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Abstract.—Diversification is nested, and early models suggested this could lead to a great deal of evolutionary redundancy
in the Tree of Life. This result is based on a particular set of branch lengths produced by the common coalescent, where
pendant branches leading to tips can be very short compared with branches deeper in the tree. Here, we analyze alternative
and more realistic Yule and birth–death models. We show how censoring at the present both makes average branches one
half what we might expect and makes pendant and interior branches roughly equal in length. Although dependent on
whether we condition on the size of the tree, its age, or both, these results hold both for the Yule model and for birth–death
models with moderate extinction. Importantly, the rough equivalency in interior and exterior branch lengths means that
the loss of evolutionary history with loss of species can be roughly linear. Under these models, the Tree of Life may offer
limited redundancy in the face of ongoing species loss. [Extinction; phylogenetic diversity; phylogenetic tree; Yule process.]

In a well-cited paper, Nee and May (1997) state that
“80% of the underlying tree of life can survive even
when approximately 95% of species are lost.” This
quote has percolated through the literature (see, e.g.,
Erwin 2008; Purvis 2008; Vamosi and Wilson 2008;
Roy et al. 2009; Santos et al. 2010). This high level
of phylogenetic redundancy is due to Nee and May
using coalescent-type models of tree shape, where pen-
dant edges are expected to be much shorter than inte-
rior edges. Here, we test the robustness of this result
by building on recent algebraic results from Steel and
Mooers (2010) to derive the expected branch lengths
on phylogenies produced under alternative Yule and
birth–death models of diversification. We highlight
three findings: 1) the average length of branches in pure
birth (Yule) trees is roughly one half of our naive ex-
pectation; 2) the expected length of the interior branches
and those leading to species are the same or nearly so,
and this means that 3) the relationship between the loss
of species to extinction and the loss of phylogenetic di-
versity (PD) (Faith 1992) can be much more precipitous
than that quoted above (Nee and May 1997). All three
findings hold for birth–death trees with low to moder-
ate relative extinction rates.

For much of what follows, we will consider a pure
birth Yule tree with diversification rate λ. We note that
inferred phylogenetic trees are often more imbalanced
than Yule trees (Mooers and Heard 1997), but currently,
no biological model captures this empirical distribu-
tion. More importantly for what follows, the Yule pro-
cess produces a distribution of splitting events on the
tree from past to present that is intermediate between
that expected under an adaptive radiation (Gavrilets
and Vose 2005; Rabosky and Lovette 2008), where splits
are concentrated nearer the root, and that expected
under long-term equilibrium models of diversification
(Hey 1992; Hubbell 2001), where splits are concentrated

nearer the present. Our main motivation for focusing
on this model is that trees sampled from the litera-
ture tend to have splitting times concentrated nearer the
root (McPeek 2008; Morlon et al. 2010), making the Yule
model a conservative model when measuring phyloge-
netic redundancy.

We refer to branches that lead to the tips of a tree as
pendant edges (with expected average length pn, where
n is the number of tips) and branches found deeper
within the tree as interior edges (with expected average
length in). The term “expected average length” clarifies
that two random processes are at work—the produc-
tion of a Yule tree and the selection of an edge from
that tree. The expected PD of such a tree is the sum of
the expected pendant and interior edge lengths, that is,
Ln = npn + (n − 2)in. We will assume throughout that
the tree starts as an initial bifurcation, such that at some
time t in the past, it has two lineages each of length 0
(as in Nee 2001). After time t from the initial bifurcation,
we produce a binary tree with n tips (as in Yang and
Rannala 1997; Nee 2001), and several properties of this
process have been well-studied by these and other au-
thors. In particular, the expected number of tips in the
tree is 2eλt.

Given rate λ, the time that a given lineage persists un-
til it splits on a Yule tree has an exponential distribution
with a mean of 1

λ
. This motivates our naive expectation

that the expected average edge length on such a tree
would also be 1

λ
. We first present a simple proof that

the expected average edge length in a Yule tree is
actually 1

2λ . This provides an underlying intuition that
is absent from the purely algebraic proof of Steel and
Mooers (2010). We then summarize and extend some
results from Steel and Mooers (2010) to describe how
the relative lengths of pendant and interior edges are
affected by 1) conditioning on, 2) estimating, or 3) not
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knowing, three related quantities: n, the number of tips
of the tree; t, the depth of the tree; and λ, the diversifi-
cation rate. We then further extend our results to birth–
death trees and finally revisit the provocative question:
at what rate do we lose PD as we lose species on a tree?

