the quotient map Y1(13)→ Y1(13)/ι. Therefore, (E, P ) arises from the

specialization construction described above, and E has false complex multiplication

by Q(
√−1).
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The modular curve Y1(13) can be rewritten in the form

v2 = f(u)= u6 − 2u5 + u4 − 2u3 + 6u2 − 4u+ 1,

u(u− 1)(u3 − 4u2 + u+ 1) �= 0.

The description of the points on Y1(13) implies that for y= (u, v) ∈ Y1(13)(L), u is

Q-rational. As f(u) > 0 for all u∈ R, we conclude that v is a square root of a positive

rational number, and hence v is defined over a real quadratic field. �

Proof of Theorem 4.3 for n= 13. By Theorem 4.11 and the discussion at the beginning

of this subsection, there exist isogenies μ : Eσ → E and μσ : E → Eσ over L such that

μ ◦ μσ : E → E is multiplication by −1. This implies part 1.

Let us now prove part 2. Since E and Eσ are isomorphic, E has to have a rational

j-invariant, meaning that a twist E (d) can be defined over Q. As E/L has an n-isogeny, so

does E (d)/L. We now prove that this isogeny is in fact defined already over Q. Let C be an

n-cycle on E . As E and Eσ are isomorphic and μ sends C σ to C , one can see that (E,C )

and (Eσ ,C σ ) represent the same point on Y0(n)(L). As Y0 is a coarse moduli space, the

same point on Y0(n)(L) is also represented by (E (d),C ′), where C ′ is the corresponding

n-cycle on E (d) over L and ((Eσ )(d), (C ′)σ ). Thus, one can see that C ′ is σ -invariant, and

hence E (d) has a Gal(Q̄/Q)-invariant cyclic subgroup of order n (and hence a rational

n-isogeny). �

4.5 The modular curve Y1(16) and quadratic Q-curves with odd rank

As noted in Section 4.2, a Q-curve has even rank if the value a defined in (4) is not a

square. In this subsection, we show that for every elliptic curve defined over a quadratic

field with torsion Z/16Z, the value a is equal to 1. As opposed to the Z/13Z or Z/18Z

cases, there do exist elliptic curves with torsion Z/16Z and odd rank.

Let (E, P ) denote the universal pair consisting of an elliptic curve and a point of

order 16 over Y1(16). The diamond automorphism

ι= 〈7〉 = 〈−7〉

of Y1(16) is an involution since 72 is the identity element in (Z/16Z)×. As in Section 4.4,

ι is a lift of w1 on X(1).



2904 J. G. Bosman et al.

Pulling back (E, P ) via ι yields a second pair ι∗(E, P ), and the definition of ι gives

an isomorphism

μ : ι∗(E, P )
∼−→ (E,7P )

over Y1(16). Pulling back μ via ι gives another isomorphism

ι∗μ : (E, P )
∼−→ ι∗(E,7P ).

We have

μ ◦ ι∗μ : (E, P )
∼−→ (E,72 P )= (E, P ).

This implies that we have a= 1, so the Abelian variety B has the property that

End B 	 Z × Z.

Using this construction, we can in fact obtain Q-curves with odd rank: the elliptic curve

E : y2 + (121 + 39
√

10)xy − (3510 + 1107
√

10)y= x3 − (3510 + 1107
√

10)x2,

taken from [25, Théorème 10] has Mordell–Weil group

E(Q(
√

10))	 Z/16Z ⊕ Z.

It is also a Q-curve, isomorphic to Eσ .

As in the previous subsections, we prove that all elliptic curves with torsion

Z/16Z are Q-curves. In fact, as with curves having torsion Z/13Z, they will be isomor-

phic, not just isogenous, to their Galois conjugates.

Lemma 4.8. Let J1(16) denote the Jacobian of X1(16), and let K be a canonical divi-

sor on X1(16). The group J1(16)(Q) is isomorphic to Z/2Z ⊕ Z/10Z, and every element

of J1(16)(Q) is of the form [D − K] with D an effective divisor of degree 2 supported on

the cusps of X1(16). �

Proof. This is analogous to the proof of Lemma 4.7. �

Proof of Theorem 4.12. This is proved in the same way as Theorem 4.11, using

Lemma 4.8 instead of Lemma 4.7. �
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Proof of Theorem 4.3 for n= 16. The proof is the same as for n= 13 in Section 4.4. �

4.6 Torsion subgroup Z/18Z

We consider the modular curve Y1(18) over Q. Its compactification X1(18) has genus 2

and in particular is hyperelliptic. There are six rational cusps, four cusps with field of

definition Q(ζ3), and six cusps with field of definition Q(ζ9 + ζ−1
9 ).

