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Abstract. We introduce and study the notion of representation up to homotopy of a
Lie algebroid, paying special attention to examples. We use representations up to homo-
topy to define the adjoint representation of a Lie algebroid and show that the resulting
cohomology controls the deformations of the structure. The Weil algebra of a Lie algebroid
is defined and shown to coincide with Kalkman’s BRST model for equivariant cohomology
in the case of group actions. The relation of this algebra with the integration of Poisson and
Dirac structures is explained in [3].

1. Introduction

Lie algebroids are infinite dimensional Lie algebras which can be thought of as
generalized tangent bundles associated to various geometric situations. Apart from Lie
algebras and tangent bundles, examples of Lie algebroids come from foliation theory,
equivariant geometry, Poisson geometry, riemannian foliations, quantization, etc. Lie
algebroids are the infinitesimal counterparts of Lie groupoids exactly in the same way in
which Lie algebras are related to Lie groups. Generalizing representations of Lie algebras
as well as vector bundles endowed with a flat connection, a representation of a Lie alge-
broid on a vector bundle is an action by derivations on the space of sections.

The aim of this paper is to introduce and study a more general notion of represen-
tation: ‘‘representations up to homotopy’’. Our approach is based on Quillen’s super-
connections [29] and fits into the general theory of structures up to homotopy. The idea
is to represent Lie algebroids in cochain complexes of vector bundles, rather than in vector
bundles. In a representation up to homotopy the complex is given an action of the Lie
algebroid and homotopy operators ok for k f 2. The action is required to be flat only up
to homotopy, that is, the curvature of the action may be non-zero, but it is homotopic to
zero via the homotopy o2; in turn, o2 is required to satisfy the appropriate coherence
condition (Bianchi identity) only up to a homotopy given by o3, and there are higher order
coherence conditions. Quillen’s formalism is used to book-keep the equations involved.
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The advantage of considering these representations is that they are flexible and
general enough to contain interesting examples which are the correct generalization of the
corresponding notions for Lie algebras. In the setting of representations up to homotopy
one can give a good definition of the adjoint representation of a Lie algebroid. We will
show that, as in the case of Lie algebras, the cohomology associated to the adjoint repre-
sentation of a Lie algebroid controls the deformations of the structure (it coincides with the
deformation cohomology of [14]). There are other seemingly ad-hoc equations that arise
from various geometric problems and can now be recognized as cocycle equations for the
cohomology associated to a representation up to homotopy. This is explained in Prop-
osition 4.6 for the k-di¤erentials of [20].

Our original motivation for considering representations up to homotopy is the study
of the cohomology of classifying spaces of Lie groupoids. We will introduce the Weil
algebra WðAÞ associated to a Lie algebroid A. When the Lie algebroid comes from a Lie
groupoid G, the Weil algebra serves as a model for the De-Rham algebra of the total space
of the universal principal G-bundle EG ! BG. As we shall explain, this generalizes not
only the usual Weil algebra of a Lie algebra but also Kalkman’s BRST algebra for equi-
variant cohomology. Further applications of the Weil algebra are given in [3], while appli-
cations of the notion of representations up to homotopy to the cohomology of classifying
spaces—Bott’s spectral sequence—are explained in [2].

A few words about the relationship of this paper with other work that we found in the
literature. Representations up to homotopy can also be described in the language of di¤er-
ential graded modules over di¤erential graded algebras [19]. We emphasize however that
we insist on working with DG-modules which are sections of vector bundles. Our Weil
algebra is isomorphic to the one given in Mehta’s thesis [28], where, using the language of
supermanifolds, it appears as

�
Cy

�
½�1�Tð½�1�AÞ

�
;LdA

þ d
�
. Similar descriptions were

communicated to us by D. Roytenberg and P. Severa (unpublished). Some of the equations
that appear in the definition of the adjoint representation were considered by Blaom in [4].
Representations up to homotopy provide examples of the Q-bundles studied by Kotov and
Strobl in [25].

This paper is organized as follows. Section 2 begins by collecting the definitions of Lie
algebroids, representations and the associated cohomology theories. Then, the connections
and curvatures underlying the adjoint representation are described.

In Section 3, we give the definition of representations up to homotopy, introduce
several examples and explain the relationship with extensions (Proposition 3.9). We define
the adjoint representation and point out that the associated cohomology is isomorphic
to the deformation cohomology of [14], Theorem 3.11. We also explain the relation be-
tween the adjoint representation and the first jet algebroid (Proposition 3.12). In the case
of the tangent bundle we describe the associated parallel transport (Proposition 3.13).

In Section 4, we discuss the main operations on the category of representations up to
homotopy and then we have a closer look at the resulting derived category. In particular,
we prove that our notion has the usual properties that one expects for ‘‘structures up to
homotopy’’ (Proposition 4.12 and Theorem 4.13). Various examples are presented.

In Section 5, we introduce the Weil algebra of a Lie algebroid, generalizing the stan-
dard Weil algebra of a Lie algebra. We show that, when applying this construction to the
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Lie algebroid associated to a Lie group action on a manifold, one obtains Kalkman’s
BRST algebra for equivariant cohomology (Proposition 5.5).

In order to fix our conventions, we recall some basic properties of graded algebra and
complexes of vector bundles in the appendix.

Acknowledgments. We would like to thank the referee for carefully reading a previ-
ous version of this manuscript and suggesting many improvements. We would also like to
thank Dmitry Roytenberg for several discussions we had and James Stashe¤ for valuable
comments.

2. Preliminaries

2.1. Representations and cohomology. Here we review some standard facts about
Lie algebroids, representations and cohomology. We also make a few general comments
regarding the notion of adjoint representation for Lie algebroids. Throughout this paper,
A denotes a Lie algebroid over a fixed base manifold M. As a general reference for alge-
broids, we use [26].

Definition 2.1. A Lie algebroid over M is a vector bundle p : A ! M together with
a bundle map r : A ! TM, called the anchor map, and a Lie bracket on the space GðAÞ of
sections of A satisfying the Leibniz identity:

½a; f b� ¼ f ½a; b� þ rðaÞð f Þb;

for every a; b A GðAÞ and f A CyðMÞ.

Given an algebroid A, there is an associated De-Rham complex WðAÞ ¼ GðLA�Þ,
with the De-Rham operator given by the Koszul formula

dAoða1; . . . ; akþ1Þ ¼
P
i< j

ð�1Þ iþjoð½ai; aj�; . . . ; âiai; . . . ; âjaj; . . . ; akþ1Þ

þ
P

i

ð�1Þ iþ1
LrðaiÞoða1; . . . ; âiai; . . . ; akþ1Þ;

where LX ð f Þ ¼ Xð f Þ is the Lie derivative along vector fields. The operator dA is a di¤eren-
tial (d 2

A ¼ 0) and satisfies the derivation rule

dAðohÞ ¼ dAðoÞhþ ð�1ÞpodAðhÞ;

for all o A WpðAÞ, h A WqðAÞ.

Definition 2.2. Let A be a Lie algebroid over M. An A-connection on a vector
bundle E over M is an R-bilinear map ‘ : GðAÞ � GðEÞ ! GðEÞ, ða;SÞ 7! ‘aðSÞ such that:

‘f aðsÞ ¼ f ‘aðsÞ; ‘að fsÞ ¼ f ‘aðsÞ þ LrðaÞð f ÞðsÞ

for all f A CyðMÞ, s A GðEÞ and a A GðAÞ. The A-curvature of ‘ is the tensor given by

R‘ða; bÞðsÞ :¼ ‘a‘bðsÞ � ‘b‘aðsÞ � ‘½a;b�ðsÞ
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for a; b A GðAÞ, s A GðEÞ. The A-connection ‘ is called flat if R‘ ¼ 0. A representation of A

is a vector bundle E together with a flat A-connection ‘ on E.

Given any A-connection ‘ on E, the space of E-valued A-di¤erential forms,
WðA;EÞ ¼ GðLA� nEÞ has an induced operator d‘ given by the Koszul formula

d‘oða1; . . . ; akþ1Þ ¼
P
i< j

ð�1Þ iþjoð½ai; aj�; . . . ; âiai; . . . ; âjaj; . . . ; akþ1Þ

þ
P

i

ð�1Þ iþ1‘ai
oða1; . . . ; âiai; . . . ; akþ1Þ:

In general, d‘ satisfies the derivation rule

d‘ðohÞ ¼ dAðoÞhþ ð�1Þpod‘ðhÞ;

and squares to zero if and only if ‘ is flat.

Proposition 2.3. Given a Lie algebroid A and a vector bundle E over M, there is a 1-1
correspondence between A-connections ‘ on E and degree þ1 operators d‘ on WðA;EÞ which

satisfy the derivation rule. Moreover, ðE;‘Þ is a representation if and only if d 2
‘ ¼ 0.

In a more algebraic language, every Lie algebroid A has an associated DG algebra�
WðAÞ; dA

�
, and every representation E of A gives a DG module over this DG algebra.

Definition 2.4. Given a representation E ¼ ðE;‘Þ of A, the cohomology of A with
coe‰cients in E, denoted H �ðA;EÞ, is the cohomology of the complex

�
WðA;EÞ; d‘

�
.

When E is the trivial representation (the trivial line bundle with ‘a ¼ LrðaÞ), we write
H �ðAÞ.

Example 2.5. In the extreme case where A is TM, representations are flat vector
bundles over M, while the associated cohomology is the usual cohomology of M with local
coe‰cient given by the flat sections of the vector bundle. At the other extreme, when A ¼ g

is a Lie algebra, one recovers the standard notion of representation of Lie algebras, and
Lie algebra cohomology. For a foliation F on M, viewed as an involutive sub-bundle
of TM, the Lie algebroid cohomology becomes the well-known foliated cohomology (see
e.g. [23], [1]). Central to foliation theory is the Bott connection [5] on the normal bundle
n ¼ TM=F,

‘V ðX modFÞ ¼ ½V ;X � modF; V A GðFÞ;

which is the linearized version of the notion of holonomy. In our language, n is a represen-
tation of F.

More generally, for any regular Lie algebroid A (regular in the sense that r : A ! TM

has constant rank), A has two canonical representations. They are the kernel of r, denoted
gðAÞ, with the A-connection

‘adj
a ðbÞ ¼ ½a; b�;
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and the normal bundle nðAÞ ¼ TM=rðAÞ of the foliation induced by A, with the connection

‘adj
a ðXÞ ¼ ½rðaÞ;X �;

where X ¼ X mod rðAÞ.

