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SUMMARY

Genton et al. (2011) investigated the gain in efficiency when triplewise, rather than pairwise, likelihood
is used to fit the popular Smith max-stable model for spatial extremes. We generalize their results to the
Brown–Resnick model and show that the efficiency gain is substantial only for very smooth processes,
which are generally unrealistic in applications.
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1. INTRODUCTION

Max-stable processes are useful for the statistical modelling of spatial extreme events. No finite param-
eterization of such processes exists, but a spectral representation (de Haan, 1984) aids in constructing
models. In a 1990 University of Surrey technical report, R. L. Smith proposed a max-stable model, based
on deterministic storm profiles, which has become popular because it is simple, readily interpreted and
easily simulated; unfortunately, however, the model is not flexible enough to apply to realistic situations
in practice. Another popular model, the Brown–Resnick process, is based on intrinsically stationary log-
Gaussian processes, can handle a wide range of dependence structures, and often provides a better fit to
data; see, for example, Davison et al. (2012) or a 2012 University of North Carolina at Chapel Hill PhD
thesis by Soyoung Jeon. Kabluchko et al. (2009) provided further theoretical underpinning for Brown–
Resnick processes by showing that under mild conditions, the process with variogram 2γ (h) = (‖h‖/ρ)α

(ρ > 0, 0 < α � 2), where h is the spatial lag, is essentially the only isotropic limit of properly rescaled
maxima of Gaussian processes. The Smith model can be obtained by taking a Brown–Resnick process
with variogram 2γ (h) = hT�−1h for some covariance matrix �, which corresponds to taking α = 2 after
an affine transformation; on the other hand, Davison et al. (2012) found that 1/2 < α < 1 for the rainfall
data they examined.

Likelihood inference for max-stable models is difficult, since only the bivariate marginal density
functions are known in most cases, and pairwise marginal likelihood is typically used (Padoan et al.,
2010; Davison & Gholamrezaee, 2012). This raises the question as to whether some other approach to
inference might be preferable. Genton et al. (2011) derived the general form of the likelihood func-
tion for the Smith model and showed that large efficiency gains can arise when fitting it using
triplewise, rather than pairwise, likelihood. In this paper we extend their investigation to Brown–Resnick
processes and show that for rougher models, which are typically more realistic than those con-
sidered by Genton et al. (2011), the efficiency gains are much less striking. Thus pairwise likeli-
hood inference provides a good compromise between statistical and computational efficiency in many
applications.
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2. BROWN−RESNICK PROCESS

2·1. Definition and properties

The Brown–Resnick process (Brown & Resnick, 1977; Kabluchko et al., 2009) is a stationary
max-stable process that can be represented as Z(x) = supi∈N

Wi (x)/Ti (x ∈X ⊂ R
d ), where 0 < T1 <

T2 < · · · are the points of a unit-rate Poisson process on R+ and the Wi (x) are independent replicates of
the random process W (x) = exp{ε(x) − γ (x)}. Here ε(x) is an intrinsically stationary Gaussian random
field with semivariogram γ (h) and ε(0) = 0 almost surely. One interpretation of Z(x) is as the pointwise
maximum of an infinite number of independent random storms Wi (x), each rescaled by a corresponding
storm size T −1

i . The full distribution of Z(x) at the set of sites D ⊂X is

pr{Z(x) � z(x), x ∈D} = exp

(
−E

[
sup
x∈D

{
W (x)

z(x)

}])
,

where the exponent measure function VD{z(x)} = E[supx∈D{W (x)/z(x)}] must satisfy certain constraints;
see, e.g., Davison et al. (2012). The full distribution is intractable whenD is arbitrary, but explicit formulae
for the marginal distributions are available when its size |D| is 1 or 2, as well as in certain other cases;
see below. The univariate margins of Z(x) equal exp(−1/z) for z > 0, and for D = {x1, x2} the exponent
measure of the Brown–Resnick process is

V (z1, z2) = 1

z1
�

{
a

2
− 1

a
log

(
z1

z2

)}
+ 1

z2
�

{
a

2
− 1

a
log

(
z2

z1

)}
, (1)

where zi = z(xi ) for i = 1, 2, a = {2γ (x2 − x1)}1/2 and �(·) denotes the standard normal distribu-
tion function. In this case, expression (1) boils down to the Hüsler–Reiss (1989) model for bivari-
ate extremes. The bivariate marginal density functions f (z1, z2) are easily expressed using derivatives
of (1).

