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Summary
Axons undergo Wallerian degeneration (WD) distal to a

point of injury. In the lesioned PNS, WD may be followed

by successful axonal regeneration and functional recov-

ery. However, in the lesioned mammalian CNS, there is no

significant axonal regeneration. Myelin-associated pro-

teins (MAPs) have been shown to play significant roles

in preventing axonal regeneration in the CNS. Since relat-
ively little is known about such events in human CNS

pathologies, we performed an immunohistochemical

investigation on the temporal changes of four MAPs dur-

ing WD in post-mortem spinal cords of 22 patients who

died 2 days to 30 years after either cerebral infarction or

traumatic spinal cord injury. In contrast to experimental

studies in rats, the loss of myelin sheaths is greatly delayed

in humans and continues slowly over a number of years.
However, in agreement with animal data, a sequential loss

of myelin proteins was found which was dependent on

their location within the myelin sheath. Myelin proteins

situated on the peri-axonal membrane were the first to be

lost, the time course correlating with the loss of axonal

markers. Proteins located within compact myelin or on the

outer myelin membrane were still detectable 3 years after

injury in degenerating fibre tracts, long after the disap-
pearance of the corresponding axons. The persistence of

axon growth-inhibitory proteins such as NOGO-A in

degenerating nerve fibre tracts may contribute to the

maintenance of an environment that is hostile to axon

regeneration, long after the initial injury. The present

data highlight the importance of correlating the well docu-

mented, lesion-induced changes that take place in con-

trolled laboratory investigations with those that take
place in the clinical domain.
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Introduction
Degeneration of an axon distal to a point of injury was first

described by Waller in degenerating frog peripheral nerves

and subsequently termed Wallerian degeneration (WD)

(Waller, 1850). In the lesioned PNS, WD may be followed

by successful axonal regeneration and functional recovery.

However, in the lesioned mammalian CNS, there is an initial

phase of transient, abortive sprouting, but no significant

axonal regeneration (Schwab and Bartholdi, 1996). In both

PNS and CNS, the early phase of WD includes the granular

disintegration of the cytoskeleton, in which the cytoskeletal
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proteins of the axon, such as microtubules and neurofilaments,

are rapidly degraded to granular and amorphous debris. In the

PNS and CNS of experimental animals, this process occurs

between 18 and 48 h after injury and progresses in a centri-

fugal pattern away from the lesion site (Griffin et al., 1992;

George and Griffin, 1994b). These early events are probably

triggered by the activation of proteases, such as calpains,

via an increase in intra-axonal calcium (Schlaepfer, 1974;

Waxman et al., 1991; George et al., 1995). Furthermore,

recent studies suggest an involvement of the ubiquitin–pro-

teasome system during these early events (Coleman and

Perry, 2002; Zhai et al., 2003).

In the PNS, partially overlapping these events, axonal

injury leads to the rapid breakdown and phagocytosis of

the nerve fibres and their myelin sheaths by endogenous

and invading macrophages as well as by local Schwann

cells (Bruck, 1997; Shamash et al., 2002). Following injury,

Schwann cells in the distal nerve stump de-differentiate,

proliferate and align within basal lamina tubes (forming

bands of Büngner) where they express surface adhesion mole-

cules and neurotrophic factors that promote and guide axonal

regeneration (Stoll and Muller, 1999). In the CNS, circulating

macrophages invade the degenerating fibre tracts in much

lower numbers and more slowly when compared with the

PNS (Aldskogius and Kozlova, 1998; Stoll and Jander,

1999). A more prominent role is played by the endogenous

microglia, which become activated to form macrophages that

are responsible for the phagocytosis of axonal and myelin

debris. The time course of the removal of the degenerated tissue

is greatly delayed in the CNS as compared with the PNS

(Griffin et al., 1992; George and Griffin, 1994a). Furthermore,

in contrast to Schwann cells in the PNS, oligodendrocytes of

the CNS do not proliferate but instead undergo apoptosis

during the first weeks (Crowe et al., 1997; Shuman et al.,

1997), such that their numbers are reduced by up to 50% in the

white matter tracts undergoing WD (Beattie et al., 2002).