We view Y1(18) as classifying triples (E, P2, P9) with E an elliptic curve, P2 a

point of order 2, and P9 a point of order 9. We define an involution ι of Y1(18) by

ι(E, P2, P9)= (E/〈P2〉, Q2,2P9 mod 〈P2〉),

where Q2 is the generator of the isogeny dual to the quotient map E → E/〈P2〉. Clearly, ι

is a lift of w2.

We denote the universal triple over Y1(18) by (E, P2, P9). The definition of ι gives

an isogeny of degree 2:

μ : ι∗(E, P2, P9)
∼−→ (E/〈P2〉, Q2,2P9 mod 〈P2〉)

−→ (E/E [2],0,2P9 mod E [2])

∼−→ (E,0,4P9).

Pulling back μ via ι gives a second isogeny

ι∗μ : (E, P2, P9)−→ ι∗(E,0,4P9).

We have

μ ◦ ι∗μ : (E, P9)
∼−→ (E,42 P9)= (E,−2P9).

This implies that in the notation introduced above, we have

a= −2,

so the Abelian variety B has the property that

End B 	 Z[
√−2].
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In coordinates, the situation looks as follows. We have

φ18 = (s3 + 6s2 + 9s + 1)t4 + (s5 + 7s4 + 20s3 + 19s2 − 8s − 1)t3

− s2(s2 + 11s + 28)t2 − s2(s2 + 5s − 8)t − s2(s2 − s + 1).

We use the change of variables

u= −s6 + 10s5 + 38s4 + 68s3 + 55s2 + 14s + 1

s(s + 1)6
t3

− s8 + 11s7 + 53s6 + 135s5 + 176s4 + 88s3 − 16s2 − 12s − 1

s(s + 1)6
t2

+ s6 + 13s5 + 63s4 + 132s3 + 116s2 + 26s

(s + 1)6
t + 2s5 + 3s4 − 8s3 − 17s2 − 5s

(s + 1)6
,

v = u− s; s = u− v, t = (u2 − 1)v − u5 − 2u4 − 2u3 + u2 + u

u3 + 3u2 − 1
.

The modular curve Y1(18) is isomorphic to the affine curve given by

v2 − (u3 + 2u2 + 3u+ 1)v + u(u+ 1)2 = 0,

u(u+ 1)(u2 + u+ 1)(u3 + 3u2 − 1) �= 0.

The hyperelliptic involution sends (u, v) to (u,u3 + 2u2 + 3u+ 1 − v). A computation

using the moduli interpretation shows that the hyperelliptic involution coincides with

the involution ι defined above.

By specialization, we obtain a family of elliptic curves with false complex mul-

tiplication by Q(
√−2).

Lemma 4.9. Let J1(18) denote the Jacobian of X1(18), and let K be a canonical divisor

on X1(18). The group J1(18)(Q) is isomorphic to Z/18Z, and every element of J1(18)(Q)

is of the form [D − K] with D an effective divisor of degree 2 supported on the cusps

of X1(18).
�

Proof. This is proved in the same way as Lemma 4.7. �

Proof of Theorem 4.13. In the same way as in Theorem 4.11, one proves that E has

false complex multiplication by Q(
√−2), using Lemma 4.9 instead of Lemma 4.7. As in
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the proof of Theorem 4.11, we conclude that any quadratic point on Y1(18) is the inverse

image under the quotient map Y1(18)→ Y1(18)/ι of a Q-rational point on Y1(18)/ι.

The modular curve Y1(18) can be rewritten as

v2 = f(u)= u6 + 2u5 + 5u4 + 10u3 + 10u2 + 4u+ 1,

u(u+ 1)(u2 + u+ 1)(u2 − 3u− 1) �= 0.

We conclude that for any quadratic point y= (u, v) ∈ Y1(18), u has to be Q-rational, and

since f(u) > 0 for all u∈ R, this implies that v is a square root of a positive rational

number and hence an element of a real quadratic field. �

4.7 Torsion subgroup Z/22Z

In this subsection, we will prove Theorem 4.14. Throughout this subsection, we will

denote the modular curve X1(22) by C and its Jacobian by J. The genus of C is equal to

6; this fact will play a crucial role.

Unless stated otherwise, curves are assumed to be complete, smooth, and geo-

metrically integral.

To prove Theorem 4.14, we will characterize the points on Y1(22) that are defined

over quartic number fields. One way of finding quartic points on Y1(22) is by choosing a

degree-4 morphism C → P1. The fibers of rational points then consist of points defined

over number fields of degree at most 4. Among other things, we will prove the following

proposition.

Proposition 4.10. Each non-cuspidal quartic point of C lies in a fiber of a rational point

for some morphism C → P1 of degree 4. Furthermore, each non-cuspidal point of C that

lies in such a fiber has quartic field of definition. �

Along the way, we will characterize all degree-4 morphisms C → P1; the K-curve

property in the theorem will then follow from this characterization.