Figure 1 shows how the variogram influences the smoothness of the max-stable process. In particu-
lar, when the smoothness parameter α equals 2, i.e., 2γ (h) = hT�−1h for some covariance matrix �, the
bivariate exponent measure of the Smith model is recovered (Kabluchko et al., 2009; Padoan et al., 2010)
and the storm shapes are deterministic, taking the form of Gaussian densities.

2·2. Triplewise margins

Let D = {x1, x2, x3} ⊂X , and for simplicity write z1 = z(x1), γ1;2 = γ (x1 − x2), and so on. The cal-
culations in the Appendix show that, provided R1, R2, R3 |=±1, the triplewise exponent measure can be
expressed as

V (z1, z2, z3) = 1

z1
�2

{
η(z1, z2), η(z1, z3); R1

} + 1

z2
�2

{
η(z2, z1), η(z2, z3); R2

}

+ 1

z3
�2

{
η(z3, z1), η(z3, z2); R3

}
, (2)

where �2(· , · ; R) denotes the bivariate normal distribution function with zero mean, unit variance and
correlation matrix R, η(zi , z j ) = (γi; j/2)1/2 − log

(
zi/z j

)
/(2γi; j )

1/2, and

R1 = γ1;2 + γ1;3 − γ2;3
2(γ1;2γ1;3)1/2

, R2 = γ1;2 + γ2;3 − γ1;3
2(γ1;2γ2;3)1/2

, R3 = γ1;3 + γ2;3 − γ1;2
2(γ1;3γ2;3)1/2

.
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Fig. 1. Seven simulated Brown–Resnick processes in one dimension (d = 1),
with variogram 2γ (h) = (‖h‖/28)α and different smoothness parameters: (a)
α = 0·5 (solid), α = 1 (dashed); (b) α = 1·5 (solid), α = 1·9 (dashed); (c) α =
1·95 (solid), α = 1·98 (dashed); (d) α = 2, which corresponds to the isotropic

Smith model. The same random seed was used in all seven cases.

The function �2(· , · ; R) is rapidly computed (Genz, 1992; Genz & Bretz, 2000, 2002), and the triplewise
density f (z1, z2, z3) is easily found by differentiating exp{−V (z1, z2, z3)}. The resulting expressions are
given in the Supplementary Material.

2·3. Higher-order margins

In the Appendix it is shown that when |D| = p and p � d + 1 if α = 2, the exponent measure for the
Brown–Resnick process can be written as

V (z1, . . . , z p) =
p∑

k=1

1

zk
�p−1(ηk; Rk), (3)

where ηk is the (p − 1)-dimensional vector with sth component η(zk, zs) (s = 1, . . . , p; s |= k), �p(· ; R)

denotes the cumulative distribution function of the p-variate normal distribution function with zero mean,
unit variance and correlation matrix R, and Rk is the (p − 1) × (p − 1) correlation matrix whose (s, t)th
entry is (γk;s + γk;t − γs;t )/{2(γk;sγk;t )1/2} (s, t = 1, . . . , p; s, t |= k). We recover the results of § 2·2 when
p = 3 and the results of Genton et al. (2011) when the variogram is 2γ (h) = hT�−1h for some covariance
matrix �. In principle, the full likelihood can then be obtained by differentiating the cumulative distribu-
tion, but the number of terms grows very fast as p increases, so direct likelihood inference seems infeasible
except for small p. Moreover, when α ≈ 2 and p is large, the matrices Rk may be numerically singular,



514 R. HUSER AND A. C. DAVISON

causing computational problems in the evaluation of the likelihood; see the Supplementary Material for
more details.