2.2. Deformation cohomology. The deformation cohomology of A arises in the
study of the deformations of the Lie algebroid structure [14]. This cohomology cannot, in
general, be realized as the cohomology associated to a representation. The deformation
complex

�
C �

defðAÞ; d
�

is defined as follows. In degree k, it consists of pairs ðc; scÞ where c

is an antisymmetric, R-multilinear map

c : GðAÞ � � � � � GðAÞ ! GðAÞ;8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

k-times

and sc is an antisymmetric, CyðMÞ-multilinear map

sc : GðAÞ � � � � � GðAÞ ! GðTMÞ;8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

ðk�1Þ-times

which is the symbol of c in the sense that:

cða1; . . . ; f akÞ ¼ fcða1; . . . ; akÞ þ Lscða1;...;ak�1Þð f Þak;

for any function f A CyðMÞ and sections ai A GðAÞ. The di¤erential

d : C k
def ðAÞ ! C kþ1

def ðAÞ

associates to ðc; scÞ the pair
�
dðcÞ; sdðcÞ

�
where:

dðcÞða1; . . . ; akþ1Þ ¼
P
i< j

ð�1Þ iþj
cð½ai; aj�; a1; . . . ; baiai; . . . ; bajaj; . . . ; akþ1Þ

þ
Pkþ1

i¼1

ð�1Þ iþ1½ai; cða1; . . . ; baiai; . . . ; akþ1Þ�;

sdðcÞ ¼ dðscÞ þ ð�1Þkþ1r � c;

and

dðscÞða1; . . . ; akÞ ¼
P
i< j

ð�1Þ iþjscð½ai; aj�; a1; . . . ; baiai; . . . ; bajaj; . . . ; akÞ

þ
Pk

i¼1

ð�1Þ iþ1½rðaiÞ; cða1; . . . ; baiai; . . . ; akÞ�:

Definition 2.6. The deformation cohomology of the Lie algebroid A, denoted
H �

defðAÞ, is defined as the cohomology of the cochain complex
�
C �

defðAÞ; d
�
.
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Example 2.7. When A ¼ TM, the deformation cohomology is trivial (cf. [14],
Corollary 2). When A ¼ g is a Lie algebra, the deformation cohomology is isomorphic to
H �ðg; gÞ, the cohomology with coe‰cients in the adjoint representation. This is related to
the fact that deformations of the Lie algebra g are controlled by H 2ðg; gÞ.

In the case of a foliation F, H �
def ðFÞ is isomorphic to H��1ðF; nÞ, the cohomology

with coe‰cients in the Bott representation ([14], Proposition 4). This was already explained
in the work of Heitsch [18] on deformations of foliations where he shows that such defor-
mations are controlled by H 1ðF; nÞ. Due to the analogy with Lie algebras, it seems natural
to declare n½�1�—the graded vector bundle which is n concentrated in degree one—as the
adjoint representation of F.

Remark 2.8. The notion of adjoint representation will be properly defined in
Subsection 3.2. For now, we would like to explain why it has to be defined in the setting
of representations up to homotopy. With the examples of Lie algebras and foliations
in mind, it is tempting to consider the natural representations of A (the gðAÞ and nðAÞ of
Example 2.5) and to define the adjoint representation of A as

ad ¼ gðAÞl nðAÞ½�1�;ð1Þ

a (graded) representation with gðAÞ in degree zero and nðAÞ in degree one. Even under the
assumption that A is regular (so that the bundles involved are smooth), the behavior of
the deformation cohomology shows that one should be more careful. Indeed, based on
the examples of Lie algebras, one expects the cohomology associated to the adjoint repre-
sentation to coincide with the deformation cohomology. While there is a long exact
sequence ([14], Theorem 3)

� � � ! H n
�
A; gðAÞ

�
! H n

defðAÞ ! H n�1
�
A; nðAÞ

�
!d H nþ1

�
A; gðAÞ

�
! � � � ;ð2Þ

it is not di‰cult to find examples for which the connecting map d is non-zero. As we shall
see, definition (1) can be made correct provided we endow the right-hand side with the
structure of a representation up to homotopy.

The situation is worse in the non-regular case, when the graded direct sum
gðAÞl nðAÞ½1� is non-longer smooth. One can overcome this by interpreting the direct sum
as the cohomology of a cochain complex of vector bundles, concentrated in two degrees:

A !r TM:ð3Þ

We will call this the adjoint complex of A. The idea of using this complex in order to make
sense of the adjoint representation appeared already in [15], and is also present in [12].
However, the presence of the extra-structure of a representation up to homotopy had
been overlooked.

2.3. Basic connections and the basic curvature. Keeping in mind our discussion
on what the adjoint representation should be, we want to extend the canonical flat
A-connections ‘adj (from gðAÞ and nðAÞ) to A and TM or, even better, to the adjoint com-
plex (3). This construction already appeared in the theory of secondary characteristic
classes [12] and was also used in [11].
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Definition 2.9. Given a Lie algebroid A over M and a connection ‘ on the vector
bundle A, we define:

1. The basic A-connection induced by ‘ on A:

‘bas
a ðbÞ ¼ ‘rðbÞðaÞ þ ½a; b�:

2. The basic A-connection induced by ‘ on TM:

‘bas
a ðXÞ ¼ r

�
‘X ðaÞ

�
þ ½rðaÞ;X �:

Note that ‘bas � r ¼ r � ‘bas, i.e. ‘bas is an A-connection on the adjoint complex (3).
On the other hand, the existence of a connection ‘ such that ‘bas is flat is a very restrictive
condition on A. It turns out that the curvature of ‘bas hides behind a more interesting
tensor—and that is what we will call the basic curvature of ‘.

Definition 2.10. Given a Lie algebroid A over M and a connection ‘ on the vector
bundle A, we define the basic curvature of ‘, as the tensor

Rbas
‘ A W2

�
A;HomðTM;AÞ

�
given by

Rbas
‘ ða; bÞðXÞ :¼ ‘X ð½a; b�Þ � ½‘X ðaÞ; b� � ½a;‘X ðbÞ� � ‘‘bas

b X ðaÞ þ ‘‘bas
a X ðbÞ;

where a, b are sections of A and X is a vector field on M.

This tensor appears when one looks at the curvatures of the A-connections ‘bas. One
may think of Rbas

‘ as the expression ‘X ð½a; b�Þ � ½‘X ðaÞ; b� � ½a;‘X ðbÞ� which measures the
derivation property of ‘ with respect to ½� ; ��, corrected so that it becomes CyðMÞ-linear on
all arguments.

Proposition 2.11. For any connection ‘ on A, one has:

1. The curvature of the A-connection ‘bas on A equals �r � Rbas
‘ , while the curvature of

the A-connection ‘bas on TM equals �Rbas
‘ � r.

2. Rbas
‘ is closed with respect to ‘bas i.e. d‘basðRbas

‘ Þ ¼ 0.

Proof. For a; b; g A GðAÞ,

Rbas
‘ ða; bÞrðgÞ ¼ ‘rðgÞð½a; b�Þ � ½‘rðgÞðaÞ; b� � ½a;‘rðgÞðbÞ� � ‘‘brðgÞðaÞ þ ‘‘arðgÞðbÞ

¼ ‘½a;b�ðgÞ � ‘a

�
‘bðgÞ

�
þ ‘b

�
‘aðgÞ

�
¼ �R‘basða; bÞðgÞ:
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On the other hand, if we evaluate at a vector field X the computation becomes:

r
�
Rbas

‘ ða; bÞX
�
¼ r

�
‘X ð½a; b�Þ � ½‘X ðaÞ; b� � ½a;‘X ðbÞ� � ‘‘bX ðaÞ þ ‘‘aX ðbÞ

�
¼ r

�
‘X ð½a; b�Þ

�
þ ½rð½a; b�Þ;X �

þ ½½rðbÞ;X �; rðaÞ� � r
�
½a;‘X ðbÞ�

�
� r

�
‘‘bX ðaÞ

�
þ ½rðbÞ; ½rðaÞ;X �� þ r

�
‘‘aX ðbÞ

�
� r

�
½‘X ðaÞ; b�

�
¼ ‘½a;b�ðXÞ � ‘a

�
‘bðXÞ

�
þ ‘b

�
‘aðXÞ

�
¼ �R‘basða; bÞðXÞ:

The proof of the second part is a similar computation that we will omit. r

The following results indicate the geometric meaning of the basic curvature Rbas
‘ .

The first one refers to the characterization of Lie algebroids which arise from Lie algebra
actions.

Proposition 2.12. A Lie algebroid A over a simply connected manifold M is the alge-

broid associated to a Lie algebra action on M if and only if it admits a flat connection ‘
whose induced basic curvature Rbas

‘ vanishes.

Proof. If A is associated to a Lie algebra action, one chooses ‘ to be the obvious flat
connection. Assume now that there is a connection ‘ as above. Since M is simply con-
nected, the bundle is trivial. Choose a frame of flat sections a1; . . . ; ar of A, and write

½ai; aj� ¼
Pr

k¼1

ck
ijak

with ck
ij A CyðMÞ. Since

Rbas
‘ ðai; ajÞðX Þ ¼

Pr

k¼1

‘X ðck
ijakÞ ¼

Pr

k¼1

Xðck
ij Þak;

we deduce that the ck
ij ’s are constant. The Jacobi identity for the Lie bracket on GðAÞ im-

plies that ck
ij ’s are the structure constants of a Lie algebra, call it g. The anchor map defines

an action of g on M, and the trivialization of A induces the desired isomorphism. r

In particular consider A ¼ TM for some compact simply connected manifold M and
a flat connection ‘ on A. The condition that the basic curvature vanishes means precisely
that the conjugated connection ‘ defined by

‘X ðY Þ ¼ ½X ;Y � þ ‘Y ðXÞ

is also flat. This implies that M is a Lie group.
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The next result refers to the relation between bundles of Lie algebras (viewed as Lie
algebroids with zero anchor map) and Lie algebra bundles, for which the fiber Lie algebra
is fixed in the local trivializations.

Proposition 2.13. Let A be a bundle of Lie algebras over M. Then A is a Lie algebra

bundle if and only if it admits a connection ‘ whose basic curvature vanishes.