The curve C parametrizes triples (E, P2, P11) with E a generalized elliptic curve,

P2 a point of order 2, and P11 a point of order 11. Let us mention that C has 20 cusps:

10 cusps defined over Q, whose moduli correspond to Néron 11-gons and 22-gons, and

10 cusps defined over the quintic field Q(ζ11 + ζ−1
11 ), whose moduli correspond to Néron

1-gons and 2-gons.
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Let ι be the following involution on C :

ι : (E, P2, P11) �→ (E/〈P2〉, Q2, 4P11 mod 〈P2〉),

where Q2 is the generator of the isogeny dual to E → E/〈P2〉.

Lemma 4.11. The quotient C/〈ι〉 is isomorphic to an elliptic curve with five rational

points. �

Proof. Put Λ= Z + √−2Z, E = C/Λ, and P2 = √−2/2 mod Λ. If P11 is any nonzero mul-

tiple of 1/11 ± 4/11
√−2 mod Λ, then (E, P2, P11) is a fixed point of ι. This gives 10 fixed

points; the Riemann–Hurwitz formula now implies g(C/〈ι〉)≤ 1. If there were more fixed

points, then g(C/〈ι〉) would be 0 and thus C would be hyperelliptic, which contradicts

the fact that there are no elliptic curves over quadratic fields with a 22-torsion point.

The 10 rational cusps of C map down to 5 rational points on C/〈ι〉. The modular

curve C has level 22, thus the quotient C/〈ι〉 is an elliptic curve of conductor dividing 22.

According to [5, Table 1] there are 3 such elliptic curves; they all have conductor 11 and

at most 5 rational points. �

Remark. The elliptic curve in question is in fact isomorphic to X1(11), but we will not

need this in the sequel. �

A curve X that has a degree-2 morphism to an elliptic curve is called a

bi-elliptic curve. An involution on X that gives such a morphism by dividing it out, is

called a bi-elliptic involution. The so-called Castelnuovo–Severi inequality is useful in

the study of bi-elliptic curves.

Proposition 4.12 (Castelnuovo–Severi inequality, [29, Theorem III.10.3]). Let k be a per-

fect field, and let X, Y, and Z be curves over k. Let nonconstant morphisms πY : X → Y

and πZ : X → Z be given, and let their degrees be m and n, respectively. Assume that

there is no morphism X → X′ of degree > 1 through which both πY and πZ factor. Then

the following inequality holds:

g(X)≤ m · g(Y)+ n · g(Z)+ (m − 1)(n− 1). �

Corollary 4.13. Let k be a perfect field, and let X be a bi-elliptic curve over k of genus

at least 6. Then X has a unique bi-elliptic involution ι. Furthermore, there are no

nonconstant morphisms X → P1 of degree less than 4, and every degree-4 morphism

X → P1 factors through X → X/〈ι〉. �
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Proof. If there were two bi-elliptic involutions, ι and ι′ say, then πY : X → X/〈ι〉 and

πZ : X → X/〈ι′〉 would contradict Proposition 4.12. For the other two assertions, we apply

Proposition 4.12 with πY : X → X/〈ι〉 and πZ : X → P1 any non-constant morphism of

degree at most 4. �

So we see that the degree-4 morphisms C → P1 are in bijection with the degree-2

morphisms C/〈ι〉 → P1.

If we identify morphisms to P1 whenever they differ by an automorphism of

P1, then a degree-2 morphism C/〈ι〉 → P1 is given by a base-point-free linear system

of divisors of degree 2 and dimension 1 on C/〈ι〉. Since C/〈ι〉 is an elliptic curve, any

complete linear system of divisors of degree 2 is base-point-free and of dimension 1.

These are in turn in bijection with the set Pic2
(C/〈ι〉) of linear equivalence classes of

degree 2 divisors on C/〈ι〉. An elliptic curve is its own Jacobian, so for any degree d the

set Picd
(C/〈ι〉) is in bijection with C/〈ι〉(Q), which consists of five points.

A quartic point on C defines a rational point on Sym4C , and a morphism C → P1

defines a closed immersion P1 � Sym4C . So the five degree-4 morphisms C → P1 give us

five copies of P1 in Sym4C that are defined over Q. We wish to prove that all rational

points of Sym4C outside these P1’s are supported on the cusps of C .

Fix any point of C (Q); this gives us a morphism

φ : Sym4C → J.

If D is an effective divisor of degree 4 on C , then the fiber φ−1(φ(D)) is isomorphic to a

projective space whose rational points form the complete linear system |D| of effective

divisors that are linearly equivalent to D.