3. COMPOSITE LIKELIHOODS

Suppose that n independent replicates of a Brown–Resnick process with variogram 2γ (h) depending
on parameters θ are observed at S sites in R

d , and let zi, j denote the value of the i th process at site j . We
consider only the pairwise and triplewise log marginal likelihoods,


2(θ) =
n∑

i=1

∑
j1< j2

log f (zi, j1 , zi, j2; θ), 
3(θ) =
n∑

i=1

∑
j1< j2< j3

log f (zi, j1 , zi, j2 , zi, j3; θ),

and the corresponding maximum likelihood estimators θ̂2 and θ̂3, which are consistent and asymptotically
Gaussian as n increases (Lindsay, 1988; Cox & Reid, 2004; Varin et al., 2011).

Since θ̂3 might be thought to perform better than θ̂2, the question of their relative statistical efficiency
arises. In order to study this for random fields with different smoothness properties, we consider the
isotropic semivariogram γ (h) = (‖h‖/ρ)α (ρ > 0, 0 < α � 2), which corresponds to Brown–Resnick
processes built from fractional Brownian motions. We consider the seven smoothness scenarios α =
0·5, 1, 1·5, 1·9, 1·95, 1·98 and 2, the last being equivalent to the Smith model. For each scenario we
consider three levels of spatial dependence, taking the range parameter to be ρ = 14, 28 and 42, which
broadly correspond to the three cases σ11 = σ22 = 10, 20 and 30 in Genton et al. (2011). The num-
ber of replicates of the process was set to n = 5, 10, 20 and 50. Using the R package SpatialEx-
tremes (Ribatet, 2012), we simulated n independent copies of the Brown–Resnick process with vari-
ogram 2γ (h) at the same set of 20 random sites uniformly generated in [0, 100]2, and computed the
estimates θ̂2 = (ρ̂2, α̂2) and θ̂3 = (ρ̂3, α̂3), basing the latter on the expressions given in the Appendix.
Such simulated datasets and random locations were generated 300 times, and the resulting estimates
were used to compute empirical covariance matrices V2 and V3 for θ̂2 and θ̂3, the empirical marginal
efficiencies REρ = ˆvar(ρ̂3)/ ˆvar(ρ̂2) and REα = ˆvar(α̂3)/ ˆvar(α̂2), and the empirical global efficiency REθ =
{det(V3)/ det(V2)}1/2.

These efficiencies are reported in Table 1. For rough processes, with α = 0·5, 1 or 1·5, maximum pair-
wise likelihood estimation has efficiency of at least 70%, and often closer to 90%, relative to the use of
triples, and the efficiencies depend little on n. For smooth processes, with α = 1·9, 1·95, 1·98 or 2, the
efficiency of pairwise likelihood estimation can be markedly lower, and decreases rapidly as n increases.
In particular, when α = 2, i.e., for the Smith model, observations on the same storm profile at three differ-
ent sites completely determine the profile and thus the underlying variogram. Since this event has nonzero
probability, the triplewise estimator is super-efficient compared to the pairwise one, explaining the dra-
matic drop in relative efficiency observed when α ≈ 2. This behaviour is more striking when the range
parameter ρ is big or when n is large, as in either case it is then more likely that a single storm profile will
be observed at three sites.

Further simulations described in the Supplementary Material show that when α = 0·5, 1 or 1·5,
the efficiencies depend little on the number of sites S, but when α = 2, they decrease rapidly as S
increases. Again, when S is larger, more triples observed on the same storm profile are likely to occur,
so the super-efficiency of the triplewise likelihood estimator when α = 2 has more impact in finite
samples.

Figure 2 shows that the relevance of the limiting Gaussian distribution of θ̂3 is questionable when α = 2:
the triplewise loglikelihood is very asymmetric even for n = 50, whereas it is much more nearly quadratic
when α is smaller. Inference based on profile marginal likelihood might therefore be advisable when α is
thought to be close to 2, even though classical likelihood theory does not apply in this setting. Numerical
issues may be encountered when α ≈ 2, due to the sharp drop in the likelihood as the range parame-
ter exceeds its true value, and in experiments we have found that the computation often breaks down in
this case.