Proof. If the bundle of Lie algebras is locally trivial then locally one can choose con-
nections with zero A-curvature. Then one can use partitions of unity to construct a global
connection with the same property. For the converse, assume there exists a ‘ with RA

‘ ¼ 0,
and we need to prove that the Lie algebra structure on the fiber is locally trivial. We may
assume that A ¼ Rn � Rr as a vector bundle. The vanishing of the basic curvature means
that ‘ acts as derivations of the Lie algebra fibers:

‘X ð½a; b�Þ ¼ ½‘X ðaÞ; b� þ ½a;‘X ðbÞ�:

Since derivations are infinitesimal automorphisms, we deduce that the parallel transports
induced by ‘ are Lie algebra isomorphisms, providing the necessary Lie algebra bundle
trivialization. r

3. Representations up to homotopy

3.1. Representations up to homotopy and first examples. In this section, we introduce
the notion of representation up to homotopy and the adjoint representation of Lie alge-
broids. As before, A is a Lie algebroid over M. We start with the shortest, but less intuitive
description of representations up to homotopy.

Definition 3.1. A representation up to homotopy of A consists of a graded vector
bundle E over M and an operator, called the structure operator,

D : WðA;EÞ ! WðA;EÞ

which increases the total degree by one and satisfies D2 ¼ 0 and the graded derivation rule:

DðohÞ ¼ dAðoÞhþ ð�1ÞkoDðhÞ

for all o A WkðAÞ, h A WðA;EÞ. The cohomology of the resulting complex is denoted by
H �ðA;EÞ.

Intuitively, a representation up to homotopy of A is a complex endowed with an
A-connection which is ‘‘flat up to homotopy’’. We will make this precise in what follows.

Proposition 3.2. There is a 1-1 correspondence between representations up to homo-

topy ðE;DÞ of A and graded vector bundles E over M endowed with:

1. A degree 1 operator q on E making ðE; qÞ a complex.

2. An A-connection ‘ on ðE; qÞ.
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3. An EndðEÞ-valued 2-form o2 of total degree 1, i.e.

o2 A W2
�
A;End�1ðEÞ

�
satisfying

qðo½2�Þ þ R‘ ¼ 0;

where R‘ is the curvature of ‘.

4. For each i > 2, an EndðEÞ-valued i-form oi of total degree 1, i.e.

oi A W i
�
A;End1�iðEÞ

�
satisfying

qðoiÞ þ d‘ðoi�1Þ þ o2 � oi�2 þ o3 � oi�3 þ � � � þ oi�2 � o2 ¼ 0:

The correspondence is characterized by

DðhÞ ¼ qðhÞ þ d‘ðhÞ þ o25hþ o35hþ � � � :

We also write

D ¼ qþ ‘þ o2 þ o3 þ � � � :ð4Þ

Proof. Due to the derivation rule and the fact that WðA;EÞ is generated as an WðAÞ-
module by GðEÞ, the operator D will be uniquely determined by what it does on GðEÞ. It
will send each GðE kÞ into the sum

GðE kþ1ÞlW1ðA;E kÞlW2ðA;E k�1Þl � � � ;

hence it will also send each WpðA;E kÞ into the sum

WpðA;E kþ1ÞlWpþ1ðA;E kÞlWpþ2ðA;E k�1Þl � � � ;

and we denote by D0;D1; . . . the components of D. From the derivation rule for D, we
deduce that each Di for i3 1 is a (graded) WðAÞ-linear map and, by Lemma A.1, it is the
wedge product with an element in W

�
A;EndðEÞ

�
. On the other hand, D1 satisfies the

derivation rule on each of the vector bundles E k and, by Proposition 2.3, it comes from
A-connections on these bundles. The equations in the statement correspond to D2 ¼ 0. r

Next, one can define the notion of morphism between representations up to homo-
topy.

Definition 3.3. A morphism F : E ! F between two representations up to homo-
topy of A is a degree zero linear map

F : WðA;EÞ ! WðA;FÞ

which is WðAÞ-linear and commutes with the structure di¤erentials DE and DF .
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We denote by RepyðAÞ the resulting category, and by RepyðAÞ the set of isomor-
phism classes of representations up to homotopy of A.

By the same arguments as above, one gets the following description of morphisms in
RepyðAÞ. A morphism is necessarily of type

F ¼ F0 þF1 þF2 þ � � � ;

where Fi is a HomðE;FÞ-valued i-form on A of total degree zero:

Fi A W i
�
A;Hom�iðE;FÞ

�
satisfying

qðFnÞ þ d‘ðFn�1Þ þ
P

iþj¼n; if2

½oi;Fj� ¼ 0:

Note that, in particular, F0 must be a map of complexes.

Example 3.4 (Usual representations). Of course, any representation E of A can be
seen as a representation up to homotopy concentrated in degree zero. More generally, for
any integer k, one can form the representation up to homotopy E½�k�, which is E concen-
trated in degree k.

Example 3.5 (Di¤erential forms). Any closed form o A WnðAÞ induces a representa-
tion up to homotopy on the complex which is the trivial line bundle in degrees 0 and
n � 1, and zero otherwise. The structure operator is ‘flat þ o where ‘flat is the flat con-
nection on the trivial line bundle. If o and o 0 are cohomologous, then the resulting rep-
resentations up to homotopy are isomorphic with isomorphism defined by F0 ¼ Id,
Fn�1 ¼ y A Wn�1ðAÞ chosen so that dðyÞ ¼ o� o 0. In conclusion, there is a well-defined
map H �ðAÞ ! RepyðAÞ.

Example 3.6 (Conjugation). For any representation up to homotopy E with struc-
ture operator D given by (4), one can form a new representation up to homotopy E, which
has the same underlying graded vector bundle as E, but with the structure operator

D ¼ �qþ ‘� o2 þ o3 � o4 þ � � � :

In general, E and E are isomorphic, with isomorphism F ¼ F0 equal to ð�1Þn Id on E n.

Remark 3.7. Let us now be more explicit on the building blocks of representations
up to homotopy which are concentrated in two consecutive degrees, say 0 and 1. From
Proposition 3.2, we see that such a representation consists of:

1. Two vector bundles E and F , and a vector bundle map f : E ! F .

2. A-connections on E and F , both denoted ‘, compatible with q (‘aq ¼ q‘a).
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3. A 2-form K A W2
�
A;HomðF ;EÞ

�
such that

R‘E ¼ q � K; R‘F ¼ K � q;

and such that d‘ðKÞ ¼ 0.

Example 3.8 (The double of a vector bundle). Let E be a vector bundle over M. For

any A-connection ‘ on E with curvature R‘ A W2
�
A;EndðEÞ

�
, the complex E !Id

E con-
centrated in degrees 0 and 1, together with the structure operator

D‘ :¼ Id þ qþ R‘

defines a representation up to homotopy of A denoted DE;‘. The resulting element

DE A RepyðAÞ

does not depend on the choice of the connection. To see this, remark that if ‘ 0 is another
A-connection, then there is an isomorphism

F : ðDE ;D‘Þ ! ðDE ;D‘ 0 Þ

with two components:

F0 ¼ Id; F1ðaÞ ¼ ‘a � ‘ 0
a:

We will now explain how representations up to homotopy of length 1 are related to
extensions.

Proposition 3.9. For any representation up to homotopy of length one with vector

bundles E in degree 0 and F in degree 1 and structure operator D ¼ qþ ‘þ K , there is an

extension of Lie algebroids:

gq ! ~AA ! A;

where:

1. gq ¼ HomðF ;EÞ, is a bundle of Lie algebras with bracket ½S;T �q ¼ SqT � TqS.

2. ~AA ¼ gq lA with anchor ðS; aÞ 7! rðaÞ and bracket

½ðS; aÞ; ðT ; bÞ� ¼
�
½S;T � þ ‘aðTÞ � ‘bðSÞ þ Kða; bÞ; ½a; b�

�
:

Proof. After a careful computation, we find that the Jacobi identity for the bracket
of ~AA breaks into the following equations (cf. [26], Theorem 7.3.7):

‘að½S;T �Þ ¼ ½‘aðSÞ;T � þ ½S;‘aðTÞ�;ð5Þ

‘½b; g�ðTÞ � ‘b‘gðTÞ þ ‘g‘bðTÞ ¼ ½T ;Kðb; gÞ�;ð6Þ

Kð½a; b�; gÞ þ Kð½b; g�; aÞ þ Kð½g; a�; bÞð7Þ

¼ ‘b

�
Kðg; aÞ

�
þ ‘a

�
Kðb; gÞ

�
þ ‘g

�
Kða; bÞ

�
;
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for a; b; g A GðAÞ and S;T A GðgqÞ. These equations are not equivalent to, but they follow
from the equations satisfied by q, ‘ and K. The first equation follows from the compatibil-
ity of q and ‘, the second equation follows from the two equations satisfied by the curva-
ture, while the last equation is precisely d‘ðKÞ ¼ 0. r

Example 3.10. When A ¼ TM and E is a vector bundle, the extension associated to
the double of E (Example 3.8) is isomorphic to the ‘‘Atiyah extension’’ induced by E:

EndðEÞ ! glðEÞ ! TM:

This extension is discussed e.g. in [24], Section 1 (where glðEÞ is denoted by DðEÞ). Recall
that glðEÞ is the vector bundle over M whose sections are the derivations of E, i.e. pairs
ðD;XÞ consisting of a linear map D : GðEÞ ! GðEÞ and a vector field X on M, such that
Dð fsÞ ¼ fDðsÞ þ LX ð f Þs for all f A CyðMÞ, s A GðEÞ. The Lie bracket of glðEÞ is the
commutator

½ðD;XÞ; ðD 0;X 0Þ� ¼ ðD � D 0 � D 0 � D; ½X ;X 0�Þ;

while the anchor sends ðD;XÞ to X . A connection on E is the same thing as a splitting of
the Atiyah extension, and it induces an identification

glðEÞGEndðEÞlTM:

Computing the bracket (or consulting [24]) we find that, after this identification, the Atiyah
extension becomes the extension associated to the double DE .