Myelin-associated proteins (MAPs), such as NOGO-A,

have been shown to play significant roles in preventing axonal

regeneration in the CNS, both in vitro and in vivo (Liu et al.,

2002; Wang et al., 2002; Simonen et al., 2003; Schwab,

2004). The prolonged persistence of these proteins in degen-

erating fibre tracts could be a factor contributing to the dif-

ferent regenerative responses in the lesioned CNS and PNS.

Recent experimental studies have revealed that individual

components of CNS myelin are degraded at different rates

during WD of spinal cord white matter tracts. Proteins located

in the peri-axonal myelin membrane [e.g. myelin-associated

glycoprotein (MAG)], were degraded much more rapidly than

those in compact myelin [e.g. myelin basic protein (MBP) and

proteolipoprotein (PLP)] or those in the outer myelin mem-

brane [e.g. myelin oligodendrocyte glycoprotein (MOG)]

(Buss and Schwab, 2003). Investigations using post-mortem

human spinal cord have revealed the presence of MBP-

positive structures within degenerating white matter tracts

for a number of years after stroke or traumatic spinal cord

injury (SCI) (Buss et al., 2004). However, the fate of other

myelin-associated molecules, with known inhibitory func-

tions on axon regeneration, remained uncertain. In the present

investigation, the spatio-temporal loss of MAG, NOGO-A,

PLP and MOG as well as oligodendrocytes has been inves-

tigated in samples of post-mortem human spinal cord, taken

from patients who died at a range of times following either

stroke or traumatic SCI.

Material and methods
Post-mortem
The spinal cords were removed from four control patients who had

not suffered from any neurological disease and from 22 patients who

died at a range of time points after either cerebral infarction or

traumatic SCI. The study was approved by the Aachen University

Ethics Committee and subjects’ families gave informed consent.

Patients with cerebral infarction had a massive infarction in the

territory of the middle cerebral artery with severe hemiparesis on

the contralateral side (Table 1). Patients with traumatic injury had

been diagnosed as having ‘complete’ injuries and presented with

paraplegia or tetraplegia (Table 2). The spinal columns were

removed at autopsy, �15–48 h after death. Following incision of

the dura mater, the spinal cord was fixed in 10% buffered formalin for

at least 2 weeks. Thereafter, blocks of the lesion site and/or tissue

Table 1 Patients who died after cerebral infarction by
the occlusion of the middle cerebral artery

Case no. Age
(years)

Side of
infarction

Injury–death
interval

1 36 Left 3 days
2 63 Right 4 days
3 62 Left 4 days
4 78 Left 7 days
5 76 Left 8 days
6 74 Left 14 days
7 45 Right 5 weeks
8 84 Left 4 months
9 79 Left 3 years

Table 2 Patients who died after traumatic injury to
the spinal cord

Case no. Age (years) Injury level Injury–death
interval

1 21 T12 2 days
2 51 C1 4 days
3 84 C3–4 5 days
4 65 C5 8 days
5 63 C6 11 days
6 18 T6 12 days
7 72 T11–12 24 days
8 85 C3 4 months
9 80 C5–6 1 year
10 44 L1 8 years
11 71 C3–4 20 years
12 47 T5 26 years
13 57 T3–4 30 years
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from regions rostral and caudal to the lesion (�1 cm thickness) were

embedded in paraffin wax.

Immunohistochemistry
Transverse sections (5 mm thick) were collected onto poly-L-lysine-

coated slides and allowed to dry. Sections were de-waxed in xylene

and rehydrated. Microwave treatment in 10 mM citrate buffer (pH 6)