Miscellanea 515

Table 1. Efficiency (%) of maximum pairwise likelihood estimators relative to
maximum triplewise likelihood estimators for n = 5, 10, 20 and 50, based on
300 simulations of the Brown–Resnick process with semivariogram (‖h‖/ρ)α

observed at 20 random sites in [0, 100]2. The numbers separated by slashes are,
respectively, REρ/REα/REθ

n = 5 n = 10
α \ ρ 14 28 42 14 28 42

0·5 83/89/86 89/93/91 87/93/91 94/95/94 90/93/92 93/94/93
1·0 96/92/94 97/84/90 98/88/92 96/89/93 93/90/93 95/85/90
1·5 87/81/83 93/72/79 89/67/74 89/77/82 91/71/81 89/69/78
1·9 79/81/80 72/60/61 74/56/58 84/76/79 76/48/54 66/35/47
1·95 77/80/78 67/54/54 72/54/53 76/75/74 64/46/51 60/38/43
1·98 73/80/77 63/62/58 55/42/46 70/67/66 56/38/39 49/22/29
2·0 74/80/76 61/59/52 53/48/44 64/74/68 42/39/38 26/11/16

n = 20 n = 50
α \ ρ 14 28 42 14 28 42
0·5 94/94/93 92/93/93 92/95/95 92/92/92 91/97/94 89/92/91
1·0 94/89/91 96/87/92 94/86/92 93/84/88 95/85/91 95/90/95
1·5 88/77/82 90/68/78 88/69/76 92/77/84 90/65/76 87/69/77
1·9 79/60/67 74/36/47 66/28/39 75/48/58 69/22/35 62/18/32
1·95 73/60/64 59/24/35 50/15/26 73/44/55 54/11/22 48/8/17
1·98 68/56/60 49/22/29 38/7/16 68/42/51 40/5/12 33/2/7
2·0 62/65/63 20/6/11 16/3/6 38/30/33 6/0/1 1/0/0
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Fig. 2. Triplewise loglikelihoods for the range parameter ρ, shifted to have maximum at zero and scaled by the
factor K = {(S − 1)(S − 2)/2}−1, for two datasets generated from a Brown–Resnick process with variogram
2γ (h) = (‖h‖/ρ)α , where the value of α is fixed: (a) α = 1; (b) α = 2. The true value ρ = 42 is represented by a
solid vertical line; the dashed vertical line, which corresponds to the maximum triplewise likelihood estimator,
coincides with the solid line in (b). The processes were simulated at the same 20 random sites in [0, 100]2, with

n = 50 replicates, using the same random seed.

4. DISCUSSION

This paper provides explicit expressions (2) and (3) for the exponent measure of the Brown–Resnick
process in arbitrary dimensions, on which likelihood inference can be based. Use of triplewise likelihood
rather than pairwise likelihood to fit these models can lead to an efficiency gain of up to 30% for rough
processes, and much more if the process is very smooth. This augments the results of Genton et al. (2011),
which show huge efficiency gains associated with high-order composite likelihoods for the Smith model.
Our more general results confirm those of Genton et al. (2011) for the Smith model, but in the more
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realistic setting where the process is rough, the small improvement afforded by the triplewise approach
is probably not worth the additional computational and coding effort, particularly as issues of numeri-
cal precision may then arise. In principle, it is possible to compute the full likelihood for the Brown–
Resnick process in high dimensions, but the number of terms in the likelihood and the need to com-
pute high-dimensional multivariate normal distribution functions in numerically near-singular cases would
seem to preclude this in practice.

In applications and for some other models, considerations other than statistical efficiency may arise;
for example, the use of triples in a likelihood could be essential for parameter identifiability, as in work to
be reported elsewhere on dimension reduction in extremes.