3.2. The adjoint representation. It is now clear that the properties of the basic con-
nections and the basic curvature given in Proposition 2.11 give the adjoint complex the
structure of a representation up to homotopy. Choosing a connection on the vector bundle
A, the adjoint complex

A !r TM;

together with the structure operator

D‘ :¼ rþ ‘bas þ Rbas
‘

becomes a representation up to homotopy of A, denoted ad‘. The isomorphism class of this
representation is called the adjoint representation of A and is denoted

ad A RepyðAÞ:

Theorem 3.11. Given two connections on A, the corresponding adjoint representations

are naturally isomorphic. Also, there is an isomorphism:

H �ðA; adÞGH �
defðAÞ:

Proof. Let ‘ and ‘ 0 be two connections on A. Then, F ¼ F0 þF1 where

F0 ¼ Id; F1ðaÞðXÞ ¼ ‘X ðaÞ � ‘ 0
X ðaÞ;
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defines an isomorphism between the corresponding adjoint representations. For the last
part, note that there is an exact sequence

0 ! WkðA;AÞ ! C k
defðAÞ !�s

Wk�1ðA;TMÞ ! 0;

where s is the symbol map (see Subsection 2.2). A connection ‘ on A induces a splitting of
this sequence, and then an isomorphism

C : C k
defðAÞ ! WkðA;AÞlWk�1ðA;TMÞ ¼ WðA; adÞk;

D 7! ðcD;�sDÞ;

where sD is the symbol of D and cD is given by

cDða1; . . . ; akÞ ¼ Dða1; . . . ; akÞ þ ð�1Þk�1Pk

i¼1

ð�1Þ i‘sðDÞða1;...;bai ;...;akÞðaiÞ:

This map is an isomorphism of WðAÞ-modules. We need to prove that the operators d and
D‘ coincide. Since these two operators are derivations with respect to the module struc-
tures, it is enough to prove that they coincide in low degrees, and this can be checked by
inspection. r

We will now explain the relationship between the adjoint representation and the first
jet algebroid. We denote by J 1ðAÞ the first jet bundle of A and by p : J 1ðAÞ ! A the canon-
ical projection. For a section a of A we denote by j1ðaÞ A GðJ 1AÞ its first jet. It is well
known (for a proof, see e.g. [12]) that J 1ðAÞ admits a unique Lie algebroid structure such
that for any section a of A,

rð j1aÞ ¼ rðaÞ;ð8Þ

and for sections a; b A GðAÞ:

½ j1a; j1b� ¼ j1ð½a; b�Þ:ð9Þ

The jet Lie algebroid fits into a short exact sequence of Lie algebroids

HomðTM;AÞ !i
J 1ðAÞ !p A;ð10Þ

where the inclusion i is determined by the condition

HomðTM;AÞ C df n a 7! fj1ðaÞ � j1ð f aÞ;

for all f A CyðMÞ, a A GðAÞ. On the other hand, Proposition 3.9 associates to the adjoint
representation an extension of Lie algebroids.

Proposition 3.12. The extension associated to the adjoint representation is isomorphic

to the first-jet extension HomðTM;AÞ !i
J 1ðAÞ !p A.
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Proof. Note that, taking global sections in (10), we obtain a split short exact
sequence with splitting j1. With respect to the resulting decomposition, the Lie bracket on
GðJ 1AÞ is given by (9), the Lie bracket on HomðTM;AÞ:

½T ;S� ¼ T � r � S � S � r � T ;

and the Lie bracket ½ j1ðaÞ;T � A HomðTM;AÞ between j1ðaÞ and T A HomðTM;AÞ:

½ j1ðaÞ;T �ðX Þ ¼ T
�
½X ; rðaÞ�

�
þ ½a;TðXÞ�:

The last two formulas follow from the Leibniz identity for the bracket on G
�
J 1ðAÞ

�
and

writing T and S as a sum of expressions of type df n a ¼ fj1ðaÞ � j1ð f aÞ.

Next, giving a connection ‘ on A is equivalent to choosing a vector bundle splitting
j‘ : A ! J 1ðAÞ of p. The relation between the two is given by

j‘ðaÞ ¼ j1ðaÞ þ ‘:ðaÞ;

for all a A GðAÞ. Here ‘:ðaÞ A HomðTM;AÞ is given by X 7! ‘X ðaÞ. Using this and the
previous formulas, a careful but straightforward computation shows that

½ j‘ðaÞ;T � ¼ ‘bas
a � T � T � ‘bas

a ¼ ‘bas
a ðTÞ;

j‘ð½a; b�Þ � ½ j‘ðaÞ; j‘ðbÞ� ¼ Rbas
‘ ða; bÞ;

for all a; b A GðAÞ, T A G
�
HomðTM;AÞ

�
. This shows that the vector bundle isomorphism

J 1ðAÞGAlHomðTM;AÞ induced by the splitting j‘ identifies the Lie algebroid bracket
of J 1ðAÞ with the extension bracket of Proposition 3.9 applied to ad‘. r

We note that there doesn’t seem to be any construction which associates to a Lie
algebroid extension of A a representation up to homotopy so that, applying it to J 1ðAÞ
one recovers the adjoint representation. In other words, J 1ðAÞ with its structure of exten-
sion of A does not contain all the information about the structure of the adjoint represen-
tation.

3.3. The case of tangent bundles. The representations up to homotopy of TM are
connections on complexes of vector bundles which are flat up to homotopy. Indeed, at least
the first equation in Proposition 3.2 says that the curvature of ‘ is trivial cohomologically
(up to homotopy).

On the other hand, a flat connection ‘ on a vector bundle E can be integrated to a
representation of the fundamental groupoid of M. This correspondence is induced by par-
allel transport. To be more precise, given a vector bundle E endowed with a connection ‘,
for any path g in M from x to y, the parallel transport along g with respect to ‘ induces a
linear isomorphism

Tg : Ex ! Ey:

This construction is compatible with path concatenation. When ‘ is flat, Tg only depends
on the homotopy class of g, and this defines an action of the homotopy groupoid of M
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on E. It is only natural to ask what is the corresponding notion of parallel transport for
connections which are flat up to homotopy.

Proposition 3.13. Let ðE;DÞ be a representation up to homotopy of TM. Then:

1. For any path g in M from x to y, there is an induced chain map

Tg : ðEx; qÞ ! ðEy; qÞ;

and this construction is compatible with path concatenation. More precisely, Tg is the parallel

transport with respect to the connection underlying D.

2. If g0 and g1 are two homotopic paths in M from x to y then Tg0
and Tg1

are chain

homotopic. More precisely, for any homotopy h between g0 and g1 there is an associated map

of degree �1, Th : Ex ! Ey, such that

Tg1
� Tg0

¼ ½q;Th�:

Proof. The compatibility of ‘ with the grading and q implies that the parallel trans-
port Tg is a map of chain complexes. We now prove (2). Given a path u : I ! E (I ¼ ½0; 1�),
sitting over some base path g : I ! M, we denote by

Du

Dt
¼ ‘dg

dt

ðuÞ

the derivative of u with respect to the connection ‘. Then, for any path g, and any s, t, the
parallel transport

T s; t
g : EgðsÞ ! EgðtÞ

is defined by the equation

D

Dt
T s; t
g ðuÞ ¼ 0; T s; s

g ðuÞ ¼ u:

The global parallel transport along g, Tg : Ex ! Ey is obtained for s ¼ 0, t ¼ 1. Note that,
for a path in the fiber above gðsÞ, f : I ! EgðsÞ, one has

D

Dt
T s; t
g

�
fðtÞ

�
¼ T s; t

g

df

dt
ðtÞ

� �
:

This implies that, for a path v : I ! E above g and u0 A Ex, the unique solution of the
equation

Du

dt
¼ v; uð0Þ ¼ u0;
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can be written in terms of the parallel transport as

uðtÞ ¼ T 0; t
g

�
u0 þ

Ðt
0

T t 0;0
g

�
vðt 0Þ

�
dt 0

�
:

For any map u : I � I ! E sitting above some h : I � I ! M, we have

D2u

DtDe
� D2u

DeDt
¼ R

dh

dt
;
dh

de

� ��
uðe; tÞ

�
;

where R ¼ R‘ is the curvature of ‘. Let now h be as in the statement, u0 A Ex, and consider
the previous equation applied to

uðe; tÞ ¼ T 0; t
ge

ðu0Þ:

We find

D

Dt

Du

De

� �
¼ R

dh

dt
;
dh

de

� �
u;

where ge ¼ hðe; �Þ. Since
Du

De
ðe; 0Þ ¼ 0, we find

Du

De
¼ T 0; t

ge

Ðt
0

T t 0;0
ge

R
dh

dt
;
dh

de

� �
uðe; t 0Þ dt 0:

Fixing the argument t, since

uð0; tÞ ¼ T 0; t
g0

ðu0Þ;

by the same argument as above, we deduce that

uðe; tÞ ¼ T
0; e
ht

�
T 0; t
g0

ðu0Þ þ
Ðe
0

T
e 0;0
ht

T 0; t
ge 0

Ðt
0

T t 0;0
ge 0

R
dh

dt
;
dh

de

� �
uðe 0; t 0Þ dt 0 de 0

�
;

where htð�Þ ¼ hð�; tÞ. Taking e ¼ 1, t ¼ 1, we find

Tg1
ðu0Þ ¼ Tg0

ðu0Þ þ
Ð1
0

Ð1
0

T t;1
ge

R
dh

dt
;
dh

de

� �
T 0; t
ge

ðu0Þ dt de:

Using now that R þ qðo2Þ ¼ 0, we deduce that

Tg1
ðu0Þ � Tg0

ðu0Þ ¼ ½q;Th�u0;

where Th A HomðEx;EyÞ is

Th ¼ �
Ð1
0

Ð1
0

T t;1
ge

o2
dh

dt
;
dh

de

� �
T 0; t
ge

dt de:
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Note that the expression under the integral is in the ðe; tÞ-independent vector space
HomðEx;EyÞ. r

We would like to mention here the interesting recent work of Igusa [21] where, based
on Chen’s iterated integrals [9], the author constructs a general parallel transport for flat
superconnections.

4. Operations, cohomology and the derived category

4.1. Operations and more examples. As explained in the appendix, the standard
operations on vector spaces such as

E 7! E �; E 7! LðEÞ; E 7! SðEÞ;

ðE;FÞ 7! E lF ; ðE;FÞ 7! E nF ; ðE;FÞ 7! HomðE;FÞ

extend to the setting of graded vector bundles, complexes of vector bundles and complexes
of vector bundles endowed with a connection. We will see that these operations are also
well-defined for representations up to homotopy.

Example 4.1 (Taking duals). For E A RepyðAÞ with associated structure operator
D, the operator D� corresponding to the dual E � is uniquely determined by the condition

dAðh5h 0Þ ¼ D�ðhÞ5h 0 þ ð�1Þjhjh5Dðh 0Þ;

for all h A WðA;E �Þ and h 0 A WðA;EÞ, where5 is the operation

WðA;E �ÞnWðA;EÞ ! WðAÞ

induced by the pairing between E � and E (see Appendix A.1). In terms of the components
of D, if D ¼ qþ ‘þ

P
if2

oi, we find D� ¼ q� þ ‘� þ
P
if2

o�
i , where ‘� is the connection

dual to ‘ and, for hk A ðE kÞ�,

q�ðhÞ ¼ �ð�1Þkh � q; o�
p ða1; . . . ; apÞðhkÞ ¼ �ð�1Þkðpþ1Þhk � opða1; . . . ; apÞ:

In particular, if we start with a representation up to homotopy of length one, D ¼ qþ ‘þ K

on E !q F (E in degree 0 and F in degree 1), the dual complex will be F � !q
�

E � (F � in
degree �1 and E � in degree 0), with D� ¼ q� þ ‘� � K �. The fact that some signs appear
when taking duals is to be expected since, for any connection ‘, the curvature of ‘� equals
the negative of the dual of the curvature of ‘.