for 3 3 3 min was followed by blockade of non-specific binding by

incubation in 0.1 M phosphate-buffered saline (PBS) containing 3%

normal goat serum and 0.5% Triton X-100 for 30 min. Sections were

incubated subsequently in the primary antibody (for double immuno-

fluorescence, both primary antibodies were applied together), over-

night at room temperature. The antibodies against MAG, NOGO-A

and PLP are well characterized and known to give specific staining in

human material: mouse anti-MAG (D3A2G5 supernatant; Gabriel

et al., 1998), mouse anti-NOGO-A (11C7C7 100 mg/ml; Oertle et al.,

2003; Buss et al., 2005) and mouse anti-PLP (Serotec, Oxford, UK,

1 : 500; Lucchinetti et al., 1999). The mouse monoclonal antibody

against MOG (8-18C5 supernatant; Linnington et al., 1984) speci-

fically stains its protein in rat material; furthermore, the epitope

recognized by the antibody is completely conserved between rat

and human (Breithaupt et al., 2003). For axonal and astrocytic stain-

ing, a rabbit anti-neurofilament (Sigma-Aldrich 1 : 1000) and a rabbit

anti-glial acidic fibrillary protein (GFAP) (DAKO 1 : 1000) antibody

were used. Following extensive rinsing steps in 0.1 M PBS, sections

processed for single immunofluorescence were incubated in red-

fluorescent Alexa 594-conjugated goat anti-mouse antibody (diluted

1 : 500, Molecular Probes) for 1 h at room temperature. For double

immunofluorescence, sections were incubated with a combination of

Alexa 594-conjugated goat anti-mouse antibody (diluted 1 : 500) and

Alexa 488-conjugated goat anti-rabbit antibody (diluted 1 : 500,

Molecular Probes). Finally, nuclei were stained for 5 min with

40,6-diamidino-2-phenylindole (DAPI; diluted 1 : 1000, Sigma)

and sections were coverslipped in PBS containing 50% glycerine.

For negative controls, the primary antibodies were omitted.

Semi-quantification of oligodendrocytes in
long-term pathological cases
Oligodendrocytes were counted in cases with survival times >5 years

to ensure complete disappearance of myelin debris and phagocytic

macrophages. Cases 10, 12 and 13 (see Table 2) were chosen because

they represented a lesion site at the lumbar or thoracic levels, thereby

leading to degeneration of the fasciculus gracilis which was also

investigated in a corresponding animal study (Beattie et al.,

2002). The area of the fasciculus gracilis from the four unlesioned

cases served as controls. Two sections from every case with a

distance of at least 100 mm between them were stained by immuno-

fluorescence for NOGO-A and DAPI (see above). Three sample

areas of 374 mm2 each were chosen from the fasciculus gracilis in

every section, and oligodendrocytic cell profiles were counted in

these areas (identified by morphology and clear overlap of

NOGO-A immunoreactivity with DAPI nuclear staining). The

total number of identified cells is presented in Table 3.

Results
Samples of spinal cord from 26 individuals were examined

using MAG, NOGO-A, PLP and MOG immunohistochem-

istry. The brains of all cases were carefully examined. Those

obtained from control cases were declared to be without

pathological findings. Patients who suffered cerebral infarc-

tion had a massive vascular insult in the region of the middle

cerebral artery and cases of spinal trauma revealed maceration

of the lesion site (not shown). The cases have been subdivided

into three groups according to the post-insult survival times

(i.e. early, intermediate and late survival times), because dis-

tinct morphological stages in the course of WD were found.

Normal distribution of MAPs in the
spinal cord
Staining for MAG (situated in the peri-axonal myelin ring),

PLP (situated in compact myelin) and MOG (situated in the

outer myelin membrane) revealed evenly distributed myelin

rings without immunoreactive cell bodies. The anti-NOGO-A

antibody not only demonstrated the inner and outer myelin

membranes but also oligodendrocytic cell bodies (Fig. 1). In

the grey matter, motor neurons and some interneurons were

also NOGO-A positive (not shown).

Early survival times (2–14 days post-insult)
Two days after traumatic injury to the spinal cord, sections

from one segment above and below the lesion site displayed

a rather heterogeneous appearance, with degenerating and

massively swollen axonal profiles in between morphologi-

cally normal-appearing nerve fibres. Immunohistochemistry

for myelin components demonstrated a similar picture, but

with intact myelin sheaths intermingled with swollen and

degenerating structures (Fig. 2). Further away from the

point of injury, the staining pattern of the four MAPs in

the lesioned fibre tracts appeared normal compared with

the unaffected regions of white matter and control prepara-

tions. This staining pattern of homogeneously distributed

myelin rings and NOGO-A-positive oligodendrocytes

remained unchanged in the lesioned fibre tracts over the

first 12 days after stroke and traumatic SCI.