It would be interesting to know whether the efficiency results presented here generalize to weighted
marginal composite likelihoods (Varin et al., 2011). The best choice of subsets of sites is related to the
separate topic of optimal design for likelihood estimation. Both of these topics are, however, outside the
scope of the present work.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes formulae for the computation of the
trivariate density of the Brown–Resnick process, figures illustrating the performance of maximum pair-
wise and triplewise likelihood estimators, and a table summarizing further simulations that show how the
efficiency of triplewise likelihood estimators changes with the number of locations.

APPENDIX

Triplewise marginal distribution for the Brown–Resnick process

Recall the definition of the Brown–Resnick process in § 2·1. For compactness we write z1 = z(x1),
W1 = W (x1), ε1 = ε(x1), γ1 = γ (x1), γ1;2 = γ (x1 − x2), etc. Since ε(0) = 0 almost surely, it is easy to
see that ci;i = var(εi ) = 2γi and ci; j = cov(εi , ε j ) = γi + γ j − γi; j for i, j = 1, 2, 3. Then W1/z1 > W2/z2

is equivalent to log W1 − log z1 > log W2 − log z2 and hence to ε1 − γ1 − log z1 > ε2 − γ2 − log z2 and, in
turn, to ε1 > ε2 + a, where a = γ1 − γ2 + log(z1/z2). Similarly, W1/z1 > W3/z3 if and only if ε1 > ε3 + b,
where b = γ1 − γ3 + log(z1/z3). Let us write

V (z1, z2, z3) = E

{
max

(
W1

z1
,

W2

z2
,

W3

z3

)}
= I1/z1 + I2/z2 + I3/z3,

where, say,

I1 = E

{
W1 I

(
W1

z1
>

W2

z2
,

W1

z1
>

W3

z3

)}

and so forth. Now, provided that x1 |= 0, with wi = exp(εi − γi ) and using φ to denote Gaussian densities,
possibly multivariate, we have

I1 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp(ε1 − γ1)I

(
w1

z1
>

w2

z2
,
w1

z1
>

w3

z3

)
φ(ε1, ε2, ε3) dε1 dε2 dε3

=
∫ ∞

−∞
exp(ε1 − γ1)φ(ε1)

∫ ε1−a

−∞

∫ ε1−b

−∞
φ(ε2, ε3 | ε1) dε3 dε2 dε1 (A1)

=
∫ ∞

−∞

1

(4πγ1)1/2
exp{−(ε1 − 2γ1)

2/(4γ1)}K (ε1) dε1,
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where K (ε1) denotes the inner double integral in (A1), and thus

I1 =
∫ ∞

−∞

1

(2π)1/2
exp(−ξ 2/2)K

{
(2γ1)

1/2ξ + 2γ1

}
dξ = Eξ

[
K

{
(2γ1)

1/2ξ + 2γ1

}]
,

where ξ ∼ N (0, 1). As the joint distribution of (ε1, ε2, ε3) is trivariate normal with mean zero and covari-
ance matrix C = (ci; j ), the properties of the multivariate normal distribution imply that the joint density
of ε2, ε3 conditional on ε1 is N2(μ2,3|1, �2,3|1), where

μ2,3|1 =
(

c1;2ε1/c1;1
c1;3ε1/c1;1

)
, �2,3|1 =

(
c2;2 − c2

1;2/c1;1 c2;3 − c1;2c1;3/c1;1
c2;3 − c1;2c1;3/c1;1 c3;3 − c2

1;3/c1;1

)
.

Therefore, conditional on ξ , we have

K
{
(2γ1)

1/2ξ + 2γ1

} =
∫ (2γ1)

1/2ξ+2γ1−a

−∞

∫ (2γ1)
1/2ξ+2γ1−b

−∞
φ

{
ε2, ε3 | ε1 = (2γ1)

1/2ξ + 2γ1

}
dε3 dε2

= pr
[
Z1 � (2γ1)

1/2ξ + 2γ1 − a − c1;2{(2γ1)
1/2ξ + 2γ1}/c1;1,

Z2 � (2γ1)
1/2ξ + 2γ1 − b − c1;3{(2γ1)