Lemma 4.14. Let k be a perfect field, and let X be a bi-elliptic curve over k of genus at

least 6. Let D be a divisor on X of degree at most 4. Then the dimension of the complete

linear system |D| of divisors satisfies the following:

dim |D| =
⎧⎨
⎩1 if D is a fiber of a degree-4 morphism X → P1;

0 otherwise.

In the former case, |D| consists of all fibers of the same degree-4 morphism X → P1. �
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Proof. Assume |D| has positive dimension. Let Y be any subspace of |D| of dimension 1,

and let F ≤ D be the fixed divisor of Y. Subtracting F from all elements of Y, we obtain

a base-point-free linear system of dimension 1 and degree deg(D − F ) and thus a mor-

phism X → P1 of degree deg(D − F ). By Corollary 4.13 we have deg D = 4 and F = 0. Since

linear systems of degree less than 4 over any algebraic extension of k have dimension 0,

it follows that dim |D| cannot exceed 1. We thus have Y = |D|, and the last assertion is

immediate. �

This lemma immediately implies that the five P1’s described above are fibers of

φ and furthermore that outside these P1’s the rational points of Sym4C map injectively

into J(Q). It is thus interesting to know what J(Q) looks like.

Lemma 4.15. The Mordell–Weil rank of J is zero. �

Proof. Each isogeny factor of J is a modular Abelian variety Af , where f is a newform

in S2(Γ1(N))with N | 22. We must prove that these Af all have Mordell–Weil rank 0. There

are two such Af : one for the unique newform of level 11 and one for the unique newform

of level 22. For f of level 11 we have Af = J1(11), which is an elliptic curve with 5 rational

points. For f of level 22, proven instances of the Birch–Swinnerton-Dyer conjecture [16,

Corollary 14.3] ensure us that rk Af (Q)= 0 if L( f,1) �= 0. Symbolic methods involving

modular symbols can be used to verify L( f,1) �= 0 (see, for instance, [27, Section 3.10]); it

turns out that this is indeed the case here. �

To further study the Diophantine properties of Sym4C and J, we will use reduc-

tion modulo 3; this will enable us to prove Proposition 4.10. In general, if A is an Abelian

variety over a number field K and p | p is a prime of good reduction with e(p/p) < p− 1,

then reduction modulo p is injective on the torsion of A(Kp); see, for instance, [17,

Appendix]. For us this means that J(Q) injects into J(F3).

Proof of Proposition 4.10. We can compute the zeta function of CF3 , either by direct

point counting over extensions of F3 or by expressing the Frobenius action on the Tate

module in terms of the Hecke operator T3, and find

Z(CF3 , t)=
P (t)

(1 − t)(1 − 3t)
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with

P (t)= (1 + t + 3t2)2 · (1 + 4t + 3t2 − 10t3 − 29t4 − 30t5 + 27t6 + 108t7 + 81t8).

The 10 rational cusps of C reduce to distinct points of C (F3). If we expand Z(CF3 , t) as

a power series, then the coefficient of td is equal to the number of effective divisors of

degree d on CF3 . So from

Z(CF3 , t)= 1 + 10t + 55t2 + 220t3 + 720t4 + O(t5)

we can immediately read off that all points of C (F3) are cusps. The number of unordered

n-tuples of cusps is
(

10+n−1
n

)
, which is equal to 55, 220, and 715 for n= 2,3,4, respec-

tively. It follows that all divisors of degrees 2 and 3 are supported on the cusps and that

there are precisely five divisors of degree 4 that are not supported on the cusps.

We will now show that these five points of Sym4(C )(F3) are in the nontrivial

fibers of Sym4(C )→ J. This would immediately imply that all points of Sym4(C )(Q) out-

side these fibers are cuspidal, because of the injectivity of Sym4(C )(Q) to J(F3) out-

side these fibers. To do this, we can simply count the number of noncuspidal points in

the nontrivial fibers over F3. Let a morphism C → P1 of degree 4 be given. The proof of

Lemma 4.11 implies that the 10 cusps of C are mapped to P1 in fibers of 4, 4, and 2

points, respectively. Hence, in each of the five rational projective lines that we have in

Sym4(C ), there are precisely three points supported on the cusps. Over F3 these lines

have #P1(F3)= 4 rational points, thus each of the five lines has exactly one noncuspidal

point, giving us five points in total. �

Corollary 4.16. Each point on C with quartic field of definition maps to a point of C/〈ι〉
that is defined over a quadratic field. �

Proof of Theorem 4.14. Let (E, P2, P11) be the universal elliptic curve with points of

order 2 and 11 over Y1(22). The construction in Section 4.2 gives us an isogeny

μ : ι∗(E, P2, P11)→ (E,0,8P11) of degree 2. From this we obtain an isomorphism

μ ◦ ι∗μ : (E, P11)
∼−→ (E,82 P11)= (E,−2P11).