Table 3 Semi-quantification of oligodendrocytes in
control and long-term pathological cases

Cases No. of oligodendrocytes per 374 mm2

Section 1 Section 2

Ctrl 1 7 7 9 8 7 8
Ctrl 2 8 5 8 6 8 7
Ctrl 3 10 8 7 9 8 9
Ctrl 4 6 5 7 6 6 6
Case 10 3 5 4 4 3 5
Case 12 4 3 4 3 4 4
Case 13 5 4 4 3 4 4

The number of oligodendrocytes within each field of analysis
(374 mm2) was counted in the fasciculus gracilis of the four
control cases (Ctrl 1–4) and of three cases of traumatic SCI with
long survival times (cases 10, 12 and 13). Three regions on each
of two slides were taken and the mean value of the control and the
pathological cases compared: controls 7.29; cases 3.88.
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The first indication of pathological changes of myelin

in degenerating fibre tracts was observed in sections from

cervical levels from a patient who died 14 days after stroke.

There was a loss of MAG staining on the inner myelin ring

of the degenerating corticospinal tract (CST). The staining

pattern became heterogeneous, with swollen, irregular

profiles in between normal-appearing myelin rings (Fig. 3).

The normal pattern of NOGO-A immunohistochemistry,

situated on both inner and outer myelin rings (A. Buss

et al., 2005) could not be clearly identified in the pathological

material of the present investigation. Therefore, changes of

the inner myelin ring are restricted to alterations in MAG

Fig. 2 Axonal and myelin-associated proteins in traumatic SCI and WD. Double immunofluorescence for neurofilament (green) and
PLP (red). In (A), the white matter close to the lesion site from a patient who died 2 days after traumatic SCI demonstrates a heterogeneous
picture with large, irregular structures (thin arrow) in between morphologically intact axons and myelin sheaths (thick arrow). (B) Fourteen
days after stroke, in the degenerating CST, large irregular axonal structures surrounded by swollen but morphologically intact myelin
rings (thick arrow) are visible within morphologically intact axons with surrounding myelin sheaths (thin arrow) (A and B, magnification
3560).

Fig. 1 Myelin-associated proteins in control human spinal cord white matter. Images are transverse sections of the CST of control human
spinal cords. In (A), immunohistochemistry for MAG, situated on the peri-axonal myelin membrane, demonstrates a homogeneous
distribution of myelin rings. (B) The appearance of compact myelin is demonstrated with staining for PLP. (C) The even distribution of the
outer myelin membrane is shown with immunohistochemistry for MOG. (D) Apart from its presence on the inner and outer myelin
membrane, NOGO-A is also found in oligodendrocytic cell bodies (arrow). The presence of NOGO-A on the inner myelin membrane can
only rarely be visualized in human tissue; therefore detectable changes in the distribution of this protein have to be attributed to the
outer membrane (A–D, magnification 3400).
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staining. The immunoreactivity for PLP and MOG as well as

for NOGO-A-positive oligodendroglial cell bodies remained

evenly distributed (Fig. 3). However, some myelin rings

appeared swollen and they surrounded enlarged, irregular

neurofilament-positive structures, most probably reflecting

end bulbs from degenerating axons (Fig. 2).

Intermediate survival time (24 days to 3 years
post-insult)
In these cases, pathological changes in degenerating fibre

tracts were visible over the whole length of the spinal cord

and it was difficult to distinguish between sections obtained

from regions close to or remote from the point of injury.

Sections from a patient who died 24 days after Th11/12

traumatic injury showed clear signs of degeneration for all

four MAPs investigated in the ascending dorsal column up

to cervical levels. The density of myelin rings was reduced,

and numerous amorphous structures, which most probably

reflected the presence of myelin debris, were visible. At

5 weeks after stroke, the pathological changes were very

similar in the descending affected CST (Fig. 4).