EXPECTED LENGTH OF A BRANCH ON A YULE TREE
SAMPLED AT THE PRESENT

Let us assume that we observe a Yule tree at the mo-
ment that it has grown to n + 1 tips (n = 4 in Fig. 1).
We do not condition on its depth (t). We can designate
the edge that has just split as an interior edge and disre-
gard the two zero-length branches that have just arisen.
Doing so designates an equal number (n − 1) of inte-
rior and pendant edges on this tree. One might think of
this Yule tree as one that has been “cut at” (or condi-
tional on) the observation of n + 1 tips. Intuitively, even
though the expected length of an edge on an uncen-
sored tree would be 1

λ
, the designated pendant edges

will be shorter due to this conditioning. However, in-
terior branches are also affected by this censoring: par-
ticularly, long interior branches would stretch to the
present and so would be pendant edges. This means that
the expected lengths of interior edges are also shorter
than 1

λ
.

Theorem 1. In a Yule tree, at the latest speciation event,
the expected length of a randomly drawn edge is 1

2λ .

FIGURE 1. Growing a Yule tree to illustrate the proof of Theo-
rem 1. The horizontal line is the observation time, when n + 1 tips
first appear. Below this line is the censored tree whose edge lengths
we are modelling. The uncensored tree has each pendant edge contin-
uing to lengthen till it speciates in turn. The thick lines denote interior
branches, the thin lines are pendant edges on the censored tree, and
the dashed lines are the segments that accrue to produce the uncen-
sored tree.

Proof: Consider the late sampling scenario described
in the preceding paragraph, and let the n − 1 remain-
ing pendant edges each grow under the Yule process
until they also split, disregarding all the new infinites-
imal edges that result. Each of these grown pendant
edges has an expected length gn and is made up of
two segments—its expected length before the tree had
n + 1 edges (=pb), and its expected length as it contin-
ued to grow after the tree had n + 1 tips (=pa), such
that gn = pb + pa. Importantly, given the memoryless na-
ture of exponential processes, the length of any pendant
edge segment observed from the time that n + 1 tips
are produced (the dashed lines in Fig. 1) is drawn from
one common exponential distribution, with the same
parameter λ. Also, pn on the censored tree =pb on the
uncensored tree.

Given an equal number of interior and pendant edges
on this uncensored tree, we can write an expression for
the expected length (call it E[L]) of any randomly drawn
edge on this tree as:

E[L] =
1
2
∙ in +

1
2
∙ (pb + pa) =

1
2
∙ in +

1
2
∙

(

pb +
1
λ

)

. (1)

Any single lineage has E[L]= 1
λ

, and so we can substitute
this for E[L] to obtain:

1
2
∙ in +

1
2
∙ pb =

1
2λ

. (2)

because pn = pb. The left member in Equation 2 is the ex-
pected length of a randomly drawn edge in the censored
Yule tree, which completes the proof.

This proof does not say anything about the rela-
tive lengths of internal versus pendant edges per se—it
might be that internal edges are still much longer than
pendant ones on Yule trees that we observe at a single
time slice, and it may be that the result hinges on ob-
serving the tree at exactly the moment that a speciation
event occurs. We turn to these issues now.

EXPECTED PENDANT VERSUS INTERIOR EDGE
LENGTHS AS FUNCTION (ONLY) OF n

In the above construction of the Yule tree, we made
the convention that the edge that has just split is an inte-
rior edge of the resulting tree. However, we could have
alternatively classified it as a pendant edge. In that case,
we have n pendant edges and n − 2 interior edges, and
one can again consider the expected average pendant
and interior branch lengths, which we will denote as
i′n and p′n. Steel and Mooers (2010) used a recursive ar-
gument to establish the following exact result: For all
n ≥ 3, we have:

i′n = p′n =
1

2λ
. (3)

This result tells us exactly how 1
λ

is shared out between
the two terms in Theorem 1. Due to the memoryless na-
ture of the exponential distribution, the pendant edge
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that was chosen to split at our observation time is ran-
dom with respect to its length, and so we can express
the lengths of the interior and pendant edges on the
censored tree as:

in =
1

n− 1
((n− 2)i′n + p′n) and pn =

1
n− 1

(np′n − p′n).

Equation 3 implies that, for all n ≥ 3:

in = i′n =
1

2λ
and pn = p′n =

1
2λ

.

In particular, the terms in and pn in Theorem 1 are equal.
We note that Theorem 1 is for a late sampling scenario,
when we show up just when n + 1 tips first appear. How-
ever, if we only condition on n, but show up at a random
time between the interval when n and n+1 tips exist (i.e.,
if we “show up” at the present to sample our tree), any
pendant edge has the same expected average length as
in the late sampling scenario. This result is analogous to
the bus stop problem: if buses arrive at a certain rate
b under an exponential process, if one shows up at a
random time, the expected time since the last bus is b−1

rather than something less than that. This property was
formally proven for model trees (Gernhard 2008a) and
also used recently by Hartmann et al. (2010) in the con-
text of sampling trees from evolutionary models.