Let P be a point of Y1(22) defined over a quartic number field L. From the above it follows

that there is a degree-4 morphism C → P1 mapping P to a rational point and thus that P
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lies above a point of C/〈ι〉 defined over a quadratic number field K that is necessarily a

subfield of L. The results from Section 4.2 now immediately imply that the elliptic curve

E associated with P is a K-curve with false complex multiplication by Q(
√−2). �

5 Applications to Elliptic Curves over Finite Fields

Finding elliptic curves with positive rank and large torsion over number fields is not

just a curiosity. As mentioned in Section 1, elliptic curves with large torsion and posi-

tive rank over the rationals have long been used for factorization, starting with Mont-

gomery [23] and Atkin and Morain [1]. In this section, we argue that examining the tor-

sion of an elliptic curve over number fields of small degree is beneficial in addition to

examining the rational torsion.

A nice explicit example of the factorization of large numbers (Cunningham

numbers in this case) using elliptic curves over number fields of small degree can be

found in [4]. The authors used elliptic curves over cyclotomic fields with torsion groups

Z/3Z ⊕ Z/6Z and Z/4Z ⊕ Z/4Z. Also, they tried to construct elliptic curves over cyclo-

tomic fields with torsion Z/5Z ⊕ Z/5Z and Z/4Z ⊕ Z/8Z and positive rank (see [4, 4.4

and 4.5]), but failed. Note that one can find such curves in Theorem 3.4.

Theorem 5.1. Let m and nbe positive integers such that m divides n. Let E be an elliptic

curve over Q, let p be a prime number not dividing n such that E has good reduction

at p, and let d be a positive integer. Suppose there exists a number field K such that

E(K) contains a subgroup isomorphic to Z/mZ ⊕ Z/nZ and such that K has a prime

of residue characteristic p and residue field degree dividing d. Then E(Fpd) contains a

subgroup isomorphic to Z/mZ ⊕ Z/nZ. �

Proof. This follows from the fact that the n-torsion of E(K) reduces injectively modulo

primes of good reduction that do not divide n; see, for example, [26, VII, Proposition

3.1]. �

We can apply Theorem 5.1 with a fixed number field K, such as the splitting field

of E [n]. Then Chebotarev’s density theorem gives a lower bound for the density of the

set of primes p such that E(Fp) contains a subgroup isomorphic to Z/mZ ⊕ Z/nZ.

The relevance for the elliptic curve factoring method is as follows. One looks

for elliptic curves over fields of small degree having a given torsion subgroup G. If E

is such a curve, then E(Fp) contains a subgroup isomorphic to G for a large density of
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primes p. We say that an integer m is n-smooth for some fixed value of n if all the prime

divisors of m are less than or equal to n. As mentioned in Section 1, for the elliptic curve

factoring method, one wants to choose elliptic curves E such that |E(Fp)| is smooth for

many p.

The standard heuristic is that the larger the torsion subgroup T of E(Q), the

greater the probability that |E(Fp)| is smooth. This is because T injects into E(Fp) for all

primes p of good reduction that do not divide |T |, making |E(Fp)| divisible by |T |. How-

ever, this heuristic is too simplistic, as a curve with smaller E(Q)tors can have much

larger torsion over fields of small degree, giving altogether a greater probability of

|E(Fp)| to be smooth. We give an example of this phenomenon.

Example 5.2. One can use [10, Theorem 4.14] (using t = 3) to obtain an elliptic curve

over Q with torsion Z/6Z ⊕ Z/6Z over the field K = Q(
√−3,

√
217) and torsion Z/6Z

over Q. The curve is

E1 : y2 = x3 − 17811145/19683x − 81827811574/14348907.

For example, 61, 67, and 73 are primes of good reduction that completely split in K,

so the complete torsion group of E(K) injects into the finite fields with 61, 67, and 73

elements. One easily checks that the curve has 72 points over all the fields and that the

groups are isomorphic to Z/6Z ⊕ Z/12Z. Now take

E2 : y2 = x3 − 25081083x + 44503996374.

The torsion of E2(Q) is isomorphic to Z/7Z, implying that by standard heuristics (exam-

ining only the rational torsion), |E2(Fp)| should be more often smooth than |E1(Fp)|. Note

that both curves have rank 1 over Q, so the rank should not play a role.