1/2ξ + 2γ1}/c1;1 | ξ]
,

where Z1 and Z2 form a bivariate normal random variable with mean zero and covariance matrix �2,3|1.
Integrating out over ξ , we get

Eξ

[
K

{
(2γ1)

1/2ξ + 2γ1

}] = pr
{

Z1 + ξ(−γ1 + γ2 − γ1;2)/(2γ1)
1/2 � −a + γ1 − γ2 + γ1;2,

Z2 + ξ(−γ1 + γ3 − γ1;3)/(2γ1)
1/2 � −b + γ1 − γ3 + γ1;3

}
= pr

(
Y1 � −a − γ1 − γ2 + γ1;2, Y2 � −b − γ1 − γ3 + γ1;3

)
= pr

{
Y1 � γ1;2 − log(z1/z2), Y2 � γ1;3 − log(z1/z3)

}
, (A2)

where (Y1, Y2) is a bivariate normal vector with mean zero and covariance matrix

�1 =
(

2γ1;2 γ1;2 + γ1;3 − γ2;3
γ1;2 + γ1;3 − γ2;3 2γ1;3

)
.

The right-hand side of (A2) yields

I1 = �2{η(z1, z2), η(z1, z3); R1}, (A3)

where η(zi , z j ) = (2γi; j )
1/2/2 − log(zi/z j )/(2γi; j )

1/2 for i, j = 1, 2, 3 and R1 = (γ1;2 + γ1;3 − γ2;3)/
{2(γ1;2γ1;3)1/2}. The case where x1 = 0 can be treated separately and turns out to give the same result.
By interchanging the labels, I2 and I3 are derived similarly.

Expression (A3) and its counterparts hold if |Rk | |= 1 (k = 1, 2, 3), which is always true when α < 2.
However, if α = 2 and the sites x1, x2 and x3 form a degenerate simplex in R

d , then Rk = ±1 (k = 1, 2, 3).
If d = 1, the simplex is always degenerate. In dimension d � 2, certain configurations of points may also
be problematic, for example if the sites x1, x2 and x3 lie on a linear subset of R

2. This will lead to problems
when the sites of D form a grid.

Higher-order margins of the Brown–Resnick process

For p > 3, the exponent measure can be written as V (z1, . . . , z p) = I1/z1 + · · · + Ip/z p, where Ik =
E{Wk I (Wk/zk � Ws/zs, s = 1, . . . , p)}. Moreover, Ik = Eξ

[
Kk{(2γk)

1/2ξ + 2γk}
]

with

ξ ∼ N (0, 1), Kk(x) =
∫ x−a−k

−∞
φ(ε−k | εk = x) dε−k (k = 1, . . . , p),
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where ε−k represents the (p − 1)-dimensional vector (ε1, . . . , εp) with the kth component removed
and a−k is the (p − 1)-dimensional vector whose sth component equals γk − γs + log(zk/zs)

(s = 1, . . . , p; s |= k). The computations are the same as those above, and equation (A2) becomes

Ik = pr{Ys � γk;s − log(zk/zs); s = 1, . . . , p, s |= k},
where the (p − 1)-dimensional vector of the Ys (s = 1, . . . , p; s |= k) has a joint Gaussian distribution with
E(Ys) = 0, var(Ys) = 2γk;s and cov(Ys, Yt ) = γk;s + γk;t − γs;t . From this we obtain Ik = �p−1(ηk; Rk),
where ηk and Rk are as defined in § 2·3. Thus V (z1, . . . , z p) = ∑p

k=1 z−1
k �p−1(ηk; Rk).

This result holds if the correlation matrices Rk are invertible, which is always true when α < 2. However,
in the special case where α = 2, i.e., the Smith model, if the sites x1, . . . , x p form a degenerate simplex
in R

d , then the determinants of the correlation matrices equal zero and the result fails. If p > d + 1, the
simplex is always degenerate (Genton et al., 2011). Moreover, if α ≈ 2 so that the Brown–Resnick process
is quite smooth, and especially for large p, the correlation matrices could be numerically singular.
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