Four months after traumatic SCI and stroke, the amount

of morphologically intact ring-like myelin structures was

reduced further in both ascending and descending fibre tracts

undergoing WD, whilst highly immunoreactive debris was

clearly visible (not shown). In cases with survival times of

10 months and longer after injury, the degenerating tracts

were almost devoid of MAG immunoreactivity (Fig. 5). How-

ever, even in the degenerating CST of patients with survival

times of up to 3 years after injury, immunohistochemistry

for PLP, MOG and NOGO-A still demonstrated occasional

immunopositive myelin rings in between amorphous

structures. Furthermore, NOGO-A staining demonstrated

the continued presence of oligodendrocytic cell bodies in

the affected fibre tracts (Fig. 5). Double staining for myelin

proteins and neurofilament demonstrated that the few remain-

ing ring-like structures were no longer associated with

neurofilament-positive axons (Fig.6).

Long survival time (8 years to 30 years
post-insult)
In these cases, all myelin proteins investigated were almost

completely absent from degenerated white matter tracts

rostral or caudal to the lesion. The myelin debris had been

cleared and ring-like structures were no longer visible (data

not shown). However, immunohistochemistry for NOGO-A

still demonstrated oligodendrocytic cell bodies within the

degenerated ascending and descending fibre tracts. In two

cases, with survival times of 26 and 30 years after thoracic

SCI, the fasciculis gracilis appeared completely degenerated

Fig. 3 Myelin-associated proteins in degenerating nerve fibre tracts 14 days after injury. Images are transverse sections of the degenerating
CST of a patient who died 14 days after stroke. (A) Immunohistochemistry for MAG demonstrates a slight reduction in the number of peri-
axonal myelin rings compared with control cases. Instead some irregular immunopositive structures can be seen (arrow). (B) Fourteen days
after cerebral infarction, the homogeneous distribution of PLP-positive rings is unchanged compared with control cases. (C) Fourteen days
after stroke, no changes in MOG immunoreactivity can be detected. (D) NOGO-A staining demonstrates the still homogeneous distribution
of the outer myelin rings and oligodendroglial cell bodies (arrows) (A–D, magnification 3400).
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Fig. 4 Myelin-associated proteins in degenerating nerve fibre tracts 5 weeks after injury. Images are transverse sections of the
degenerating CST of a patient who died 5 weeks after stroke. (A) Immunohistochemistry for MAG demonstrates a dramatic reduction in
the number of peri-axonal myelin rings, and only a few irregular strongly immunopositive structures can be seen (arrows). (B) Five weeks
after cerebral infarction, PLP staining demonstrates a clear reduction in the amount of compact myelin rings, many with an irregular
appearance. In between, highly immunoreactive irregular profiles can be seen most probably representing degenerated myelin debris
(arrows). (C) The number of MOG-positive outer myelin rings is also reduced; instead myelin debris is visible (arrow). (D) NOGO-A
immunohistochemistry demonstrates oligodendrocytes (arrow) in between a heterogeneous picture of myelin debris and still
morphologically normal-appearing myelin rings (A–D, magnification 3400).

Fig. 5 Myelin-associated proteins in degenerating nerve fibre tracts 3 years after injury. Images are transverse sections of the degenerating
CST of a patient who died 3 years after stroke. (A) The degenerating fibre tract is devoid of MAG-immunopositive structures. (B and C)
PLP and MOG staining demonstrates ring-like myelin structures in the degenerating CST at this time point. (D) NOGO-A
immunohistochemistry demonstrates myelin rings and some oligodendrocytic cell bodies (arrows) (A–D, magnification 3400).
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whereas the fasciculus cuneatus remained intact. Oligo-

dendrocyte cell bodies were counted in the cervical gracile

tracts of the four control cases and three pathological cases

with a lumbar or thoracic lesion site at survival times between

8 and 30 years (see Table 3). The results indicate a 40–50%

reduction of the oligodendrocytes in the degenerated dorsal

columns. Double immunofluorescence for NOGO-A and

GFAP within such long-term degenerated white matter tracts

revealed that surviving oligodendrocytes were surrounded by

densely packed astrocytic scar tissue (Fig. 6).