EXPECTED PENDANT VERSUS INTERIOR EDGE
LENGTHS AS FUNCTIONS OF t (ALONE OR WITH n)

The expected number of tips in a Yule tree at time t is
given by N(t) = 2eλt because each of the two initial lin-
eages has a geometrically distributed distribution, with
a mean of eλt (see e.g., Nee et al. 1994 or Beichett and
Fatti 2002, example 6.10, p. 193). We now introduce P as
the sum of all pendant edges, I as the sum of all inte-
rior edges, and, as in the introduction, L as the total tree
length, L= P + I. These quantities, conditional on either
n or t or both, should be noted, as they will be useful for
many of the proofs that follow. If we let P(t) and I(t) de-
note, respectively, the expected sum of the lengths of the
pendant and interior edges of a Yule tree grown for time
t and let L(t) = P(t) + I(t), then, from Steel and Mooers
(2010), we have the following equalities:

L(t) =
2
λ
(eλt − 1); P(t) =

1
λ
(eλt − e−λt); and

I(t) =
1
λ
(eλt + e−λt − 2). (4)

Thus, the ratio of the expected average lengths of the
pendant and interior edges of a Yule tree of depth t con-
verges to 1 exponentially fast with increasing t. P(t) is
slightly larger than than I(t), but the difference becomes
rapidly negligible. In particular, the ratio P(t)/L(t) con-
verges quickly to 1/2; we will consider this ratio further
when we allow for extinction.

Importantly, for most phylogenetic trees, both n and
t will be known from the data. Do the observations on

edge lengths made above also hold when we condition
on both n and t? The expected total length of a Yule tree
conditional on it having grown for time t and having
exactly n tips at time t is given by:

Ln(t) = t ∙

(

2 +
n− 2

x
(1− y(x))

)

, (5)

where x = λt and y(x) : = xe−x

1−e−x , which is a function that
decreases from 1 towards 0 as x ≥ 0 grows (for details,
see Steel and Mooers 2010). Let In(t) and Pn(t) denote the
expected sum of the interior and pendant edge lengths
(respectively) of a Yule tree, conditional on it having
grown for time t and having exactly n tips at time t.
Thus, In(t) + Pn(t) = Ln(t) (given by Equation 5).

A proof of the following result is provided in the
Appendix.

Theorem 2. The expected length of a randomly picked
pendant edge in a Yule tree on n extant species and of
age t is,

1

n
Pn(t) = t ∙

(
2

n(n− 1)

+
(n− 2)[(n + 5)− 4(1 + n + 2x)e−x + (3n− 1 + 2(n + 1)x)e−2x]

2xn(n− 1)(1− e−x)2

)

,

where x = λt. In particular, if we set λ to its maximum
likelihood estimate, that is, λML=log(

n
2 )/t (Magallon and

Sanderson 2001), then the ratio R̂n : =Pn(t)/Ln(t) of the
expected total length of the pendant edges to the ex-
pected total length of all edges in a Yule tree on n extant
species and age t is independent of t and is given by:

R̂n =
n3 − 3n2 − 4n log(n/2) + 4n− 4

2(n− 1)(n− 2)2
,

which tends to 1/2 as n→∞.

Table 1 presents Pn(t), Ln(t), and their ratio R̂n(t) (i.e.,
Rn(t) conditioned on λ taking its maximum likelihood
estimate) for a range of tree sizes.

EXTENSION TO BIRTH–DEATH MODELS

Allowing for random extinction (as well as specia-
tion) introduces additional complexity into the analyses
presented above. We first consider what happens if we

TABLE 1. Sum of pendant edges (Pn(t)), sum of all edges (Ln(t)),
and their ratio (R̂n(t)) for various tree sizes n when both n and t are
fixed and λ is set to its maximum likelihood value

n Pn(t) Ln(t) R̂n(t)

4 3.03296 ∙ t 2.8854 ∙ t 1.0511
16 3.8697 ∙ t 6.7326 ∙ t 0.5748
64 9.2373 ∙ t 17.8894 ∙ t 0.5163

256 26.3815 ∙ t 52.3492 ∙ t 0.5040
1024 82.0735 ∙ t 163.8260 ∙ t 0.5010
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condition just on n (and adopt the assumption that the
time of origin of the initial linage is a parameter of the
birth–death model). To do this, we have to assume a
prior distribution for the time of origin when condi-
tioning the trees to have n extant species. We make the
common assumption that the first species originated at
any time in the past with uniform probability (Aldous
and Popovic 2005). This is also called an improper prior
on (0ε∞). Conditioning the resulting tree to have n ex-
tant species yields a proper distribution for the time
of origin (Gernhard 2008a). Note that, under the Yule
model where μ = 0, this scenario is equivalent to stop-
ping the process just before the n + 1-th speciation event
(Hartmann et al. 2010), which is the setting we con-
sidered in the first two sections of this paper. The
following result generalizes those earlier findings
to birth–death models (a proof is provided in the
Appendix). As usual, λ is the per lineage speciation rate
and μ is the per-lineage extinction rate.