Example 4.2 (Tensor products). For E;F A RepyðAÞ, with associated structure
operators DE and DF , the operator D corresponding to E nF is uniquely determined by
the condition

Dðh15h2Þ ¼ DEðh1Þ5h2 þ ð�1Þjh1jh15DF ðh2Þ;

for all h1 A WðA;EÞ and h2 A WðA;FÞ. More explicitly, if DE ¼ qE þ ‘E þ oE
2 þ � � � and

similarly for DF , then D ¼ qþ ‘þ o2 þ � � � , where:
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1. q is just the graded tensor product of qE and qF : q ¼ qE n Id þ Idn qF ,

qðun vÞ ¼ qEðuÞn v þ ð�1Þjujun qF ðvÞ:

2. ‘ is just the tensor product connection of ‘E and ‘F : d‘ ¼ d‘E n Id þ Idn d‘F ,

‘aðun vÞ ¼ ‘E
a ðuÞn v þ un‘F

a ðvÞ:

3. op ¼ oE
p n Id þ IdnoF

p .

Example 4.3 (Pull-back). A Lie algebroid A over M can be pulled-back along a sub-
mersion t : N ! M or, more generally, along smooth maps t which satisfy certain trans-
versality condition, as we now explain. Recall [27] that the pull-back algebroid t!A has
the fiber at x A N:

t!ðAÞx ¼ fðX ; aÞ : X A TxN; a A AtðxÞ; ðdtÞðXÞ ¼ rðaÞg:

The transversality condition mentioned above is that this is a smooth vector bundle over N,
which certainly happens if t is a submersion or the inclusion of a leaf of A. The anchor of
t!A sends ðX ; aÞ to X , while the bracket is uniquely determined by the derivation rule and

½ðX ; t�aÞ; ðY ; t�bÞ� ¼ ð½X ;Y �; t�½a; b�Þ:

In general, there is a pull-back map (functor)

t� : RepyðAÞ ! Repy
�
t!ðAÞ

�
which sends E with structure operator D ¼ qþ ‘þ

P
oi to t�ðEÞ endowed with

D ¼ qþ t�ð‘Þ þ
P

t�ðoiÞ where t�‘ is the pull-back connection

ðt�‘ÞðX ;aÞ
�
t�ðsÞ

�
¼ t�

�
‘aðsÞ

�
;

while

t�ðoiÞ
�
ðX1; a1Þ; . . . ; ðXi; aiÞ

�
¼ oiða1; . . . ; aiÞ:

Example 4.4 (Semidirect products with representations up to homotopy). If g is a
Lie algebra and V A RepyðgÞ, the operator making LðV �Þ a representation up to homo-
topy of g is a derivation on the algebra

Lðg�ÞnLðV �Þ ¼ L
�
ðglVÞ�

�
;

i.e. defines the structure of Ly-algebra (see [31]) on the direct sum glV . This Ly-algebra
deserves the name ‘‘semi-direct product of g and V ’’, and is denoted gyV (it is the usual
semi-direct product if V is just a usual representation).

Example 4.5 (Exterior powers of the adjoint representation and k-di¤erentials). In
the literature one often encounters equations which look like cocycle conditions, but which
do not seem to have a cohomology theory behind them. Such equations arise naturally as
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infinitesimal manifestations of properties of global objects and it is often useful to interpret
them as part of cohomology theories. We now point out one such example.

An almost k-di¤erential ([20]) on a Lie algebroid A is a pair of linear maps
d : CyðMÞ ! GðLk�1AÞ, d : GðAÞ ! GðLkAÞ satisfying

(i) dð fgÞ ¼ dð f Þg þ f dðgÞ,

(ii) dð f aÞ ¼ dð f Þ5dðaÞ þ f dðaÞ,

for all f ; g A CyðMÞ, a A GðAÞ. It is called a k-di¤erential if

d½a; b� ¼ ½dðaÞ; b� þ ½a; dðbÞ�

for all a; b A GðAÞ.

We will now explain how k-di¤erentials are related to representations up to homo-
topy. Applying the exterior powers construction to the adjoint representation, we find new
elements:

Lk ad A RepyðAÞ;

one for each positive integer k. These are given by the representations up to homotopy
Lkðad‘Þ, where ‘ is an arbitrary connection on A. Generalizing the case of the coho-
mology of A with coe‰cients in the adjoint representation ad, we now show that the coho-
mology with coe‰cients in Lk ad can be computed by a complex which does not require
the use of a connection. More precisely, we define

�
C �ðA;Lk adÞ; d

�
as follows. An element

c A C pðA;Lk adÞ is a sequence c ¼ ðc0; c1; . . .Þ where

ci : GðAÞ � � � � � GðAÞ ! GðLk�iAnS iTMÞ;8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

ðp�iÞ times

are multilinear, antisymmetric maps related by

ciða1; . . . ; f ap�iÞ ¼ fciða1; . . . ; f ap�iÞ þ iðdf Þ
�
ciþ1ða1; . . . ; ap�i�1Þ5ap�i

�
;

where iðdf Þ : S iþ1ðTMÞ ! S iðTMÞ is the contraction by df . We think of c1; c2; . . . as the
tail of c0, which measures the failure of c0 to be CyðMÞ-linear. For instance, to define the
di¤erential dc, we first define its leading term by the Koszul formula

ðdcÞ0ða1; . . . ; apþ1Þ ¼
P
i< j

ð�1Þ iþj
c0ð½ai; aj�; . . . ; baiai; . . . ; bajaj; . . . ; apþ1Þ

þ
P

i

ð�1Þ iþ1
LrðaiÞ

�
c0ða1; . . . ; baiai; . . . ; apþ1Þ

�
;

and then the tail can be computed by applying the principle we have mentioned above. The
case k ¼ 1 corresponds to the deformation complex of A.
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Proposition 4.6. The cohomology H �ðA;Lk adÞ is naturally isomorphic to the coho-

mology of the complex
�
C �ðA;Lk adÞ; d

�
. Moreover, the 1-cocycles of this complex are

precisely the k-di¤erentials on A.

Proof. For the first part, we pick a connection ‘ to realize the adjoint representation
and we claim that the complexes

�
C �ðA;Lk adÞ; d

�
and

�
W�ðA;Lk adÞ;D‘

�
are isomorphic.

For k ¼ 0, the statement is trivial while the case k ¼ 1 follows from Theorem 3.11. The
general statement follows from these two cases if one observes that both

L
k

C �ðA;Lk adÞ

and
L

k

W�ðA;Lk adÞ are algebras generated in low degree for which the corresponding

di¤erentials are derivations. For the second part, remark that an element in C1ðA;Lk adÞ is
a pair ðc0; c1Þ where c0 : GðAÞ ! GðLkAÞ and c1 A GðLk�1AnTMÞ satisfy the appropriate
equation. Viewing c1 as the map CyðMÞ ! GðLk�1AÞ, f 7! iðdf Þðc1Þ, we see that the
elements of C1ðA;Lk adÞ are precisely the almost k-di¤erentials on A. The fact that the
cocycle equation is precisely the k-di¤erential equation follows by a simple computation.

r

Example 4.7 (The coadjoint representation). The dual of the adjoint representation
of a Lie algebroid A is called the coadjoint representation of A, denoted ad�. Using a con-
nection ‘ on A, it is given by the representation up to homotopy

ad� : T �M !r
�

A� ; D ¼ r� þ ð‘basÞ� � ðRbas
‘ Þ�:( �

degree �1 degree 0

As in the case of the adjoint representation, the resulting cohomology can be computed
by a complex which does not require the choice of a connection. This complex, denoted
C �ðA; ad�Þ, is defined as follows. An element in C pðA; ad�Þ is a pair c ¼ ðc0; c1Þ where c0

is a multilinear antisymmetric map:

c0 : GðAÞ � � � � � GðAÞ ! W1ðMÞ;8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

p times

and c1 A Wp�1ðA;A�Þ is such that

c0ða1; . . . ; ap�1; f apÞ ¼ fc0ða1; . . . ; ap�1; apÞ � df 5c1ða1; . . . ; ap�1ÞðapÞ;

for all f A CyðMÞ, ai A GðAÞ. The di¤erential of c, dðcÞ A C pþ1ðA; ad�Þ is given by the
formulas

ðdcÞ0ða1; . . . ; apþ1Þ ¼
P
i< j

ð�1Þ iþj
c0ð½ai; aj�; . . . ; baiai; . . . ; bajaj; . . . ; apþ1Þ

þ
P

i

ð�1Þ iþ1
LrðaiÞ

�
c0ða1; . . . ; baiai; . . . ; apþ1Þ

�
;

ðdcÞ1ða1; . . . ; apÞ ¼
P
i< j

ð�1Þ iþj
c0ð½ai; aj�; . . . ; baiai; . . . ; bajaj; . . . ; apÞ

þ
P

i

ð�1Þ iþ1
LrðaiÞ

�
c0ða1; . . . ; baiai; . . . ; apÞ

�
þ ð�1Þpþ1

cða1; . . . ; apÞ � r:
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Proposition 4.8.
�
C �ðA; ad�Þ; d

�
is a cochain complex whose cohomology is canoni-

cally isomorphic to H �ðA; ad�Þ.

More generally, for any q, the representation up to homotopy S qðad�Þ and its
cohomology can be treated similarly. This will be made more explicit in our discussion on
the Weil algebra.

4.2. Cohomology, the derived category, and some more examples. As we already
mentioned several times, one of the reasons we work with complexes is that we want to
avoid non-smooth vector bundles. The basic idea was that a complex represents its
cohomology bundle (typically a graded non-smooth vector bundle). To complete this
idea, we need to allow ourselves more freedom when comparing two complexes so that,
morally, if they have the same cohomology bundles, then they become equivalent. This
will happen in the derived category. For a more general discussion on the derived category
of a DG algebra we refer the reader to [30].

Definition 4.9. A morphism F between two representations up to homotopy E

and F is called a quasi-isomorphism if the first component of F, the map of complexes
F0 : ðE; qÞ ! ðF ; qÞ, is a quasi-isomorphism. We denote by DerðAÞ the category obtained
from RepyðAÞ by formally inverting the quasi-isomorphisms, and by DerðAÞ the set of
isomorphism classes of objects of DerðAÞ.