We examine how often |E1(Fp)| and |E2(Fp)| are 100-smooth and 200-smooth if p

runs through the first 1,000, 10,000, and 100,000 primes, excluding the first 10 primes to

get rid of the primes of bad reduction. For comparison, we also take the elliptic curve

E3 : y2 = x3 + 3,

with trivial torsion group and rank 1. In the following table, pn denotes the nth prime

number.
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30< p< p1010 30< p< p10010 30< p< p100010

#100-smooth |E1(Fp)| 812 4,843 22,872

#100-smooth |E2(Fp)| 768 4,302 20,379

#100-smooth |E3(Fp)| 553 2,851 12,344

#200-smooth |E1(Fp)| 903 6,216 35,036

#200-smooth |E2(Fp)| 877 5,690 32,000

#200-smooth |E3(Fp)| 699 4,134 21,221

We see that, contrary to what one would expect if examining only the rational

torsion, E1 is consistently more likely to be smooth than E2. Why does this hap-

pen? Examine the behavior of the torsion of E1(K) and E2(K) as K varies through

all quadratic fields. The torsion of E2(K) will always be Z/7Z (see [7, Theorem 2]),

while E1(Q(
√−3))tors 	 Z/3Z ⊕ Z/6Z and E1(Q(

√
217))tors 	 Z/2Z ⊕ Z/6Z. One fourth of

the primes will split in Q(
√−3) and not in Q(

√
217), one fourth vice versa, one fourth

will split in neither field, and one fourth will split in both fields (and thus splitting com-

pletely in Q(
√−3,

√
217)). This implies that |E1(Fp)| is divisible by 6, 12, 18, and 36, each

for one fourth of the primes, while all we can say for |E2(Fp)| is that it is divisible by 7.

We also see that |E3(Fp)| is much less likely to be smooth than both E1 and E2.

Note that these curves are by no means special; a similar result will be obtained

if one chooses three other elliptic curves defined over Q of the same type, one with

torsion Z/6Z ⊕ Z/6Z over a quartic field, one with torsion Z/7Z over Q, and one with

trivial torsion over the rationals. �

6 Examples of Curves with Prescribed Torsion

On the following pages, we give tables containing examples of curves with prescribed

torsion over quadratic, cubic, and quartic fields. They are arranged as follows. In the

first column, we give a pair (m,n), meaning that the given elliptic curve has torsion iso-

morphic to Z/mZ ⊕ Z/nZ. In Table 1, the second column contains a square-free integer

d indicating the base field Q(
√

d). In all other tables, the second column contains an

irreducible polynomial f ∈ Q[x] defining the base field, and w denotes a root of f . The

curve is given in the third column, either by a quintuple (a1,a2,a3,a4,a6) representing

a curve in long Weierstrass form or by a pair (a,b) representing a curve in Tate form

y2 + axy + by= x3 + bx2.
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Table 1. Curves with prescribed torsion and rank 0 over quadratic fields.

(m,n) d Curve

(1,1) −1 (0,0, 0, 0, 6)

(1,2) 5 (0,0, 0, 1, 0)

(1,3) −2 (0,0, 0, 0, 4)

(1,4) −2
(

1,
1

8

)
(1,5) −1 (−2,−3)

(1,6) −1 (−2,−12)

(1,7) −1 (−1, 2)

(1,8) −2 (7,−6)

(1,9) −2 (3,6)

(1,10) −2 (−5,−24)

(1,11) 2 (
√

2 + 1,−√
2 + 2)

(1,12) −3 (43,−210)

(1,13) 17 (2
√

17 − 9, 18
√

17 − 74)

(1,14) −7 (
√−7 + 2,

√−7 + 5)

(1,15) 5 (3,2)

(1,16) 70
(

−31

5
,−18

25

)
(1,18) 33 (6 + √

33,−5 − √
33)

(2,2) −1 (0,0, 0, 1, 0)

(2,4) −3
(

1,
1

18

)

(2,6) −3
(

11

10
,

9

100

)

(2,8) −3
(

−23

7
,−30

49

)

(2,10) −2
(

−7

2
,−9

2

)

(2,12) 6
(

29

27
,

50

729

)
(3,3) −3 (1,−1, 0, 12, 8)

(3,6) −3
(

9

8
,

7

64

)

(4,4) −1
(

1,
15

256

)
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Table 2. Curves with prescribed torsion and rank 0 over cubic fields.

(m,n) f Curve

(1, 1) x3 + x2 + 2 (0, 0,0, 0,−3)

(1, 2) x3 + x2 + 10 (0, 0,0, 1, 0)

(1, 3) x3 + x2 + x − 1 (0, 0,0, 0, 4)

(1, 4) x3 + x2 − 1
(

1,
1

2

)
(1, 5) x3 + x+1 (−2,−3)

(1, 6) x3 + 2
(

4

3
,

2

9

)
(1, 7) x3 + x + 1 (−1,−4)

(1, 8) x3 + 2x2 + 1
(

−1

2
,−3

)
(1, 9) x3 + 2x2 + 1 (−3,−12)

(1, 10) x3 + x2 + 3 (−5,−24)