Theorem 3. The expected length of a pendant edge on
a birth–death tree conditioned on n is, for 0 < μ < λ,

E[p|n] =
μ + (λ− μ) log(1− μ/λ)

μ2
; (6)

for μ= λ, we have:

E[p|n] =
1
λ

;

and for μ= 0, we have:

E[p|n] =
1

2λ
.

We can also obtain exact results for the lengths of the
edges in a birth–death tree if we condition (just) on time.
In particular, we can provide extensions to Equation 4
to allow for extinction. We begin, as usual, with two
lineages of length 0. Let TR(t) denote the tree that is
spanned by those taxa that are extant at time t; TR(t) is
therefore referred to as the “reconstructed” birth–death
tree (the tree consisting of edges that survive to time t,
although extinct lineages are pruned away) (Nee et al.
1994; Gernhard 2008a). If there are no taxa extant at time
t, we say that TR(t) is empty. Let NR(t) denote the ex-
pected number of tips in the reconstructed birth–death
tree, given by the well-known formula:

NR(t) = 2e(λ−μ)t, t ≥ 0.

Note that although NR(t) tends to infinity as t grows
when λ > μ, it is quite possible that the actual number of
lineages at time t is 0, in which case TR(t) is empty. Let
LR(t) be the expected total length of the reconstructed
birth–death tree, and let PR(t) be the expected sum of
the pendant branch lengths of this tree. The proof of the
following result is provided in the Appendix.

Theorem 4. Consider a birth–death tree with speciation
rate λ > 0 and extinction rate μ that starts from two
lineages of length 0. Let ρ= λ

μ
, r = λ − μ, and let fρ(s) =

ρes−1
(ρ−1)es , then, for t ≥ 0:

(i) LR(t) = 2ert

μ
∙ (ln fρ(rt)),

(ii) PR(t) = 2ert

μ

(
1− (ρ− 1) ∙

[
(ln fρ(rt)) + 1

ρert−1

])
,

(iii) For ρ > 1, the limiting ratio τρ : = limt→∞
PR(t)
LR(t)

is given by:

τρ =
1

ln
[
ρ
ρ−1

] − ρ + 1.

The function τρ from Part (iii) is shown in Figure 2.
Note that the 0.5 asymptote agrees with the ratio of PR(t)
and LR(t) as in the pure birth model as calculated earlier
(i.e., τρ → 1

2 as ρ → ∞). Interestingly, the asymptote is
reached fairly quickly on large trees. For example, from
Figure 2, we see that when the extinction rate is one-
third of the extinction rate (ρ = 3), then τρ = 0.47 and
the expected pendant edge length is 87% the expected
interior edge length. Mild extinction in a uniform birth–
death model does not produce particularly short pen-
dant edges. At the other extreme, as the extinction rate
approaches the speciation rate (so r and ρ converge to 0
and 1, respectively), τρ can be easily shown to converge
to 0, as suggested by Figure 2. It is interesting to note
that the expected sum of pendant edge lengths in the

FIGURE 2. Graph of τρ, which is the limiting ratio (for large t) of
the sum of pendant edge lengths to the sum of all edge lengths in a
birth–death tree, in which the speciation rate is ρ > 1 times the extinc-
tion rate.
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reconstructed tree at time t (i.e., PR(t)) divided by the
expected number of extant taxa at time t (i.e., 2e(λ−μ)t)
converges to the same expression as given in Equation 6
as t→∞.

EXPECTED PD UNDER SIMPLE FIELD-OF-BULLETS
MODEL FOR YULE TREES

The expected lengths of edges in a tree are directly rel-
evant for quantifying the expected loss of “PD” under
simple models of extinction, in which each tip is deleted
with some fixed probability. In these models, edges that
are “deep” within the tree are more likely to contribute
to the PD score of the surviving taxa than pendant edges
of similar length because they are more likely to have
at least one nonextinct taxon in the clade they support.
This redundancy leads to the nonlinear decrease of PD
as more species are removed from a tree (Nee and May
1997). However, the ratio of the lengths of pendant to in-
terior edges is also critical, as pendant edges will be the
first to be deleted from the tree. In this section, we ana-
lyze the expected PD score of a Yule tree under random
taxon deletion. Note that there are two random processes
at play here: the Yule process that produces the tree and
then the extinction process that deletes taxa.