Remark 4.10 (Hom in the derived category). Since we work with vector bundles,
there is the following simple realization of the derived category. Given two representations
up to homotopy E and F of A, there is a notion of homotopy between maps from E to F .
To describe it, we remark that morphisms in RepyðAÞ from E to F correspond to 0-cycles
in the complex with coe‰cients in the induced representation up to homotopy HomðE;FÞ:

HomRepyðAÞðE;FÞ ¼ Z0
�
W
�
A;HomðE;FÞ

��
:

Two maps F;C : E ! F in RepyðAÞ are called homotopic if there exists a degree �1 map
H : WðA;EÞ ! WðA;FÞ which is WðAÞ-linear and satisfies DEH þ HDF ¼ F�C, where
DE and DF are the structure operators of E and F , respectively. We denote by ½E;F � the
set of homotopy classes of such maps. Hence,

½E;F � :¼ H 0
�
W
�
A;HomðE;FÞ

��
:

As in the case of complexes of vector bundles (see part (2) of Lemma A.4), and by the
same type of arguments, we see that a map F : E ! F is a quasi-isomorphism if and only if
it is a homotopy equivalence. From this, we deduce the following realization of DerðAÞ: its
objects are the representations up to homotopy of A, while

HomDerðAÞðE;FÞ ¼ ½E;F �:

Note that, in this language, for any F A RepyðAÞ,

H nðFÞ ¼ ½R½n�;F �:

Also, the mapping cone construction gives a function

Map : ½E;F � ! RepyðAÞ

112 Abad and Crainic, Representations up to homotopy of Lie algebroids



which, when applied to E ¼ R½n�, gives the construction from Example 3.5. Here, the
mapping cone Mapð f Þ of a morphism f : E ! F between representations up to homo-
topy, is the representation up to homotopy whose associated DGA W

�
A;Mapð f Þ

�
is

the mapping cone (in the DG sense [19]) of the map f , viewed as a DG map from
WðA;EÞ to WðA;FÞ.

Example 4.11. If A ¼ FHTM is a foliation on M, then the projection from the
complex F ,! TM underlying the adjoint representation into n½�1� (the normal bundle
n ¼ TM=F concentrated in degree 1) is clearly a quasi-isomorphism of complexes. It is
easy to see that this projection is actually a morphism of representations up to homotopy,
when n is endowed with the Bott connection (see Example 2.5). Hence, as expected,

adFG n½1� ðin DerðFÞÞ:

Similarly, for a transitive Lie algebroid A, i.e. one for which the anchor is surjective,

adA G gðAÞ ðin DerðAÞÞ:

Next, we will show that the cohomology H �ðA;�Þ, viewed as a functor from the
category of representations up to homotopy, descends to the derived category.

Proposition 4.12. Any quasi-isomorphism F : E ! F between two representations up

to homotopy of A induces an isomorphism in cohomology F : HðA;EÞ ! HðA;FÞ.

Proof. If E is a representation up to homotopy of A, one can form a decreasing
filtration on WðA;EÞ induced by the form-degree

� � �HF 2
�
WðA;EÞ

�
HF 1

�
WðA;EÞ

�
HF 0

�
WðA;EÞ

�
¼ WðA;EÞ

where

F p
�
WðA;EÞ

�
¼ WpðA;EÞlWpþ1ðA;EÞl � � � :

This filtration induces a spectral sequence E with

E
p;q
0 ¼ WpðA;E qÞ ) H pþqðA;EÞ;

where the di¤erential d
p;q
0 : Epq

0 ! E
p;qþ1
0 is induced by the di¤erential q of E. Given a mor-

phism F : E ! F , one has an induced map of spectral sequences which, at the first level, is
induced by F0. Hence, the assumption that F is a quasi-isomorphism implies that the map
induced at the level of spectral sequences is an isomorphism at the second level. We deduce
that F induces an isomorphism in cohomology. r

We will now look at the case where E is a regular representation up to homotopy of
A in the sense that the underlying complex ðE; qÞ is regular. In this case, the cohomology
H�ðEÞ is a graded vector bundle over M (see Appendix A.2). The following theorem is an
application of homological perturbation theory (see e.g. [10], [17]).
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Theorem 4.13. Let E be a regular representation up to homotopy of A. Then the

equation

‘að½S�Þ :¼ ½‘aðSÞ�

for a A GðAÞ and ½S� A G
�
H�ðEÞ

�
makes H�ðEÞ a representation of A. Moreover, the com-

plex
�
H�ðEÞ; 0

�
with connection ‘ can be given the structure of a representation up to homo-

topy of A which is quasi-isomorphic to E.

Also, there is a spectral sequence

E
pq

2 ¼ H p
�
A;HqðEÞ

�
) H pþqðA;EÞ:

Proof. The fact that ‘ is flat follows from the fact that the curvature of ‘ is exact.
The spectral sequence is the one appearing in the previous proof. Next, we have to con-
struct the structure of representation up to homotopy on H�ðEÞ. We will use the notations
from the proof of Lemma A.4 (part 3). The linear Hodge decomposition

E ¼ kerDþ imðbÞ þ imðb�Þ

provides quasi-isomorphisms p : E ! HðEÞ and i : HðEÞ ! E. The restriction of the
Laplacian to imðqÞl imðq�Þ, denotedU, is an isomorphism. Then

h ¼ �U�1q�

satisfies the following equations:

1. pq ¼ 0;

2. qi ¼ 0,

3. ip ¼ Id þ hqþ qh;

4. h2 ¼ 0;

5. ph ¼ 0:

We denote by the same letters the maps induced at the level of forms, for instance q goes
from WðA;EÞ to WðA;EÞ. We recall that here we use the standard sign conventions. Note
that these maps still satisfy the previous equations. We consider

d :¼ D � q : WðA;EÞ ! WðA;EÞ;

where D is the structure operator of A. With these,

DH :¼ p
�
1 þ ðdhÞ þ ðdhÞ2 þ ðdhÞ3 þ � � �

�
di : WðA;HÞ ! WðA;HÞ

is a degree one operator which squares to zero, and

F :¼ p
�
1 þ dh þ ðdhÞ2 þ ðdhÞ3 þ � � �

�
:
�
WðA;EÞ;D

�
!

�
WðA;HÞ;DH

�
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is a cochain map. The assertions about DH and F follow by direct computation, or by
applying the homological perturbation lemma (see e.g. [10]), which also explains our
conventions. We now observe that the equations h2 ¼ 0 and ph ¼ 0 imply that F is WðAÞ-
linear and that DH is a derivation. r

Example 4.14. Applying this result to the first quasi-isomorphism discussed in
Example 4.11, we find that the deformation cohomology of a foliation F is isomorphic to
the shifted cohomology of F with coe‰cients in n—and this is [14], Proposition 4.

Example 4.15 (Serre representations). Any extension of Lie algebras

l ! ~gg ! g

induces a representation up to homotopy of g with underlying complex the Chevalley–
Eilenberg complex

�
C �ðlÞ; dl

�
of l. To describe this representation, we use a splitting

s : g ! ~gg of the sequence. This induces:

1. For u A g, a degree zero operator

‘s
u :¼ ad�

sðuÞ : C �ðlÞ ! C �ðlÞ;

hence a g-connection ‘s on C �ðlÞ.

2. The curvature of s, Rs A C2ðg; lÞ given by

Rsðu; vÞ ¼ ½sðuÞ; sðvÞ� � sð½u; v�Þ:

To produce an End�1
�
C �ðlÞ

�
-valued cochain, we use the contraction operator

i : l ! End�1
�
C �ðlÞ

�
(but mind the sign conventions!).

It is now straightforward to check that

D :¼ dl þ ‘s þ iðRsÞ

makes C �ðlÞ a representation up to homotopy of g, with associated cohomology complex
isomorphic to C �ð~ggÞ.

Note that Theorem 4.13 implies that the cohomology of l is naturally a representation
of g, and there is a spectral sequence with

E
p;q

2 ¼ H p
�
g;H qðlÞ

�
) H pþqð~ggÞ:

This is precisely the content of the Serre spectral sequence (see e.g. [32]).

The same argument applies to any extension of Lie algebroids, giving us the spectral
sequence of [26], Theorem 7.4.6.
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In the case of representations of length 1, we obtain the following:

Corollary 4.16. If ðE;DÞ is a representation up to homotopy of A with underlying

regular complex E ¼ E0 lE1 then there is a long exact sequence

� � � ! H n
�
A;H0ðEÞ

�
! H nðA;EÞ ! H n�1

�
A;H1ðEÞ

�
! H nþ1

�
A;H0ðEÞ

�
! � � � :

Proof. The map

H n�1
�
A;H1ðEÞ

�
! H nþ1

�
A;H0ðEÞ

�
is d

pq
2 : E

p;1
2 ! E

pþ2;0
2 in the spectral sequence and is given by the wedge product with o2.

The map

H n
�
A;H0ðEÞ

�
! H nðA;EÞ

is determined by the natural inclusion at the level of cochains.

The morphism

H nðA;EÞ ! H n�1
�
A;H1ðEÞ

�
is given at the level of complexes by

ðo0 þ o1Þ 7! o1

where o0 A WnðA;E0Þ and o1 A Wn�1ðA;E1Þ. Since the spectral sequence collapses at the
third stage, we conclude that the sequence is exact. r

Example 4.17. Assume that A is a regular Lie algebroid. We apply Theorem 4.13
to the adjoint representation. The resulting representations in the cohomology are gðAÞ in
degree zero and nðAÞ in degree one (see Example 2.5). Hence, ad‘ is quasi-isomorphic to a
representation up to homotopy on gðAÞl nðAÞ½�1� where each term is a representation
and the di¤erential vanishes, but the o2-term (which depends on the connection) does
not vanish in general. On the other hand, the previous corollary gives us the long exact
sequence (2) ([14], Theorem 3) and we see that the boundary operator d is induced by o2.

5. The Weil algebra and the BRST model for equivariant cohomology

In this section, we will make use of representations up to homotopy to introduce the
Weil algebra associated to a Lie algebroid A, generalizing the Weil algebra of a Lie algebra
and Kalkman’s BRST algebra for equivariant cohomology. Here we give an explicit
description of the Weil algebra which makes use of a connection. An intrinsic description
(without the choice of a connection) is given in [3]; the price to pay is that the Weil algebra
has to be defined as a certain algebra of di¤erential operators instead of sections of a vector
bundle.
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Let A be a Lie algebroid over the manifold M and let ‘ be a connection on the vector
bundle A. Define the algebra

WðA;‘Þ ¼
L

u; v;w
G
�
LuT �M nS vðA�ÞnLwðA�Þ

�
:

It is graded by the total degree u þ 2v þ w, and has an underlying bi-grading p ¼ v þ w,
q ¼ u þ v, so that W p;qðA;‘Þ is the sum over all u, v and w satisfying these equations.
The connection ‘ will be used to define a di¤erential on W ðA;‘Þ. This will be the sum of
two di¤erentials

d‘ ¼ d hor
‘ þ d ver

‘ ;

where, to define d hor
‘ and d ver

‘ we look at W ðA;‘Þ from two di¤erent points of view.