Discussion
In the present study, the temporal changes of a number of

maps were investigated during WD of white matter fibre tracts

in the human spinal cord. The data demonstrate that the

sequence of loss of myelin proteins during WD is similar

to that described in experimental animals but that it follows

a greatly extended time course. Oligodendrocytes can still be

detected in degenerated fibre tracts long after injury; however,

their number is reduced by 40–50%.

Spinal cord immediately adjacent
to the primary lesion site
In spinal cord tissue adjacent to the acute lesion, the conse-

quences of direct injury and tissue destruction became gra-

dually less prominent with increasing distance from the injury

site. At 1 day after injury, changes in the staining pattern of

axonal proteins and MAPs were found: irregular structures,

most probably reflecting end bulbs and axonal beading, as

well as swollen and disorganized myelin could be observed

Fig. 6 Oligodendrocytes and astrocytes in unaffected and degenerated white matter tracts. (A and B) Double immunofluorescence with PLP
(red) and neurofilament (green) on transverse sections from a patient who died 3 years after stroke. (A) In the unaffected CST, a
homogeneous picture can be seen of axonal profiles surrounded by myelin rings. (B) In the degenerated CST, no neurofilament-positive
axonal structures are visible; only a few remaining ring-like myelin structures can be seen (arrowheads). (C and D) Triple
immunofluorescence with NOGO-A (red), GFAP (green) and DAPI (blue) on sections from a patient who died 26 years after traumatic
SCI at Th5. (C) The unaffected cuneate tract shows oligodendrocytes (arrows) and their myelin sheaths in between the network of
astrocytes (arrowhead) and their processes. (D) The degenerated gracile tract demonstrates rare oligodendroglial cell bodies (arrow)
without ring-like structures in between the dense irregular GFAP-positive astrocytic scars; astroglial cell bodies are hardly detectable
(arrowhead) (A–D, magnification 3400).
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amongst normal-looking fibres. The early changes around the

lesion site may be attributed to primary damage characterized

by breakdown of the blood–brain barrier, inflammation and

macrophage invasion and especially to secondary injury

mechanisms such as ischaemia and excitotoxicity (Dusart

and Schwab, 1994; Amar and Levy, 1999; Mautes et al.,

2000). At segmental levels more remote from the injury

site, the pathological changes reflected the pattern of specific

events that were associated with the spread of WD.

Fibre tracts undergoing WD after
SCI or stroke
The time course of myelin changes in WD is often investig-

ated using either electron microscopy or general myelin stains

such as luxol fast blue. In experimental animals, morpholo-

gical changes first become visible in the degenerating tracts

�3 days after injury and consist of more loosely wrapped

myelin lamellae, eventually leading to segmentation of the

myelin sheath into ovoids (George and Griffin, 1994b; Wro-

blewski et al., 2000). These ovoids are then slowly removed,

leading to complete resolution within a few months (Stoll

et al., 1989; Stoll and Jander, 1999). Recently, immunohis-

tochemical analysis following experimental spinal cord

lesions has revealed a differential pattern of myelin protein

loss in dorsal columns undergoing WD. Axonal cytoskeletal

proteins and proteins located on the peri-axonal myelin mem-

brane were lost within the the first 2 weeks after injury. How-

ever, the loss of proteins from compact myelin and the outer

myelin membrane was delayed. Even 2 months after injury,

myelin structures were clearly detectable in the degenerating

fibre tracts (Buss and Schwab, 2003). In human CNS nerve

fibre tracts undergoing WD, luxol fast blue or Marchi staining

has demonstrated the loss of myelin over a period of �2 years

(Miklossy and Van der Loos, 1991; Becerra et al., 1995).