Consider then a Yule tree that starts with a split into
two lineages at time 0 and is grown until time t > 0. At
that time, each tip is selected independently with prob-
ability s and the remaining tips are deleted (pruned).
Thus, s is the “survival probability” of a taxon. Let
ψt(s) be the PD of the resulted pruned tree, and let
πt(s) = E[ψt(s)], where E[.] denotes expectation with re-
spect to the random Yule tree and the random pruning
operation. Thus, πt(1) is the expected PD of the (entire)
Yule tree, namely L(t) = 2

λ
(eλt − 1) (Equation 4). For

s < 1, πt(s) is the expected PD one obtains by gener-
ating a Yule tree until time t and then applying a field-
of-bullets pruning with survival probability s for each
tip. The proof of the following result is provided in the
Appendix.

Theorem 5.

πt(s) =
2s

(1− s)λ
eλt ∙ [− log(s + (1− s)e−λt)].

The ratio πt(s)/πt(1) of the expected PD in the pruned
tree to the expected PD of the total tree therefore con-
verges (quickly) with t to the limit:

π(s) :=
−s log(s)

1− s
.

Theorem 5 implies that πt(s) ≥ s ∙ πt(1) for all t > 0.
Moreover, the limiting ratio π(s) is a continuous and
concave positive function that approaches 0 as s → 0
and approaches 1 as s→ 1 (see Fig. 3). For s= 0.5, π(s)=
log(2) = 0.69. The slope function π′(s) approaches infin-
ity as s approaches 0 from above and π′(s) approaches

FIGURE 3. Lower solid line shows the proportion of PD remaining
when random extinction occurs with probability 1 − s on a Yule tree
(from π(s) from Theorem 5). The dotted line shows the same quantity
for the coalescent-style tree used by Nee and May (1997), for n= 1000.
The curve in between these two shows the same quantity but on a
birth–death tree with μ= 0.5λ, as described by Equation 7. This figure
is available in black and white in print and in color at Systematic Biology
online.

1
2 as s approaches 1 from below. This latter result can be
seen by considering that pendant edges are the first to
be lost from a tree undergoing extinction; under the Yule
model, the sum of the pendant edges constitutes 0.5 of
the total PD (Theorem 4).

The high level of redundancy reported by Nee and
May (1997) is due to their use of coalescent-type mod-
els of tree shape with a constant population size, where
the pendant edges are expected to be much shorter than
the interior edges. More precisely, the ratio of the ex-
pected total length of the pendant edges to the expected
total length of the interior edges converges to 0 with in-
creasing n, at a rate 1/ log(n), see for example, (Fu and
Li, 1993, equations 10–12). An example of the relation-
ship between s and the proportion of the tree remaining
under Nee and May’s model (for n = 1000) is shown in
Figure 3.

Under a Yule model, where interior and pendant
edges have roughly the same expected length, the sit-
uation is quite different. If we take s = 0.05, then π(s)=
0.157. That is, in a large tree, if we lose 95% of species
(randomly) then we would expect to lose more than 84%
of the tree. This lower level of redundancy is also more
in line with statistical (Morlon et al. 2011) and empirical
estimates of tree loss under extinction regimes (Purvis
et al. 2000; von Euler 2001; Vamosi and Wilson 2008),
where tree shape and nonrandom extinction interact
(see also Heard and Mooers 2000; Nee 2005).

Similar results hold with birth–death trees under mild
extinction (see Fig. 2), where the sum of the pendant
edges constitutes τρ of the total PD. In particular, for
λ > μ > 0, the second formula presented in Theorem 5
can be modified as follows (see Appendix):
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π(s) =
s

(a− s)
∙ log

( s
a

)
∙

1− a
log(a)

. (7)

where a= 1− μ/λ.
Figure 3 exhibits an example curve π(s) on a birth–

death tree constructed with μ= 0.5λ.
We note that this modified formula for μ > 0 should

be used with care for larger values of μ for two reasons.
First, birth–death trees are increasingly likely to die out
as μ approaches λ, and so an asymptotic ratio of ex-
pected values such as π(s) may be a poor estimate of
expected PD loss in such situations. Note in particular
that in the limit as μ/λ → 1, we have π(s) = 1 for all
s > 0. This of course does not mean that if 99.9% of the
taxa are eliminated, then we would still expect to retain
100% of the PD!