First of all recall that, according to our conventions, the symmetric powers of the
dual of the graded vector bundle D ¼ AlA (concentrated in degrees 0 and 1) is

S pD� ¼ ðLpA�Þl ðA� nLp�1A�Þl � � �l ðS p�1A� nA�Þl ðS pA�Þ;8 < : 8 > > > > > > > > < > > > > > > > > : 8 > > > > > > > > < > > > > > > > > : 8 < :

degree �p degree �pþ1 degree �1 degree 0

hence,

W p;qðA;‘Þ ¼ WðM;S pD�Þq�p:

We now use the representation up to homotopy structure induced by ‘ on the double D of
A (see Example 3.8), which we dualize and extend to SD�. The resulting structure operator
will be our vertical di¤erential

d ver
‘ : W p;qðA;‘Þ ! W p;qþ1ðA;‘Þ:

Similarly, for the coadjoint complex ad� one has

S q ad� ¼ ðLqT �MÞl ðA� nLq�1T �MÞl � � �l ðT �M nS q�1A�Þl ðS qA�Þ;8 > > > < > > > : 8 > > > > > > > > > > > < > > > > > > > > > > > : 8 > > > > > > > > > > > < > > > > > > > > > > > : 8 < :

degree �q degree �qþ1 degree �1 degree 0

hence,

W p;qðA;‘Þ ¼ WðA;S q ad�Þp�q:

We now use the connection ‘ to form the coadjoint representation ad�
‘. To obtain a

horizontal operator which commutes with the vertical one, we consider the conjugation of
the coadjoint representation, i.e. ad� with the structure operator �r� þ ð‘basÞ� þ ðRbas

‘ Þ�.
The symmetric powers will inherit a structure operator, and this will be our horizontal
di¤erential

d hor
‘ : W p;qðA;‘Þ ! W pþ1;qðA;‘Þ:
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Proposition 5.1. Endowed with d hor
‘ and d ver

‘ , WðA;‘Þ becomes a di¤erential

bi-graded algebra whose cohomology is isomorphic to the cohomology of M. Moreover, up

to isomorphisms of di¤erential bi-graded algebras, WðA;‘Þ does not depend on the choice

of the connection ‘.

Proof. To prove that the two di¤erentials commute, one first observes that it is
enough to check the commutation relation on functions and on sections of T �M, L1A�

and S1A�, which generate the entire algebra. This follows by direct computation (one can
also use the local formulas below, but the computations are much more involved). The
independence of ‘ can be deduced from the fact that, up to isomorphisms, the adjoint rep-
resentation and the double of a vector bundle do not depend on the choice of a connection.
Alternatively, it follows from the intrinsic description of the Weil algebra [3] and an argu-
ment similar to the one in the proof of Proposition 4.6 (see Proposition 3.9 in loc.cit). We
need to prove that the cohomology equals that of M. Note that for p > 0 the column
ðW p;�; d ver

‘ Þ is acyclic, since it corresponds to an acyclic representation up to homotopy of
TM. Next, we note that the first column ðW 0;�; d ver

‘ Þ is the De-Rham complex of M and
the usual spectral sequence argument provides the desired result. r

Remark 5.2 (Local coordinates). Since the operators are local, it is possible to look
at their expressions in coordinates. Let us assume that we are over a chart ðxaÞ of M on
which we have a trivialization ðeiÞ of A. Over this chart, the Weil algebra will be the
bi-graded commutative algebra over the space of smooth functions, generated by elements
qa of bidegree ð0; 1Þ (1-forms), elements y i of bi-degree ð1; 0Þ (the dual basis of ðeiÞ, viewed
in L1A�), and elements m i of bi-degree ð1; 1Þ (the dual basis of ðeiÞ, viewed in S1A�). A
careful but straightforward computation shows that, on these elements:

d ver
‘ ðqaÞ ¼ 0;

d ver
‘ ðy iÞ ¼ m i � G i

ajq
ay j;

d ver
‘ ðm iÞ ¼ �G i

ajq
am j þ 1

2
ri

abjq
aqby j;

d hor
‘ ðqaÞ ¼ �ra

i m
i þ

�
qra

i

qxb

� G
j
bir

a
j

�
y iqb;

d hor
‘ ðy iÞ ¼ � 1

2
ci

jky
jyk;

d hor
‘ ðm iÞ ¼ �

�
ci

jk þ
P

a

ra
kG

i
aj

�
y jmk þ 1

2
Ri

jkay
jykqa:

Here we use Einstein’s summation convention. The functions ra
i are the coe‰cients of r, ci

jk

are the structure functions of A, ri
abj are the coe‰cients of the curvature of ‘ and Ri

jka are
the coe‰cients of the basic curvature:

rðeiÞ ¼
P

ra
i qa; ½ej; ek� ¼

P
ci

jkei;

R‘ðqa; qbÞej ¼ ri
abjei; Rbas

‘ ðej; ekÞqa ¼ Rl
jkael :

Note that for a smooth function f ,

d ver
‘ ð f Þ ¼ qað f Þqa; d hor

‘ ð f Þ ¼ qað f Þra
i o

i:
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Also, in case that the connection ‘ is flat, all the G and r-terms above vanish, while the
R-terms are given by the partial derivatives of the structure functions ci

jk.

Example 5.3 (The standard Weil algebra). In the case of Lie algebras g, one can
immediately see that we recover the Weil algebra W ðgÞ. In particular, the local coordinates
description becomes

d verðy iÞ ¼ m i;

d verðm iÞ ¼ 0;

d horðy iÞ ¼ � 1

2

P
j;k

ci
jky

jyk;

d horðm iÞ ¼ �
P
j;k

ci
jky

jmk;

which is the usual Weil algebra [8]. In this case, d ver is usually called the Koszul di¤erential,
denoted dK , d hor is called the Cartan di¤erential, denoted dC , and the total di¤erential is
denoted by dW .

Example 5.4 (The BRST algebra). Recall Kalkman’s BRST algebra [22] associated
to a g-manifold M. It is Wðg;MÞ :¼ WðgÞnWðMÞ with di¤erential:

d ¼ dW n 1 þ 1n dDR þ
Pn

a¼1

ya nLa �
Pn

b¼1

mb n ib:

Proposition 5.5. Let A ¼ gyM be the action algebroid associated to a g-manifold

M. Then

Wðg;MÞ ¼ W ðA;‘flatÞ;

where ‘flat is the canonical flat connection on A.

Proof. Follows immediately from the local coordinates description of the di¤eren-
tials of the Weil algebra. r

A. Appendix

A.1. The graded setting. Here we collect some general conventions and construc-
tions of graded algebras. As a general rule, we will be constantly using the standard sign

convention: whenever two graded objects x and y, say of degrees p and q, are interchanged,
one introduces the sign ð�1Þpq. For instance, the standard commutator xy � yx is replaced
by the graded commutator

½x; y� ¼ xy � ð�1Þpq
yx:

Throughout the appendix, M is a fixed manifold and all vector bundles are over M.
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1. Graded vector bundles. By a graded vector bundle over M we mean a vector
bundle E together with a direct sum decomposition indexed by integers:

E ¼
L

n

E n:

An element v A E n is called a homogeneous element of degree n and we write jvj ¼ n. Most
of the constructions on graded vector bundles follow by applying point-wise the standard
constructions with graded vector spaces. Here are some of them.

1. Given two graded vector bundles E and F , their direct sum and their tensor prod-
uct have natural gradings. On E nF we always use the total grading:

degðen f Þ ¼ degðeÞ þ degð f Þ:

2. Given two graded vector bundles E and F one can also form the new graded space
HomðE;FÞ. Its degree k part, denoted HomkðE;FÞ, consists of vector bundle maps
T : E ! F which increase the degree by k. When E ¼ F , we use the notation EndðEÞ.

3. For any graded vector bundle, the associated tensor algebra bundle TðEÞ is graded
by the total degree

degðv1 n � � �n vnÞ ¼ degðv1Þ þ � � � þ degðvnÞ:

The associated symmetric algebra bundle SðEÞ is defined (fiber-wise) as the quotient of
TðEÞ by forcing ½v;w� ¼ 0 for all v;w A E, while for the exterior algebra bundle LðEÞ one
forces the relations vw ¼ �ð�1Þpq

wv where p and q are the degrees of v and w, respectively.

4. The dual E � of a graded vector bundle is graded by

ðE �Þn ¼ ðE�nÞ�:

2. Wedge products. We now discuss wedge products in the graded context. First
of all, given a Lie algebroid A and a graded vector bundle E, the space of E-valued
A-di¤erential forms, WðA;EÞ, is graded by the total degree:

WðA;EÞp ¼
L

iþj¼p

W iðA;E jÞ:

Wedge products arise in the following general situation. Assume that E, F and G are
graded vector bundles and

h : E nF ! G

is a degree preserving vector bundle map. Then there is an induced wedge-product opera-
tion

WðA;EÞ �WðA;FÞ ! WðA;GÞ; ðo; hÞ 7! o5h h:
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Explicitly, for o A WpðA;E iÞ, h A WqðA;F jÞ, o5h h A WpþqðA;GiþjÞ is given by

ða1; . . . ; apþqÞ 7!
P

ð�1Þqi sgnðsÞh
�
oðasð1Þ; . . . ; asðpÞÞ; hðasðpþ1Þ . . . ; asðpþqÞÞ

�
;

where the sum is over all ðp � qÞ-shu¿es. Here is a list of the wedge products that will
appear in this paper:

1. If h is the identity we get:

�5� : WðA;EÞnWðA;FÞ ! WðA;E nFÞ:

In particular, we get two operations

WðAÞnWðA;EÞ ! WðA;EÞ; WðA;EÞnWðAÞ ! WðA;EÞð11Þ

which make WðA;EÞ into a (graded) WðAÞ-bimodule. Note that, while the first one coin-
cides with the wedge product applied to E viewed as a (ungraded) vector bundle, the second
one involves a sign.