Furthermore, immunohistochemical analyses in post-mortem

tissue has revealed the presence of MBP for up to 3 years in

degenerating spinal cord fibre tracts (Buss et al., 2004). The

present investigation extends previous reports by demonstrat-

ing the sequential and extended loss of MAG, PLP, MOG and

NOGO-A.

Between 14 days and 4 months after insult, MAG immu-

noreactivity was gradually lost from the inner myelin lamella.

The concomitant loss of axonal neurofilament underlines the

close inter-relationship between the axon and its directly

apposing myelin membrane, and suggests a uniform mechan-

ism of destruction. The initial phase of axonal degeneration

is due to the activation of endogenous proteases, such as

calpains (George et al., 1995; Coleman and Perry, 2002).

We propose that the same mechanism is involved in the

destruction of the peri-axonal myelin membrane. It is possible

that activated calpains, having leaked from the degenerating

axon, may have attacked the inner myelin membrane. Pre-

vious investigations have demonstrated that activated micro-

glia and macrophages are absent from the degenerating tracts

during the first weeks after injury (Schmitt et al., 1998), and it

is unlikely that they contributed to this early and specific

pattern of myelin degeneration.

Compact myelin and the outermost myelin membrane

appeared largely unaffected during the early time points

after insult. The first indications of compact and outer myelin

degeneration were detected at 5 weeks after injury. This

corresponds spatially and temporally with the appearance

of CD68-positive macrophages within these degenerating

fibre tracts (Schmitt et al., 1998) and reflects the probable

involvement of these cells in later degenerative events. The

progressive loss of myelin structures continued over the first 2

years, with debris and occasional myelin rings still being

detectable 3 years after injury.

Oligodendrocytes, as the myelin-producing cells in the

CNS, undergo apoptotic cell death during the first weeks of

WD. This process has been detected in both ascending and

descending fibre tracts in a number of species including rats,

monkeys and humans, and has been reported to proceed from

day 1 after injury up to survival times of 8 weeks (Crowe et al.,

1997; Shuman et al., 1997; Emery et al., 1998). Recently, a

study in mice demonstrated a 50% reduction in the number of

oligodendrocytes at ‘long survival times’ (up to 42 days)

during WD (Beattie et al., 2002). The present investigation

in post-mortem human material also demonstrated a reduction

of NOGO-A-positive oligodendrocytes in long-term degen-

erated white matter tracts. The semi-quantitative analysis of

selected cases with long survival times revealed a 40–50%

reduction in the number of oligodendroglial cells in degen-

erated dorsal columns when compared with control cases. In

our material, we did not adapt our data to the eventual atrophy

taking place in fibre tracts undergoing WD. Thus, the loss of

oligodendrocytes could be even higher than the 40–50%

reported here. It was not possible to assess the complete

time course of oligodendrocyte loss using all of the samples

available in the investigation because it proved difficult to

identify oligodendroglia unequivocally in the degenerating

white matter tracts during the first months after trauma.

This was largely due to the presence of myelin (NOGO-A)

in phagocytosing macrophages. The present data revealed a

population of surviving NOGO-A-positive oligodendrocytes

that were deeply embedded within a dense astrocytic scar.

This observation supports previous data from our group which

reported intense anisomorphic astroglial scarring in human

white matter tracts undergoing WD (Buss et al., 2004).

In conclusion, the present data reveal a sequential loss of

MAPs and loss of oligodendrocytes within human nerve

fibre tracts undergoing WD. The pattern of these events is

similar to experimental investigations but follows a greatly

extended time course, probably due to simple differences in

scale between the human spinal cord and that of routinely

used experimental animals. These differences between

human and experimental tissues are not trivial. The myelin-

associated molecules MAG and NOGO-A have both been

demonstrated to be potent inhibitors of axon regeneration

(Mukhopadhyay et al., 1994; Schwab, 2004). Their

apparently slow degradation and removal from the injured
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spinal cord may contribute to the maintenance of an environ-

ment that is hostile to axon regeneration. It is important that

investigators developing future intervention strategies are

aware of the time course of changes in the properties of

the reactive tissues, not only at the lesion site, but also in

remote areas.
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