The second reason for caution is more empirically
based. In the extreme (critical) case where μ = λ then,
as we have noted already, if we condition on a tree hav-
ing n extant leaves (assuming a uniform prior distribu-
tion for the time of the origin of the tree, as in Aldous
and Popovic 2005), then the expected distribution of
branch lengths in this tree would be precisely that given
by the coalescent process (Gernhard 2008b) that was
used in the analysis by Nee and May (1997). The prob-
lem now is that typical species-level phylogenetic trees
look very different from such constant-size coalescent-
shaped trees. Hey (1992), using a sample of only eight
trees, was the first to point out that the coalescent model
produced unreasonably short pendant edges (see also
Morlon et al. 2011), whereas McPeek’s (2008) recent
compilation of 245 fairly well-sampled chordate, arthro-
pod, mollusk, and magnoliophyte phylogenies, showed
that these trees tended to have a branch length distri-
bution in the opposite direction to the coalescent, with
edges near the leaves tending to be, on average, slightly
longer than expected under the Yule model. McPeek
used the gamma statistic from Pybus and Harvey (2000)
to describe the distribution of branch lengths as one
moves from the root of the tree to the tips and found
that the majority of trees had negative gamma val-
ues, rather than having them centered on 0 as expected
under the Yule model (Pybus and Harvey 2000) and
the positive values expected under the coalescent
(Pybus et al. 2002). Indeed, we show in the Appendix
that the expected value of gamma for a coalescent tree
of increases indefinitely at a rate of

√
3n.

Morlon et al. (2010) applied a coalescent framework
that allows for incomplete taxon sampling to an over-
lapping set of 289 trees and found that the majority of
trees (>80%) had splitting times that were either con-
sistent with the Yule model or concentrated nearer the
root. Though nonrandom sampling may be a concern
(Cusimano and Renner 2010), the observation that most
nearly complete phylogenetic trees have gamma values
close to zero (or negative), as well as the explicit test of
the Yule model by Morlon et al. (2010) suggest that our
use of this model in analyzing expected loss of PD may
be conservative.

CONCLUSION

Although the Yule model of diversification is nearly
100 years old, it still holds some surprises. The fact
that real trees are conditioned on t, and that we show
up at some random time after n tips have been pro-
duced leads to the observation that average pendant
edge lengths (species ages) and internal edge lengths
(those that anchor higher clades) are expected to be
nearly equal under the Yule model. Although all edges
are not expected to be the same length—for instance,
the two edges incident to the root are longer than others
(results not shown)—this conditioning also makes ran-
domly selected edge lengths one half of the naive expec-
tation. These observations may be useful in informing
prior distributions on edge lengths for tree inference.

Mild amounts of uniform extinction do not change
these general observations. Indeed, the “push of the
past” (Harvey et al. 1994; Phillimore and Price 2008),
which describes the expectation that those groups which
diversified faster than expected early on are more
likely to be sampled in the present, would lead to in-
ternal edges being even shorter relative to pendant
edges. Nonuniform models, such as adaptive radiations
where diversification actually slows down through time
(Rabosky and Lovette 2008; Morlon et al. 2010), would
do the same. All these processes work against the re-
dundancy inherent in the Tree of Life. We predict that
this redundancy may not be as great as hoped for. Of
course, this prediction must await more complete dated
trees.
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 2

We can modify the argument that leads to the differ-
ential equation dI(t)

dt =λP(t) from Steel and Mooers (2010)
so as to take into account conditioning on n as well as
t—the analysis consists of calculating quantities such as
P[Xt = n − 1|Xt+δ = n], where Xt denotes the number of
species present at time t, for which equation 4 of Nee
(2001) is helpful. In this way, one can derive the follow-
ing sequence of first-order linear differential equations
for In = In(t):

dIn

dt
+
λ(n− 2)
1− e−λt

∙In=
λ(n− 2)
1− e−λt

∙

(

In−1 +
1

n− 1
Pn−1

)

. (A.1)

Notice that the term Pn−1 = Pn−1(t) on the right-hand
side of Equation A.1 can be replaced by Ln−1(t)− In−1(t)
(with Ln−1(t) given by Equation 5). Moreover, when n=
2, we have the initial solution I2(t)=0 (and P2(t)=2t) for
all t ≥ 0, and for each n, we have the boundary condition
In(t) = 0 at t= 0.

It can now be verified that the expression given in
Theorem 2 for Pn(t) satisfies this system of linear differ-
ential equations subject to the boundary condition and
so is the unique solution.

For the second claim if we set λ to its maximum like-
lihood estimate, that is, λML = log(

n
2 )/t, then,

Pn(t) =
2 log(n/2)
λ(n− 1)

+

(n− 2)[(n + 5)− 4(1 + n + 2 log(n/2))e− log(n/2)

+(3n− 1 + 2(n + 1) log(n/2))e−2 log(n/2)]

2λ(n− 1)(1− e− log(n/2))2

=
2 log(n/2)
λ(n− 1)

+

(n− 2)[(n + 5)− 4(1 + n + 2 log(n/2))2n−1

+(3n− 1 + 2(n + 1) log(n/2))(n/2)−2]

2λ(n− 1)(1− 2/n)2

= t
n3 − 3n2 − 4n log(n/2) + 4n− 4

2 log(n/2)(n− 1)(n− 2)
.