2. If h is the composition of endomorphisms of E we get an operation

� � � : W
�
A;EndðEÞ

�
nW

�
A;EndðEÞ

�
! W

�
A;EndðEÞ

�
ð12Þ

which gives W
�
A;EndðEÞ

�
the structure of a graded algebra. Of course, this operation

makes sense for general Hom’s instead of End.

3. If h is the evaluation map ev : EndðEÞnE ! E, ðT ; vÞ 7! TðvÞ, we get:

�5� : W
�
A;EndðEÞ

�
nWðA;EÞ ! WðA;EÞ;ð13Þ

while when h is the twisted evaluation map ev : E nEndðEÞ ! E, ðv;TÞ 7! ð�1Þjvj jT j
TðvÞ,

we get:

�5� : WðA;EÞnW
�
A;EndðEÞ

�
! WðA;EÞ:ð14Þ

These operations make WðA;EÞ a graded W
�
A;EndðEÞ

�
-bimodule.

4. If h : L�E nL�E ! L�E is the multiplication, we get

�5� : WðA;L�EÞnWðA;L�EÞ ! WðA;L�EÞ

which makes WðA;L�EÞ a graded algebra.

Note that the ring W
�
A;EndðEÞ

�
can be identified with the space of endomorphisms

of the left WðAÞ-module WðA;EÞ (in the graded sense). More precisely, we have the follow-
ing simple lemma:
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Lemma A.1. There is a 1-1 correspondence between degree n elements of

W
�
A;EndðEÞ

�
and operators F on WðA;EÞ which increase the degree by n and which are

WðAÞ-linear in the graded sense:

Fðo5hÞ ¼ ð�1Þnjojo5FðhÞ Eo A WðAÞ; h A WðA;EÞ:

Explicitly, T A W
�
A;EndðEÞ

�
induces the operator T̂T given by

T̂TðhÞ ¼ T5h:

There is one more interesting operation of type 5h, namely the one where h is the
graded commutator

h : EndðEÞnEndðEÞ ! EndðEÞ; hðT ;SÞ ¼ T � S � ð�1ÞjSj jT j
S � T :

The resulting operation

W
�
A;EndðEÞ

�
nW

�
A;EndðEÞ

�
! W

�
A;EndðEÞ

�
will be denoted by ½�;��. Note that

½T ;S� ¼ T5S � ð�1ÞjT j jSj
S5T :

A.2. Complexes of vector bundles. Here we bring together some rather standard
constructions and facts about complexes of vector bundles.

Complexes. By a complex over M we mean a cochain complex of vector bundles
over M, i.e. a graded vector bundle E endowed with a degree one endomorphism q satisfy-
ing q2 ¼ 0:

ðE; qÞ : � � � !q E0 !q E1 !q E2 !q � � � :

We drop q from the notation whenever there is no danger of confusion. A morphism
between two complexes E and F over M is a vector bundle map f : E ! F which preserves
the degree and is compatible with the di¤erentials. We denote by HomðE;FÞ the space of
all such maps. We denote by ChðMÞ the resulting category of complexes over M.

Definition A.2. We say that a complex ðE; qÞ over M is regular if q has constant
rank. In this case one defines the cohomology of E as the graded vector bundle over M:

H�ðEÞ :¼ KerðqÞ=ImðqÞ:

Remark A.3. Note that H�ðEÞ only makes sense (as a vector bundle) when E is reg-
ular. On the other hand, one can always take the point-wise cohomology: for each x A M,
there is a cochain complex of vector spaces ðEx; qxÞ and one can take its cohomology
H �ðEx; qxÞ. The dimension of these spaces may vary as x varies, and it is constant if and
only if E is regular, in which case they fit into a graded vector bundle over M—and that is
H�ðEÞ.
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As for cochain complexes of vector spaces, we have the following terminology:

1. Given two complexes of vector bundles E and F and morphisms f1; f2 : E ! F , a
homotopy between f and g is a degree �1 map h : E ! F satisfying

hqþ qh ¼ f1 � f2:

If such an h exists, we say that f1 and f2 are homotopic.

2. A morphism f : E ! F between two complexes of vector bundles E and F is
called a homotopy equivalence if there exists a morphism g : F ! E such that f � g and
g � f are homotopic to the identity maps. If such an f exists, we say that E and F are
homotopy equivalent. We say that E is contractible if it is homotopy equivalent to the
zero-complex or, equivalently, if there exists a homotopy between IdE and the zero map.

3. A morphism f : E ! F between two complexes of vector bundles is called a
quasi-isomorphism if it induces isomorphisms in the point-wise cohomologies. We say
that E is acyclic if it is point-wise acyclic.

Lemma A.4. For complexes of vector bundles over M:

(1) If f : E ! F is a quasi-isomorphism at x A M, then it is a quasi-isomorphism in

a neighborhood of x. In particular, if a complex E is exact at x A M, then it is exact in a

neighborhood of x.

(2) A morphism f : E ! F is a quasi-isomorphism if and only if it is a homotopy

equivalence. In particular, a complex E is acyclic if and only if it is contractible.

(3) If a complex E is regular, then it is homotopy equivalent to its cohomology H�ðEÞ
endowed with the zero di¤erential.

Proof. For (1) and (2), it su‰ces to prove the apparently weaker statements in the
lemma coming after ‘‘in particular’’. This follows from the standard mapping complex
argument: given a morphism f , one builds a double complex with E as 0-th row, F as
1-st row, and f as vertical di¤erential. The resulting double complex Mð f Þ, has the
property that it is acyclic, or contractible, if and only if f is a quasi-isomorphism, or a
homotopy equivalence, respectively [32].

To prove the weaker statements of (1) and (2), we fix a complex ðE; qÞ and we choose
a metric in each vector bundle E i. Denote q� the adjoint of q with respect to the chosen
metric and

D ¼ qq� þ q�q

the correspondent ‘‘Laplacian’’. It is not di‰cult to see that the complex ðE �
x ; qÞ is exact if

and only if Dx is an isomorphism. Since the isomorphisms form an open set in the space of
linear transformations, we get (1). When ðE; qÞ is exact, a simple computation shows that
h :¼ D�1q� is a contracting homotopy for E, proving (2).
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For (3) a linear version of Hodge decomposition gives us

E ¼ KerðDÞl ImðqÞl Imðq�Þ

and an identification H�ðEÞ ¼ KerðDÞ. The resulting projection E ! KerðDÞ is a quasi-
isomorphism. r

Operations. The operations with graded vector bundles discussed in the previous
section extend to the setting of complexes. In other words, if E and F are complexes over
M, then all the associated graded vector bundles SðEÞ, LðEÞ, E �, HomðE;FÞ, E nF ,
inherit an operator q making them into complexes over M. The induced di¤erentials are
defined by requiring that they satisfy the (graded) derivation rule, written formally as

qðxyÞ ¼ qðxÞy þ ð�1ÞjxjxqðyÞ:

For instance, for E nF ,

qðvnwÞ ¼ qðvÞnw þ ð�1Þjvjvn qðwÞ:

Also, for T A HomðE;FÞ,

q
�
TðvÞ

�
¼ qðTÞðvÞ þ ð�1ÞjT j

T
�
qðvÞ

�
;

in terms of graded commutators:

qðTÞ ¼ q � T � ð�1ÞjT jT � q ¼ ½q;T �:

If E is a complex over M, its di¤erential q induces a di¤erential q on WðA;EÞ defined
by

qðhÞ ¼ q5h:

Explicitly, for h A WpðA;E kÞ, qðhÞ A WpðA;E kþ1Þ is given by

ða1; . . . ; apÞ 7! ð�1Þpq
�
hða1; . . . ; apÞ

�
:

The following simple lemma shows that the various di¤erentials induced on W
�
A;EndðEÞ

�
coincide.

Lemma A.5. For any T A W
�
A;EndðEÞ

�
,

qðTÞ ¼ ½q;T � ¼ q5T � ð�1ÞjT j
T5q:

Connections. Let A be a Lie algebroid. An A-connection on a graded vector bundle
E is just an A-connection on the underlying vector bundle E which preserves the grading.
Equivalently, it is a family of A-connections, one on each E n. If ðE; qÞ is a complex over
M, an A-connection on ðE; qÞ is a graded connection ‘ which is compatible with q (i.e.
‘aq ¼ q‘a). Note that, in terms of the operators d‘ and q induced on WðA;EÞ, the compati-
bility of ‘ and q is equivalent to ½d‘; q� ¼ 0.
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Connections on E and F naturally induce connections on the associated bundles
SðEÞ, EndðEÞ, E nF , etc. The basic principle is, as before, the graded derivation rule.
For instance, one has

d‘ðh15h2Þ ¼ d‘ðh1Þ5h2 þ ð�1Þjh1jh15d‘ðh2Þ;

for all h1 A WðA;EÞ, h2 A WðA;FÞ. Also, for T A W
�
A;EndðEÞ

�
, d‘ðTÞ is uniquely deter-

mined by

d‘ðT5hÞ ¼ d‘ðTÞ5hþ ð�1ÞjT j
T5d‘ðhÞ;

for all h A WðA;EÞ. More explicitly,

d‘ðTÞ ¼ ½d‘;T �:

Lemma A.6. If a complex ðE; qÞ admits an A-connection then, for any leaf LHM of

A, EjL is regular.

Proof. When A ¼ TM there is only one leaf L ¼ M, and we have to prove that E is
regular. Since ‘ is compatible with q, it follows that the parallel transport with respect to ‘
commutes with q and therefore induces isomorphisms between the point-wise cohomolo-
gies. The same argument applied to parallel transport along A-paths, as explained in [11],
implies the general case. r

References

[1] J. A. Alvarez López, A decomposition theorem for the spectral sequence of Lie foliations, Trans. Amer.

Math. Soc. 329 (1992), no. 1, 173–184.

[2] C. Arias Abad and M. Crainic, Representations up to homotopy of groupoids and the Bott spectral sequence,

to appear.

[3] C. Arias Abad and M. Crainic, The Weil algebra and Van Est isomorphisms, Ann. Inst. Fourier, to appear.

[4] A. Blaom, Lie algebroids and Cartan’s method of equivalence, arXiv:math/0509071.

[5] R. Bott, Lectures on characteristic classes and foliations, in: Lectures on algebraic and di¤erential topology,

Notes by L. Conlon, with two appendices by J. Stashe¤ (Second Latin American School in Math., Mexico

City 1971), Lect. Notes Math. 279, Springer, Berlin (1972), 1–94.

[6] R. Bott, On the Chern–Weil homomorphism and the continuous cohomology of Lie-groups, Adv. Math. 11

(1973), 289–303.

[7] H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123

(2004), no. 3, 549–607.
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