(1, 11) x3 − x2 − 2 (−2w2 + 2w + 3, 2w2 − 2w − 2)

(1, 12) x3 + 2 (43,−210)

(1, 13) x3 − x − 2 (−w2 − w − 1,−w2 + w + 2)

(1, 14) x3 − x − 2 (−1,−4)

(1, 15) x3 + 2x − 1

(
w2 − 2w + 3

2
,
−2w2 − w + 1

2

)

(1, 16) x3 − x2 + 2x + 8 (−4w − 5,−7w2 − 3w + 10)

(1, 18) x3 + 3x − 2 (−3,−12)

(1, 20) x3 − x2 − 2x − 2

(
−5w2 − w

2
,−14w2 − 12w − 8

)

(1, 21) x3 − 3x2 + 3 (1,−1,1,−5, 5)

(2, 2) x3 + 2 (0, 0,0,−1, 0)

(2, 4) x3 + 2
(

1,−1

2

)

(2, 6) x3 + 2
(

5

2
,−3

4

)

(2, 8) x3 + 2
(

17

2
,−15

)
(2, 10) x3 − x2 − 1 (−5w2 − 3w − 3,−5w2 − 3w − 4)

(2, 12) x3 − 2x − 2

(
12w2 + 24w + 17

2
,
−309w2 − 546w − 348

4

)

(2, 14) x3 + 2x2 − 9x − 2 (3w2 − 7w − 1,−55w2 + 115w + 26)
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Table 3. Curves with prescribed torsion and rank 0 over quartic fields.

(m,n) f Curve

(1,1) x4 + 8x2 + 4 (0,0, 0, 0,6)

(1,2) x4 + x3 + x2 + x + 1 (0,0, 0, 1,0)

(1,3) x4 − 2x2 + 4 (0,0, 0, 0,4)

(1,4) x4 − 3x2 + 4 (1,−2)

(1,5) x4 + 3x2 + 1 (−2,−3)

(1,6) x4 + 3x2 + 1 (−2,−12)

(1,7) x4 − 3x2 + 4 (−1,−4)

(1,8) x4 + 26x2 + 49 (7,−6)

(1,9) x4 − 7x2 + 4 (3,6)

(1,10) x4 − x2 + 1 (−5,−24)

(1,11) x4 + 2x2 + 4 (−w3 − 1,−3w3 − 8)

(1,12) x4 − x2 + 1 (43,−210)

(1,13) x4 − 38x2 + 225

(
w3 − 53w − 135

15
,

3w3 − 159w − 370

5

)

(1,14) x4 − 3x2 + 4 (−2w2 + 5,−2w2 + 8)

(1,15) x4 − x2 + 4 (3,2)

(1,16) x4 + 9x2 + 9
(

−7

5
,−12

25

)

(1,17) x4 − x3 + x2 − 5x − 4

(
5w3 − 12w2 + 9w − 40

4
,−4w3 + 2w2 − 10w + 12

)

(1,18) x4 + 17x2 + 64 (2w2 + 23,−2w2 − 22)

(1,20) x4 − 2x3 + x2 + 2 (−5,−24)

(1,21) x4 − x3 + 2x − 8

(
−w3 − 6w2 − 26w + 80

8
,
−53w3 + 118w2 − 154w + 200

2

)

(1,22) x4 − 2x3 − x2 + 2x + 8

(
w3 − 12w2 + 31w − 20

8
, 3w3 − 13w2 + 18w − 4

)

(1,24) x4 − 18x2 − 15
(

1,
8

3

)
(2,2) x4 + 3x2 + 1 (0,0, 0, 1,0)

(2,4) x4 − 3x2 + 4
(

1,
1

18

)

(2,6) x4 + 2x2 + 4
(

5

2
,−3

4

)

(2,8) x4 + 6x2 + 4
(

−7

3
,−10

)

(2,10) x4 + 18x2 + 25
(

−7

2
,−9

2

)

(2,12) x4 + 9x2 + 9
(

1,
8

3

)
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Table 3. Continued.

(m,n) f Curve

(2,14) x4 − x3 + 3x2 + 3x + 2 (w3 − 2w2 + 3w + 3, w3 − 2w2 + 3w + 6)

(2,16) x4 + 2002x2 + 116281
(

2329

2695
,− 366

2401

)
(2,18) x4 − x2 − 8 (2w2 + 5,−2w2 − 4)

(3,3) x4 − x2 + 4 (1,−1, 0, 12,8)

(3,6) x4 − x2 + 4
(

9

8
,

7

64

)

(3,9) x4 + 294x2 + 2601

(
11w2 + 129

24
,

269w2 + 2463

24

)

(4,4) x4 + 1
(

1,
1

8

)

(4,8) x4 + 541x2 + 72900
(

431

690
,−259

529

)
(5,5) x4 + x3 + x2 + x + 1 (−10,−11)

(6,6) x4 + 5x2 + 1
(

9

8
,

7

64

)
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Table 4. Curves with prescribed torsion and positive rank over quadratic fields.

(m,n) f or d Curve Independent points of infinite order

(1,15) x2 − x − 86
(

10w + 493

448
,

10w + 45

448

) (−w − 274

3584
,
−2455w − 20382

200704

)

(1,18) x2 + 163x + 12
(

25105w + 2071

216
,

634768555w + 46752805

7776

) (
3673w + 223

486
,

150110959w + 11056609

8748

)
,

(−112579w − 8293

6
,
−3011095399w − 221775913

288

)

(2,10) 55325286553
(

−1001929453

87419475
,−1089348928

87419475

) (
−76249664

9062625
,−3294239461376

55961709375

)
,

(
−1378903694270734

47323818070815
,−233856747339051186962702

6331823076742017702705

)
,

(
−317897024

55559933
,−54763043233792

3408435209751

)
,

(
−10158696384

631362875
,−66880771114752

779733150625

)

(2,12) 2947271015
(

1024873209359

27734204981
,−543206429719981170

2187369012646489

)
rank ≥ 4, see [6]
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Table 5. Curves with prescribed torsion and positive rank over cubic fields.

(m,n) f Curve Independent points of infinite order

(1, 11) x3 − x2 − 12

(
−3w2 + 3w − 8

4
,−3w2 + 3w − 12

)
(2w2 − 2w,3w2 + 15w − 30),

(
4w2 + 6w + 14,

−29w2 − 35w − 116

2

)

(1, 13) x3 − x2 − 2x − 24

(
−w2 − 3w + 3

3
,
−5w2 − 5w − 24

3

) (
12w2 + 10w + 30

9
,

20w2 + 88w + 516

27

)

(1, 15) x3 + x2 − 2x − 6

(
7w2 + 20w − 58

8
,

7w2 + 20w − 66

8

) (
5w2 + 4w − 24,

21w2 + 108w − 270

2

)

(1, 16) x3 − 5x2 + 8

(
−w2 − 2w + 2

2
,−4w2 − w + 4

) (
173w2 − 62w − 296

2
,

8039w2 − 3000w − 13896

2

)

(1, 20) x3 − 17x − 6

(
3w2 − 3w − 118

80
,

75w2 + 114w − 1872

320

) (
−21w2 − 33w + 522

64
,

351w2 + 414w − 8316

1280

)

(2, 10) x3 − x2 − 3

(
−5w2 + 2w − 1

5
,
−42w2 − 42w − 81

25

) (
9w2 − 3w + 18

5
,

30w2 + 6w + 27

5

)

(2, 12) x3 − x2 + x − 16

(
1,

−532w2 + 27560w − 106048

88209

) (
38w2 − 10w + 512

243
,

1566w2 + 2810w + 7264

6561

)

(2, 14) x3 − x2 − 166x − 536

(
7w2 + 108w + 322

26
,
−631w2 − 8667w − 22964

169

) (
315061w2 + 4358637w + 11743820

3237013
,

−289420914w2 − 3975201306w − 10528526328

42081169

)



R
an

ks
of

E
llip

tic
C

u
rves

over
N

u
m

b
er

F
ield

s
2921

Table 6. Curves with prescribed torsion and positive rank over quartic fields.

(m,n) f Curve Independent points of infinite order

(1,17) x4 − 2x3 + 2x2 + 2x − 4 (−w3 + w2 + 2w − 1, 3w3 − 6w2 − 2w + 6) (−w3 + 2w2 + 2w − 2,2w3 − 4w2 − 4w + 4)

(1,21) x4 − x3 − 2x2 + 10x − 4

(
−2w3 + 7w2 − 23w + 17

7
,

(
8w3 − 23w2 + 35w − 4

7
,

−135w3 + 440w2 − 715w + 246

7

)
−190w3 + 610w2 − 984w + 316

7

)

(3,9) x4 − 2x2 + 4 (w3 − 5w2 + 8w − 3, 28w3 − 59w2 + 32w + 20) (−w2 + 4w − 4,32w3 − 32w2 − 52w + 96)

(4,8) x4 − 3x2 + 4
(

17

2
,−15

) (
5

2
,

25w2 − 50

4

)

(5,5) x4 + x3 + x2 + x + 1
(

−88

93
,−181

93

) (
2

3
,

7

3

)
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und ihrer Grenzgebiete (3) 21, Berlin: Springer, 1990.

[3] Bosma W., J. J. Cannon, C. Fieker, and A. Steel (eds.). Handbook of Magma Functions. Edition

2.18 (2011).
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