The sum of all edge lengths is in expectation (Steel
and Mooers 2010), Ln(t)= t n−2

log(n/2) , and therefore, the ra-
tio Rn is the expression given in Theorem 2. From this
expression, it is easily seen that limn→∞

Pn(t)
Ln(t)
= 1/2. �

Proof of Theorem 3

The probability v(k) that a leaf is attached to the k-th
speciation event in a tree on n extant species under the
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Yule or birth–death model is, from Stadler (2008), given
by:

v(k) =
2k

n(n− 1)
. (A.2)

For 0 ≤ μ < λ, let:

p0(t) :=
(1− e−(λ−μ)t)
λ− μe−(λ−μ)t

and p1(t) :=
(λ− μ)2e−(λ−μ)t

(λ− μe−(λ−μ)t)2
,

whereas for μ= λ, let:

p0(t) :=
t

1 + λt
and p1(t) :=

1
(1 + λt)2

.

The probability that a lineage produces 0 (resp. 1) off-
spring after time t is μp0(t) (resp. p1(t)) (Kendall 1949).
We first establish the following result:

Lemma 1. The length of a randomly picked pendant
edge in a birth–death tree on n extant species has prob-
ability density function fp(t|n) = 2λp1(t)(1− λp0(t)).

Proof. For proving the lemma, we will use the probabil-
ity density of the time of the k-th speciation event in a
birth–death tree with n extant species, which is derived
in Gernhard (2008a), and for μ < λ, we get,

fn,k(t) = (k + 1)

(
n

k + 1

)

λn−k(λ− μ)k+2e−(λ−μ)(k+1)t

×

(
1− e−(λ−μ)t

)n−k−1

(λ− μe−(λ−μ)t)n+1
, (A.3)

Using Equation A.2 and A.3, we can write,

fp(t|n) =
n−1∑

k=1

v(k)fn,k(t)

= 2
n−1∑

k=1

(
n− 2
k− 1

)

λn−k(λ− μ)k+2e−(λ−μ)(k+1)t

×
(1− e−(λ−μ)t)n−k−1

(λ− μe−(λ−μ)t)n+1

= 2λn−1(λ− μ)3e−2(λ−μ)t

×
(1− e−(λ−μ)t)n−2

(λ− μe−(λ−μ)t)n+1

n−1∑

k=1

(
n− 2
k− 1

)

×

(
(λ− μ)e−(λ−μ)t

λ(1− e−(λ−μ)t)

)k−1

= 2λ(λ− μ)3
e−2(λ−μ)t

(λ− μe−(λ−μ)t)3
.

For μ = λ, we take the limit μ → λ (using the property
e−ε ∼ 1− ε), which establishes the lemma. �

Note that the length of a pendant edge is independent
of n. Theorem 3 now follows directly from Lemma 1 by
evaluating

∫∞
0 tfp(t|n)dt. �

Proof of Theorem 4

The quantity 1
fρ(rt) =

r
λ−μe−rt is the probability that a

birth–death tree that starts with a single lineage at time
0 has at least one extant lineage at time t (equation 2 of
Nee et al. 1994). Thus, by considering the first δ period
of time in a birth–death tree that begins with a single lin-
eage, the expected total sum S(t) of branch lengths span-
ning the leaves present at time t satisfies the differential
expression:

S(t + δ) = 0 ∙ μδ + 2S(t) ∙ λδ +

(

S(t) + δ
1

fρ(rt)

)

∙ (1− (μ + λ)δ) + O(δ2),

(by considering whether or not the lineage becomes ex-
tinct, speciates, or persists unchanged within this initial
δ period). Because LR(t) = 2S(t) this leads to the follow-
ing differential equation:

dLR(t)
dt

= rLR(t) + 2/fρ(rt). (A.4)

Solving Equation A.4 subject to LR(0) = 0 gives Part (i)
of the theorem. By considering the evolution of the tree
from time t to t + δ, a straightforward dynamical argu-
ment leads to a second differential equation that links
LR(t) to PR(t):

dLR(t)
dt

=NR(t)− μPR(t). (A.5)

Part (ii) follows by equating the right-hand sides of
Equations A.4 and A.5 to express PR(t) in terms of quan-
tities already determined. For Part (iii), observe that
r > 0 and fρ(rt) → (ρ − 1)/ρ as t → ∞, and so, from
Parts (i) and (ii), we have the asymptotic equivalences
LR(t)/2ert ∼ μ−1 ln[ρ/(ρ − 1)],PR(t)/2ert ∼ μ−1(1 − (ρ −
1) ln[ρ/(ρ−1)]). Taking the ratio of these quantities gives
the result claimed.

Proof of Theorem 5

Let φt = φt(s) be the analogue of ψt(s) if we start the
Yule tree with a single (rather than 2) lineages at time
t= 0; thus,

πt(s) = E[ψt(s)] = 2E[φt(s)], (A.6)

(the behavior of φ is slightly easier to analyze than ψ).
Let Xt denote the number of tips in the Yule tree (starting
with a single lineage at time 0) at time t. Consider φt+δ ,
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for a small value δ > 0. In the first δ period of time,
the initial lineage can either 1) speciate (with probability
λδ+O(δ2)) or 2) fail to speciate (with probability 1−λδ+
O(δ2)), and so we have:

φt+δ=

{
φ1

t + φ2
t + O(δ) with probability λδ + O(δ2);

φ0
t + Yt with probability 1 − λδ + O(δ2);

(A.7)
where

E[Yt|Xt+δ = n] = δ ∙ (1− (1− s)n),

and φ0
t , φ1

t , and φ2
t are independent random variables

having the same distribution as φt (the contribution of
δ to the PD score of the tree applies precisely if at least
one of the tips at time t + δ is sampled, and this event,
conditional on Xt+δ=n, has probability 1−(1−s)n). Now,

P(Xt+δ = n|Xδ = 1) = P(Xt = n|X0 = 1),

and it is a classic result that this latter probability has a
geometric distribution with mean eλt (see e.g., Beichett
and Fatti 2002, example 6.10, p. 193), and so:

E[Yt] = δ ∙ (1− E[(1− s)Xt ])

= δ ∙

(

1−
∑

n≥1

(1− s)ne−λt(1− e−λt)n−1

)

=
δ ∙ s

s + qe−λt
, (A.8)

where q=1−s. Let π′t(s):=E[φt(s)]. Taking expectation of
Equation A.7 (with respect to both the Yule tree and the
random sampling process) and applying Equation A.8
leads to the following differential relationship for π′t(s):

π′t+δ(s)=2λδ ∙π′t(s)+(1−λδ) ∙

(

π′t(s) +
δ ∙ s

s + qe−λt

)

+O(δ2).

This leads to the following first-order linear differential
equation for π′t(s):

dπ′t(s)
dt

− λπ′t(s) =
s

s + qe−λt
.

Solving this equation gives π′t(s), and thereby, the stated
value for μt(s) = 2π′t(s) (by Equation A.6).

The modification of this result to give Equation 7 in
the birth–death setting, with 0 < μ < λ following
a similar case analysis (but allowing for the possibil-
ity of extinction) leads to the differential equation for
Mt(s) = E[φt(s)]:

dMt(s)
dt

= (λ− μ)Mt(s) + P(φt(s) /= 0). (A.9)

Now, by equation 1 of Yang and Rannala (1997) (or see
Nee et al. 1994), we have:

P(φt(s) /= 0) =
as

s− (s− a)e−(λ−μ)t
, (A.10)

where a = 1 − μ/λ. Now πt(s) lies between 2Mt(s) and
2Mt(s)− t (depending on whether we add the lengths of
all the edges from the extant taxa to the root or just the
edges from the extant taxa to their most recent common
ancestor), from which Equation 7 follows by evaluating
the limit of the ratio πt(s)/πt(1) as t→∞. �

The Expected Value of Gamma Under
the Coalescent Process

Under a Yule (pure birth) model, the gamma statis-
tic has a standard normal distribution with mean 0,
whereas under a coalescent model, it is positive. Under
the coalescent model, the original γ statistic grows at the
asymptotic rate of

√
n as the number of tips n grows.

Theorem 6. For a coalescent tree with n leaves, γ/
√

n
converges in probability to

√
3 with increasing n.

Proof . For a rooted binary tree with n ≥ 2 leaves,
let g2, g3, ..., gn be times between successive speciation
events, measured from the root to the leaves, and let
Tn =

∑n
j=2 jgj. From Pybus and Harvey (2000), we have

γ = Xn
Yn

, where Xn can be written in the form:

Xn =
1

n− 2

n∑

i=2

αigi, where αi = i(n/2)− 2

(
i
2

)

,

and

Yn = Tn

√
1

12(n− 2)
.

Now, under the coalescent, the random variables
g2, g3, ..., gn are independently distributed and with gj

having an exponential distribution with mean 1
( j

2)
. It fol-

lows that Tn
2 log(n) and Xn

log(n) have expected values that
converge to 1, and variances that converge to 0 as n →
∞, and so Tn

2 log(n) and Xn
log(n) each converge in probabil-

ity to the constant 1 as n → ∞. Consequently, the ratio
Xn/Tn converges in probability to 1/2 as n→∞, and so

γ(n)/
√

n = Xn
Tn
∙
√

12(n−2)
√

n
converges in probability to

√
3,

as claimed.
Finally, a more careful asymptotic analysis provides a

closer approximation to γ/
√

n by the formula
√

3 ∙ (1 −
2

loge(n)+C ), where C is Euler’s constant (0.5772. . . ) and
simulations confirm this improved fit. �


