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We construct five families of 2D moduli spaces of parabolic Higgs bundles (respectively,

local systems) by taking the equivariant Hilbert scheme of a certain finite group acting

on the cotangent bundle of an elliptic curve (respectively, twisted cotangent bundle). We

show that the Hilbert scheme of m points of these surfaces is again a moduli space of

parabolic Higgs bundles (respectively, local systems), confirming a conjecture of Boalch

in these cases and extending a result of Gorsky–Nekrasov–Rubtsov. Using the McKay

correspondence, we establish the autoduality conjecture for the derived categories of

the moduli spaces of Higgs bundles under consideration.

1 Introduction

Let X be a smooth projective curve defined over an algebraically closed field k. A Higgs

bundle on X is a pair consisting of a vector bundle E on X and a Higgs field θ given by a

morphism of locally free sheaves

θ : E → E ⊗Ω1
X,

where Ω1
X denotes the sheaf of 1-forms on X. The study of Higgs bundles on curves has

been initiated by Hitchin [28] in relation to the construction of solutions to a dimensional

reduction of the Yang–Mills equation. An essential device to study Higgs bundles has

been the Hitchin map, which associates to a pair (E, θ), the characteristic polynomial
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of the Higgs field θ . The zero scheme cut out by the characteristic polynomial in T∗X

is a possibly highly singular curve, referred to as the spectral curve. Passing to mod-

uli spaces and fixing the rank n of the vector bundle E reveals a beautiful geometry.

The moduli space of Higgs bundles M fibers over an affine space A, giving rise to an

integrable system [27]
χ :M→A.

The fibers of the Hitchin map can be understood as compactified Picard varieties of the

spectral curves. While this implies that the generic Hitchin fiber is an abelian variety,

the global geometry of the Hitchin fibration remains mysterious.

Here, we describe five infinite families of examples of moduli spaces of parabolic

Higgs bundles (see Definition 2.10), whose geometry is nontrivial but remains manage-

able. Every family is constructed by taking the Hilbert scheme of length m points of

certain surfaces arising as moduli spaces of parabolic Higgs bundles.

The 2D examples of moduli spaces of parabolic Higgs bundles, which we will

consider, are in correspondence with the affine Dynkin diagrams Ã0, D̃4, Ẽ6, Ẽ7, and

Ẽ8 and are constructed as certain resolutions of singularities of quotients of cotangent

bundles of elliptic curves.

In the simplest case of Ã0, the corresponding moduli space in this list is the

cotangent bundle of an elliptic curve E . For D̃4, one considers the natural action of the

group Γ = Z/2Z on T∗E given by the inverse morphism x �→ −x of E . The 2D moduli

spaces of this type are certain crepant resolutions of the GIT quotients

T∗E/Γ,

given by the Γ -Hilbert schemes of T∗E . The corresponding moduli problem of parabolic

Higgs bundles is given by rank 2 and orbifold degree 0 parabolic Higgs bundles on P1,

where the Higgs field θ is allowed to acquire order one poles at four marked points, such

that the residue of θ is nilpotent with respect to the flags at these given points. We point

out that P1 is the scheme-theoretic quotient of E with respect to the above action. The

four marked points correspond to the four fixed points of this action, that is, the places

of ramification of the quotient map E → E/Γ. The data describing this moduli problem

of parabolic bundles is encoded in the diagram below:

21 1

1

1
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As the reader will have already guessed, the number at the central vertex indi-

cates the rank of the parabolic bundle, and every tail corresponds to a marked points,

and the numbers at the remaining vertices indicate the ranks of the flags given by the

parabolic structure.

In the Ẽ7-case, we pick an elliptic curve E with an automorphism of order 4. This

is an elliptic curve with a special form of complex multiplication, which corresponds to

the lattice of Gaussian integers Z[i] ⊂ C. According to [50, p. 483], this elliptic curve

corresponds to the equation

y2 = x3 + x,

and the Z/4Z-action is generated by (x, y) �→ (−x, iy). Taking the scheme-theoretic quo-

tient of E as in the example above, we obtain P1 with three marked points. And it turns

out that the Γ -Hilbert scheme of T∗E is a moduli space for rank 4 orbifold degree 0

parabolic Higgs bundles on this marked rational curve. The Higgs field is again allowed

to acquire order 1 singularities at the marked points, as long as the residues are nilpo-

tent with respect to the parabolic structure encoded in the diagram:

43 3

2

2 21 1

For the graphs Ẽ6 and Ẽ8, we proceed analogously with an elliptic curve E with a

nontrivial Z/3Z- and Z/6Z-action, respectively. Over the field of complex numbers, such

a curve is given by the lattice of Eisenstein integers Z[ω] ⊂ C, where ω is a primitive third

root of unity. According to [50, p. 483], an explicit equation for this curve is given by

y2 + y= x3.

The Z/6Z-action is generated by Z/3Z-action given by ξ · (x, y)= (ξx, y) for every third

root of unity ξ , and the Z/2Z-action induced by the inverse map of E . The corresponding

parabolic bundles are of rank 3, respectively, rank 6 and orbifold degree 0. The respective

parabolic structure is encoded in the diagrams:

32 2

2

1

1 1 1 2 3 4 5 6 4 2

3
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The following theorem will be proved as Theorem 4.1.

Theorem 1.1. Let E be an elliptic curve with an action of a finite group Γ as described

above. Then there is an isomorphism of the Γ -Hilbert scheme of T∗E with a 2D moduli

space of stable parabolic Higgs bundles. In particular, these moduli spaces are crepant

resolutions of the GIT quotients T∗E/Γ . �

Our main result is that the Hilbert scheme of length m points of each of these

surfaces is equivalent to a moduli space of parabolic Higgs bundles.

Theorem 1.2. Let M be one of the smooth moduli space of stable parabolic Higgs bun-

dles of dimension 2, with stability conditions, degree, and dimension vector as specified

in Theorem 4.1, defined over an algebraically closed field k of vanishing or sufficiently

high characteristic. For every positive integer m, the Hilbert scheme of m points M[m]

is again a moduli space of parabolic Higgs bundles, and the Hitchin morphism factors

through the Hilbert–Chow map M[m] →M(m) to the symmetric product. �

The theorem will be proved below as Theorem 5.1. In this article, we use the ter-

minology parabolic Higgs bundle in the traditional sense (e.g., [14]), denoting a pair con-

sisting of a parabolic vector bundle and a Higgs field, which is allowed to acquire order

1 poles at the marked points, such that the respective residues are nilpotent with respect

to the flags coming from the parabolic structure. Boalch conjectured in [13, Remark 11.3]

that the Hilbert scheme of m points of a 2D moduli space of meromorphic Higgs bun-

dles is again a moduli space of meromorphic Higgs bundles. It has been shown by

Gorsky–Nekrasov–Rubtsov that Hilbert schemes of cotangent spaces of elliptic curves

are moduli spaces of parabolic Higgs bundles [23, Section 5.1]. Theorem 1.2 thus extends

their result to some other examples of 2D moduli spaces of parabolic Higgs bundles. It

remains open whether our methods can be extended to treat the general case of Boalch’s

conjecture. Our treatment relies on some peculiarities of the tame parabolic case, for

example, the description in terms of Higgs bundles on an orbifold (Proposition 2.21), for

which no analogy for general meromorphic Higgs bundles is known to the author.

The work of Boalch and Biquard [11] revealed that moduli spaces of meromor-

phic Higgs bundles are naturally equipped with hyperkähler metrics (see also Naka-

jima’s [39] in this context). In particular, the above theorem establishes the existence

of a hyperkähler structure on the Hilbert schemes of certain noncompact hyperkähler

surfaces.

The proofs of the Theorems 1.2 and 1.1 rely heavily on the machinery of the

Fourier–Mukai transform (see Section 3.2). The use of these techniques in the theory of
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moduli is by no means original; the importance of the Fourier–Mukai transform for this

field of geometry has already been realized in Mukai’s paper [38]. While the arguments of

Gorsky–Nekrasov–Rubtsov in [23, Section 5.1] were mainly based on a gauge theoretical

foundation, a closer look at their work reveals that it uses a (relative) Fourier–Mukai

transform. Below we give a more detailed description of our strategy to prove the result

of [23]. We refer the reader to Theorem 5.1 for a more precise statement of our result.

Elliptic curves are self-dual abelian varieties. This means that an elliptic curve

E is canonically isomorphic to the moduli space E∨ of degree 0 line bundles on itself.

In particular, we have a universal line bundle P on E × E , called the Poincaré bundle. It

was shown by Mukai [38] that P induces an equivalence of derived categories

ΦP : Db
coh(E)∼= Db

coh(E)

of Fourier–Mukai type. While it is hard to picture the transformΦP(F) of a general sheaf,

we remark that the skyscraper sheaf Ox at x ∈ E is sent to the corresponding line bundle

Px :=P|{x}×E on E .

By means of this self-duality and the Beauville-Narasimhan-Ramanan (BNR) see

[7] correspondence (Proposition 2.2), the cotangent bundle T∗E can be identified with the

moduli space of degree 0 rank 1 Higgs bundles on E . Since E is parallelizable, we obtain

T∗E ∼= E × A; here A is the affine space associated to the 1D vector space H0(E,Ω1
E ).

Base change now gives rise to the following autoduality property of the rank 1 Hitchin

system

ΦP : Db
coh(T

∗E)∼= Db
coh(T

∗E).

A point in T∗E , corresponding to the Higgs bundle (E, θ) is sent to the line bundle on

the spectral curve, associated via the BNR correspondence. In particular, we see that

autoduality for the rank 1 Hitchin system of an elliptic curve contains the identifica-

tion of moduli spaces given by the BNR correspondence. We may see this as motivation

to extract more information about moduli spaces of Higgs bundles from it. The struc-

ture sheaf of a length n subscheme T of T∗E is a torsion sheaf OT . Its Fourier–Mukai

transform ΦP(OT ) turns out to be a coherent sheaf on T∗E , giving rise to a rank n Higgs

bundle on E (Lemma 4.6). So far we have ignored the subscheme structure of OT , which

is given by a surjection OT∗ E �OT . Applying the functor ΦP to this map, one can use a

Serre duality argument to endow the Higgs bundle Φ(OT )with a parabolic structure (see

the proof of Theorem 4.1). While the Higgs bundle Φ(OT ) turns out to be semistable in

general, the parabolic structure serves the purpose of stabilizing the Higgs bundle.
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Before explaining why this procedure gives rise to an equivalence of moduli

spaces, we will illustrate the geometry of this map by analyzing it birationally. A generic

length nsubscheme T of T∗E is given by ndistinct points x1, . . . , xn. Each of these points

corresponds to a rank 1 degree 0 Higgs bundle (L1, θ1), . . . , (Ln, θn) on E . The Higgs bun-

dle ΦP(T) is given by the direct sum (E, θ) :=⊕n
i=1(Li, θi). The parabolic structure is

constructed by choosing a generic line within the zero fiber E0. In this context, generic

is meant to avoid the subspaces given by (direct sums of the) line bundles Li. The iso-

morphism class in parabolic Higgs bundles turns out to be independent of this choice.

The stabilizing effect of the parabolic structure alluded to above is captured by the fact

that (E, θ) has no proper Higgs subbundle, which contains the chosen line.

We have constructed a natural map f from the Hilbert scheme (T∗E)[n] to the

moduli space M of rank n parabolic Higgs bundles on E . It seems tempting to conclude

the proof simply by claiming that the inverse of the equivalence ΦP yields an inverse to

the map f . Unfortunately, it is not immediately obvious that Φ−1
P ((E, θ)) of an arbitrary

Higgs bundle gives rise to a complex supported in a single degree. On the other hand,

we know that this will be the case for the parabolic Higgs bundles in the image of the

map f . A short argument using properness of the Hitchin map can be applied to estab-

lish surjectivity of the map f , and therefore proves that f is indeed an isomorphism of

moduli spaces (see the end of the proof of Theorem 4.1).

The discussion above refers to the Ã0-case, where we use the aforementioned

description of parabolic moduli problems in terms of labeled graphs. In order to give

the reader a feeling for the general argument, we repeat some of the explanation above

for the case of D̃4.

The geometric setup of the D̃4-case is an elliptic curve E , together with the nat-

ural Z/2Z-action induced by the inverse map. The quotient of E with respect to this

action, is equivalent to a rational curve. The four fixed points give rise to four marked

points on the copy of P1. A Higgs bundle on E , which is equivariant with respect to

this action, corresponds via the dictionary described in Section 2.5, to a parabolic Higgs

bundle on P1.

The derived equivalence

ΦP : Db
coh(T

∗E)∼= Db
coh(T

∗E),

used above, allows us to associate to an element of the equivariant Hilbert scheme of

T∗E (see Section 3.3), an equivariant Higgs bundle on E . In the proof of Theorem 4.1,

we check that this defines indeed an equivalence between the Z/2Z-equivariant Hilbert
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scheme of T∗E and a 2D moduli space M of parabolic Higgs bundles. As above, this

hinges on the properness of the Hitchin map.

The surface M is a moduli space for two different moduli problems: certain

length 2 Z/2Z-equivariant subschemes of T∗E and certain rank 2 parabolic Higgs bun-

dles on P1. Moreover, we show in Theorem 5.1 that the Hilbert scheme M[m] is naturally

equivalent to a certain moduli space of rank 2m parabolic Higgs bundles on P1. The

proof of this follows the same strategy as the proof of the Ã0-case, which we described

earlier. According to the McKay correspondence of Bridgeland–King–Reid [18], there is a

canonical derived equivalence

Db
coh(M)∼= Db

coh([T
∗E/(Z/2Z)]),

which relies on M being a crepant resolution of the singular quotient of T∗E with

respect to the Z/2Z-action. We compose this derived equivalence with the equivariant

version of Mukai’s

Db
coh([T

∗E/(Z/2Z)])∼= Db
coh([T

∗E/(Z/2Z)]).

Thereby we obtain a way of relating the skyscraper sheaf of a closed point of M with an

equivariant Higgs bundle on E . Given a length m subscheme of the surface M, we can

take the transform of the underlying torsion sheaf with respect to this derived equiva-

lence. We obtain an equivariant Higgs bundle on E , which corresponds via the dictio-

nary of Section 2.5 to a parabolic Higgs bundle on P1. By virtue of Serre duality, the

subscheme structure of the torsion sheaf gives rise to additional parabolic structure,

which is described by means of the extended graph below. We will explain this in detail

in Section 5.

21 1

1

1

2nn n

n

n

1

As has been mentioned above, the generic fiber of the Hitchin fibration χ : M→A
is a self-dual abelian variety. In particular, there exists a Zariski open subset Asm ⊂A
corresponding to smooth spectral curves and a line bundle P on Msm ×Asm Msm inducing

a nontrivial autoequivalence

Db
coh(Msm)→ Db

coh(Msm).

It is an important open problem to determine whether this equivalence extends to the

whole base A, where M is either the moduli space of semistable Higgs bundles or the
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full moduli stack. We refer the reader to [20, Conjecture 2.5] for a more precise state-

ment of this conjecture. Recently, this has been achieved by Arinkin [3] over the locus of

integral spectral curves.

To demonstrate the flexibility of our Theorems 1.1 and 1.2, we prove this so-

called autoduality conjecture for the moduli space of Higgs bundles in all the cases

given by Theorem 1.2 (see Theorem 5.5 for a proof).

Theorem 1.3. Let M be one of the 2D moduli spaces of parabolic Higgs bundles con-

sidered in Theorem 1.2. We denote its Hitchin base by A1. According to Theorem 1.2, the

Hilbert scheme M[m] is again a moduli space of parabolic Higgs bundles, with Hitchin

base denoted by Am. There exists a derived equivalence of Fourier–Mukai type

Db
coh(M[m])∼= Db

coh(M[m]),

defined relative to the Hitchin base Am and extending the Fourier–Mukai transform over

the locus of smooth spectral curves. �

The main ingredient of the proof of Theorem 1.3 is the derived McKay corre-

spondence as shown in [18]. Interestingly, both Arinkin’s proof of the autoduality over

the integral locus in [3] and our proof of Theorem 1.3 rely on Haiman’s work on the

n!-conjecture [25].

All our results described above have a counterpart for moduli spaces of flat con-

nections. The place of Mukai’s equivalence is then taken by the derived Geometric Lang-

lands Conjecture for GL1 (Theorem 4.7), which has been proved by Laumon [34] and

Rothstein [48]. In the first case, there is no Hitchin map, and therefore no properness

available. It is an old theorem of Weil (see Atiyah’s exposition in [6]), which comes to

the rescue. The existence of a flat connection in zero characteristic forces the degree of

a vector bundle (and all of its indecomposable summands), which turns out to be what

is needed for the inverse derived equivalence to give rise to an inverse map between the

two moduli spaces. In positive characteristic, Weil’s result ceases to hold, a loss which

is compensated for by the return of a proper Hitchin map. For the sake of avoiding rep-

etition, we refer the reader to Theorems 4.12, 5.2, and 5.6 instead.

2 Higgs Bundles and Local Systems

In this section, we will review the theory of Higgs bundles, local systems, and parabolic

structures. From now on, k denotes an algebraically closed field of either vanishing or



Hilbert Schemes as Moduli 6531

sufficiently high characteristic. We assume that all schemes and related constructions

are defined over k.

2.1 Higgs bundles and the BNR correspondence

In the following, we fix a smooth projective curve X and a positive integer n∈ N. For

a scheme S, we define the notion of an S-family of Higgs bundles below. Of particular

importance is the case of a k-family, which simply is a Higgs bundle on X. We denote by

Ω1
X the cotangent sheaf on X and by pX : X × S → X the canonical projection.

Definition 2.1. An S-family of Higgs bundles on X consists of a locally free sheaf E of

rank n on X × S and a Higgs field given by a morphism of OX-modules

θ : E → E ⊗ p∗
XΩ

1
X.

This gives rise to a moduli stack of Higgs bundles denoted by MDol(X), which sends S to

the groupoid of S-families of Higgs bundles on X. �

Higgs bundles on X can be perceived as certain coherent sheaves on the cotan-

gent bundle T∗X. This is known as the Beauville–Narasimhan–Ramanan correspon-

dence [7] and was proved in full generality in [53, Lemma 6.8]. We will only need a

weak version of the BNR correspondence, which is stated and proved below. The map

π : T∗X → X is the canonical projection, and πS the base change

T∗(X × S/S)→ X × S.

Proposition 2.2 (Weak BNR correspondence). There is a natural equivalence between

the groupoid of S-families of Higgs bundles (E, θ) and the groupoid of quasi-coherent

S-flat sheaves F on the relative cotangent bundle T∗(X × S/S) satisfying

πS,∗F = E . �

Proof. Let us denote by ΘX the tangent sheaf of X. The Higgs field θ of a Higgs pair

(E, θ) gives rise to a morphism of sheaves

E ⊗ p∗
XΘX → E,

which in turn induces a morphism

Sym• p∗
XΘX ⊗ E → E .
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This endows E with the structure of a module over the algebra

Sym• p∗
XΘX = πS,∗OT∗

X×S/S
.

Since πS is an affine morphism, this gives rise to an S-flat quasi-coherent sheaf F on

T∗
X×S/S, such that πS,∗F = E .

Vice versa, given an S-flat quasi-coherent sheaf F on T∗
X×S/S pushing-forward to

a locally free sheaf πS,∗F =: E , we can define a Higgs field θ as follows: the push-forward

E is endowed with the structure of an Sym• p∗
XΘX-module, in particular we have a map

p∗
XΘX ⊗ E → E,

giving rise to a Higgs field θ : E → E ⊗ p∗
XΩ

1
X. �

If we perceive the Higgs field θ as a twisted endomorphism of E, we see that the

expression

a(λ) := det(λ− θ)

is well defined and is a polynomial

λn + an−1λ
n−1 + · · · + a0,

where ai ∈ H0(X,Ω⊗(n−i)
X ).

Definition 2.3. Let A be the affine space associated to the vector space

n−1⊕
i=0

H0(X,Ω⊗(n−i)
X ),

it is called the Hitchin base. The morphism of stacks

χDol :MDol(X)→A,

sending a Higgs bundle (E, θ) to the characteristic polynomial a(λ) of θ is called the

Hitchin morphism. �

2.2 Parabolic vector bundles

As before, X denotes a smooth projective curve of genus g. We assume that D = n1 p1 +
· · · + nk pk is an effective divisor on X, that is, ni > 0 for all i. The tuple X̂ = (X, D) will
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be referred to as a weighted curve. We fix a positive integer n∈ N and for i = 1, . . . ,k

partitions

n= λi0 ≥ · · · ≥ λini = 0.

We will also write l(λi)= ni to denote the length of a partition. Following [26, Section 2.2],

this numerical data will be encoded in the following diagram:

•n

•λ11 •λ12 · · · •λ1(n1−1)

•
λ21

•
λ22

· · · •
λ2(n2−1)

··
·

•
λk1

•
λk2

· · · •
λk(nk−1)

··
·g

Let S be a scheme. Below we define the notion of an S-family of parabolic vector

bundles. We denote by ιi : S → X × S the base change of the closed immersion

pi : Spec k→ X,

corresponding to the marked points pi ∈ X(k).

Definition 2.4. An S-family of quasi-parabolic vector bundles on X̂ consists of a locally

free sheaf E of rank n on X × S together with flags

0 = Fini ⊂ Fi(ni−1) ⊂ · · · ⊂ Fi0 = ι∗i E

of locally free subsheaves of ι∗i E of rank

rkFij = λi j,

such that the successive quotients are locally free. The moduli stack of quasi-parabolic

vector bundles will be denoted by Bun(X̂)= Bun(X̂,n, λ•). �

Given a vector bundle E on X, a point x ∈ X(k), and a subspace L ⊂ Ex of the fiber

Ex = E/E(−x), we can define a locally free sheaf EL by the formula

EL := ker(E → Ex/L),
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where E → Ex/L is the obvious map factoring through E → Ex. This process can be

reversed, since

L = ker(Ex → coker(EL → E)).

The process described above gives rise to an alternative description of quasi-

parabolic vector bundles as flags of locally free sheaves: For i = 1, . . . ,k and j = −n+
1, . . . ,0, we define Eij to be the locally free subsheaf of E given by F j+n ⊂ E pi . For

arbitrary j ∈ Z, we can write j = j′ + m, where −n< j′ ≤ 0 and m ∈ Z, and define Eij :=
Eij′ ⊗ OX(mpi). We conclude that there is an alternative description of parabolic bundles

in terms of nested sequences of locally free sheaves [51, Section 3].

Lemma 2.5. The stack Bun(X̂,n, λ•) is equivalent to the stack of families of Zk-indexed

sequences of locally free sheaves (Vi)i∈Zk on X satisfying

Vi ⊂ Vi+ej ,

where (ej) denotes the canonical basis of Zk, and

Vi+njej = Vi ⊗ OX(pj). �

The interpretation of parabolic vector bundles as sequences of locally free

sheaves V = (Vi)i∈Zk suggests a definition for the dual quasi-parabolic vector bundle V∨

given by the sequence

V∨
i := (V−i)

∨.

This description of the dual quasi-parabolic bundle is easily seen to be compatible with

the following definition.

Definition 2.6. Let (Ê, F••) be a quasi-parabolic bundle on X̂. The dual quasi-parabolic

bundle Ê∨ has underlying vector bundle E∨ and flag data given by

F ∨
i j = ker(E∨

xi
→ F ∨

i(n− j)). �

Lemma 2.7. If Ê = (Ê, F••) is a parabolic bundle on X̂ corresponding to the sequence

V = (Vi)i∈Zk, then the dual Ê∨ corresponds to the dual sequence V∨ = ((V−i)
∨)i∈Zk. �
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Proof. For every i = 1, . . . ,k, we denote by ei the canonical basis element in Zk. We need

to compute

ker(E∨
xi

→ coker(V∨
− jei

→ E∨)),

for j = 0, . . . ,ni − 1. But coker(V∨
− jei

→ E∨)= coker(E → Vjei )
∨ = F ∨

i(n− j). �

Stability conditions for quasi-parabolic vector bundles are parameterized by

finite increasing sequences of positive real numbers (αi j) ∈ [0,1), where i = 1, . . . ,k and

j = 0, . . .ni − 1.

Definition 2.8. A pair consisting of a quasi-parabolic vector bundle and an increasing

sequences of positive real numbers (αi j) ∈ [0,1), where i = 1, . . . ,k and j = 0, . . .ni − 1, is

called a parabolic vector bundle. �

Following [14], we denote by mij = λi j − λi j+1 and define the parabolic degree of a

parabolic vector bundle Ê to be

deg Ê = deg E +
k∑

i=1

ni−1∑
j=0

αi jmij.

The parabolic slope of Ê is given by

μ(Ê)= deg Ê

rkE
.

Definition 2.9. A parabolic vector bundle Ê is said to be stable if for every proper

subbundle F of E with the induced parabolic structure, we have

μ(F̂ ) < μ(Ê).

If we only have μ(F̂ )≤μ(Ê) for every proper subbundle F, we say that Ê is

semistable. �

2.3 Parabolic Higgs bundles

Definition 2.10. An S-family of parabolic Higgs bundles on X̂ consists of an S-family

of parabolic vector bundles (E,F••) and a parabolic Higgs field given by a morphism of

OX-modules

θ : E → E ⊗ p∗
XΩ

1
X(p1 + · · · + pk).
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The latter is required to satisfy the condition that

respiθ(Fi j)⊂Fi j+1.

A parabolic Higgs bundle is stable (respectively, semistable) if the condition of

Definition 2.9 is satisfied for all proper subbundles F preserved by the Higgs field θ . The

moduli stack of parabolic Higgs bundles will be denoted by MDol(X̂)=MDol(X̂,n, λ•).

The moduli space of stable parabolic Higgs bundles Ms
Dol is constructed as the rigidifi-

cation of the open substack of stable Higgs bundles of MDol(X). �

As before, there exists a Hitchin base

A :=
n−1⊕
i=0

H0(X,Ω i+1
X (ip1 + · · · + ipk)),

and a Hitchin morphism

χDol :MDol(X̂)→A,

which sends a parabolic Higgs bundle to the characteristic polynomial of its Higgs

field θ . Using a method developed by Langton, Yokogawa shows in [57, Corollary 5.13

and Corollary 1.6] that the Hitchin map induces a proper map on the moduli space of

parabolic Higgs bundles. In the case of Higgs bundles without parabolic structures, this

is a theorem of Nitsure [42, Theorem 6.1].

Theorem 2.11 (Nitsure and Yokogawa). Let MDol(X̂) be a moduli space of semistable

parabolic Higgs bundles of a fixed type. Then the Hitchin map

χ :MDol(X̂)→A

is proper. �

2.4 Parabolic local systems

Closely related to the theory of Higgs bundles is the theory of local systems (i.e., vector

bundles with a flat connection). The works of Hitchin [28] and Simpson [51, 52] have

exhibited a natural hyperkähler structure on the moduli space of stable Higgs bundles

defined over a complex curve. One obtains the moduli space of irreducible local systems

by hyperkähler rotation. In particular, there is a canonical diffeomorphism relating the

moduli space of stable Higgs bundles and irreducible local systems.
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Using the notation from Section 2.3, we define the notion of an S-family of

parabolic local systems.

Definition 2.12. For a weighted curve X̂, let ωi j ∈ k be a tuple of scalars, where i cor-

responds to marked points in D ⊂ X and 0 ≤ j ≤ ni − 1. An S-family of parabolic local

system with eigenvalues (ωi j) on X̂ consists of an S-family of parabolic vector bundles

(E,F••) and a parabolic flat connection given by a morphism of k-linear sheaves

∇ : E → E ⊗ p∗
XΩ

1
X(p1 + · · · + pk),

satisfying the Leibniz identity and the condition that

respi ∇(Fi j)⊂Fi j,

with eigenvalues of the residue at xi is given by the scalars ωi j on the jth graded

of ι∗i E . A parabolic local system is stable (respectively, semistable) if the condition of

Definition 2.9 is satisfied for all proper subbundles F preserved by the connection ∇.

The moduli stack of parabolic local systems will be denoted by MdR(X̂)=MdR(X̂,n, λ•).

If X̂ = X, that is, there are no marked points, we will simply speak of local systems on

the curve X. The moduli space of stable parabolic local systems Ms
dR is constructed as

the rigidification of the open substack of stable local systems of MdR(X). �

In most cases, we will pick the eigenvalues ωi j to be given by the canonical

weights αi j.

2.5 Orbifolds and parabolic structures

Given a weighted curve X̂, we can associate to it an orbifold X̃, assuming that the char-

acteristic of k is zero or large enough. We emphasize that the word orbifold refers to a

smooth Deligne–Mumford stack [35, Definition 4.1] in our context.

The orbifold X̃ is defined by the following glueing data: let Dx denote the formal

disk Spec Ôx around a point x ∈ X(k). Given an effective divisor D ⊂ X represented by the

effective linear combination n1 p1 + · · · + nk pk, we let Di := Dpi and

U := X − D.

The fiber product U ×X Di is given by the punctured formal disk

D•
i := Frac Ôx.
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Let us denote by
[n] : Spec k((t))→ Spec k((t)),

the faithfully flat morphism given by t �→ tn. Note that this is an étale morphism if and

only if the characteristic p of k does not divide n. Picking a formal coordinate ti around

every point pi, we obtain morphisms

[ni] : D•
i D•

i ,

for every i = 1, . . . ,n.

On the disk Di, we define the obvious action of the group μni of nith roots of unity

by multiplication. Using this action, we glue the quotient stacks [Di/μni ] back to U using

the μni -equivariant maps induced by the [ni]

D•
i D•

i U.
[ni]

According to [5, Theorem 6.1], this defines an algebraic stack independently of the char-

acteristic p of k. Nonetheless, this is a smooth Deligne–Mumford stack if either p= 0 or

gcd(p,ni)= 1 for all i.

Assumption 2.13. The field k is algebraically closed and its characteristic p is either

zero or satisfies gcd(p,ni)= 1 for all i. �

It is a result of Furuta–Steer [22, Section 5] that vector bundles on the orbifold X̃

translate into parabolic vector bundles on the weighted curve X̂, where the weights are

chosen to be the canonical weights αi j := j
ni

. Nasatyr–Steer [40, Section 5A] discuss the

analogous result for Higgs bundles. The local systems case is treated in [12] by Biswas–

Heu. In the remaining part of this subsection, we explain how this is proved in the realm

of algebraic geometry instead of the analytic theory of Riemann surfaces used in [22, 40].

Orbicurves as considered here can also be seen as certain root stacks associated

to weighted curves (and this is what we will be doing implicitly). The correspondence

described above is, therefore, reminiscent of a correspondence between parabolic vector

bundles and vector bundles on root stacks, as established by Borne [15]. We refer the

reader to [15] for the algebraic proofs of the statements below.

The correspondence between vector bundles on the orbifold X̃ and parabolic

bundles on X̂ is based on the following two observations. The natural morphism

τ : X̃ → X
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realizes X as the coarse moduli stack for the Deligne–Mumford stack X̃. The second

observation is that the functor τ∗ from quasi-coherent sheaves on X̃ to quasi-coherent

sheaves on X is not faithful. Nonetheless, it sends a vector bundle Ẽ on X̃ to a vector

bundle E := τ∗ Ẽ , since every torsion-free sheaf on a smooth curve is locally free.

Example 2.14. Let μr be the cyclic group rth roots of unity. It acts on D := Spec k[[t]] via

ξ · t = ξt, where ξ is an rth root of unity. If X̃ is the quotient stack

[D/μr],

we can identify the coarse moduli space X with Spec k[[tr]]. The functor τ∗ sends a

μr-equivariant k[[t]]-module M to the k[[tr]]-module Mμr . �

To reconcile the loss of information under the map Ẽ �→ E, we define a Z-indexed

sequence of line bundles (Li)i∈Z for every orbifold point of the orbifold X̃, satisfying

Li ⊂ Li+1,

for all i ∈ Z, and send Ẽ to the parabolic vector bundle associated to the filtered locally

free sheaf (τ∗(Ẽ ⊗ Li))i∈Z.

Definition 2.15. Let X̂ be a weighted curve and X̃ be the associated orbicurve. For every

marked point pi of X̂, we pick an nth root Li1 of τ ∗OX(pj). The line bundle Lij is defined

to be

Lij := L j
i1. �

The existence of Li1 can be seen locally on X using the notation of Example 2.14.

Let x be the origin of the disk D. Since τ ∗OX(x) is given by the k[[t]]-module t−nk[[t]], we see

that t−1k[[t]] is an nth root of τ ∗OX(x).

By a formal-disk argument, we can show the following remark.

Remark 2.16. Let ni denote the order of the stabilizer group of the point pi, respectively,

the weight of pi. Then, we have τ ∗OX(pi)= Lini . �

Using this remark and Lemma 2.5, it is a consequence of the projection formula

τ∗τ ∗OX(pi)∼=OX(pi)⊗ τ∗OX̃
∼=OX(pi)
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that the sequence of locally free sheaves

Eij := τ∗(Ẽ ⊗ Lij)

gives rise to a parabolic vector bundle Ê := (E, F••) on X̂. We denote the map sending an

orbibundle Ẽ to the parabolic bundle Ê by A.

Proposition 2.17 (Furuta–Steer). The association

A : Ẽ �→ Ê

described above gives rise to an equivalence of groupoids of vector bundles on the orbi-

curve X̃ and parabolic vector bundles on the weighted curve X̂. �

As a parabolic bundle is obtained from an orbibundle by push-forward, one

should expect the respective degrees of the bundles to be related. A Riemann–Roch

computation (using [56, Corollary 4.14] for Deligne–Mumford stacks) reveals the precise

relation between the two degrees.

Lemma 2.18. Under the equivalence of Proposition 2.17, the degree of an orbibundle

Ẽ is equal to the parabolic degree of the parabolic bundle Ê with respect to the called

canonical weights αi j := j
ni

. �

In the following remark, we make the above correspondence more explicit using

the notation of Example 2.14.

Remark 2.19. Let E be a μr-equivariant vector bundle on D. The projection formula

implies that we have

EΓ ⊗ O/O(−x)∼= (E ⊗ O/L−r)Γ .

Using this, we may identify the corresponding parabolic vector bundle Ê on D̂ with the

one given by the vector bundle EΓ together with the flags

Fi := (E ⊗ L−i/L−r)Γ ⊂ (E ⊗ O/L−r)Γ ∼= EΓ ⊗ O/O(−x). �

The next lemma and its proof should clarify how the equivariant structure of

an vector bundle on an orbicurve is translated into the flag data of a parabolic vector

bundle.
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Lemma 2.20. Let Γ =μr be the finite cyclic group of order r acting on D = Spec k[[t]]

through ξ · t = ξt, where ξ is an rth root of unity. Then the isomorphism classes of rank

n parabolic vector bundles on the weighted curve [̂D/Γ ] correspond to isomorphism

classes of representations of Γ on an n-dimensional vector space. The regular repre-

sentation of Γ corresponds to a rank r vector bundle with parabolic structure given by

a complete flag. �

Proof. Let us denote by χ the character associated to the zero fiber of the line orbibun-

dle L. By assumption, we have χ(ξ)= ξ−1. If E is a bundle on [D/Γ ] and (Ei)i∈Z denotes

the corresponding parabolic bundle on [̂D/Γ ]. A section s of Ei nonvanishing at 0 ∈ D

corresponds to a Γ -invariant section of E ⊗ Li. This gives rise to an eigenline in E0 on

which Γ acts by χ−i.

Vice versa given an eigenline 〈v〉 ⊂ (E)0 on which Γ acts by χk, this gives rise

to an eigenline in (E ⊗ L−k)0, on which Γ acts trivially. This in turn gives rise to a

section of Ek. We see that the parabolic structure encodes the Γ -action on the zero

fiber E0.

To verify the last assertion, we only have to observe that the regular representa-

tion of Γ is the direct sum
r⊕

k=0

Vχk,

where V is a 1D vector space with Γ acting on it through the character specified in the

subscript. �

As a next step, we investigate what happens to extra structures like a Higgs field

or a connection under the transition Ẽ �→ Ê . Definitions 2.1 and 2.12 are étale local in

nature with respect to the curve X, and in particular, this allows us to make sense of

Higgs bundles and local systems on an orbicurve X̃.

Proposition 2.21 (Nasatyr–Steer, Biswas–Heu). Under the correspondence of Proposi-

tion 2.17, a Higgs field θ̃ on an orbibundle Ẽ gets transformed to a parabolic Higgs

field θ̂ on Ê . Similarly, a flat connection ∇̃ is sent to a parabolic flat connection ∇̂ with

eigenvalues ωi j given by the canonical weights. This defines a natural equivalence of

groupoids between S-families of Higgs bundles (respectively, local systems) on the orbi-

curve X̃ and S-families of parabolic Higgs bundles (respectively, parabolic local systems)

on the weighted curve X̂. �
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3 Derived Equivalences

This section is a collection of technical results on derived categories that will be of use

later. The geometrically minded reader is encouraged to skip it and come back to it as

required.

3.1 Derived categories

We begin by reviewing the theory of quasi-coherent sheaves and their derived categories

on stacks. A good summary of this theory, together with theoretical justification for some

of the definitions given below, is contained in [4, Section 2].

The data of a quasi-coherent sheaf F on a prestack X are equivalent to a collec-

tion of quasi-coherent sheaves FU→X for every affine scheme U with a morphism U →X ,

in a way compatible with pullback. This compatibility condition stipulates the existence

of isomorphisms

φV→U :ψ∗FU→X → FV→X ,

for every morphism ψ : V → U of X -schemes, which are required to obey a compatibility

law of their own. In the language of category theory, we have exhibited the category of

quasi-coherent sheaves on X as the 2-limit of the categories QCoh(U ) of quasi-coherent

sheaves on U

QCoh(X ) := lim
U∈Aff/X

QCoh(U ).

If X is an algebraic stack, it is possible to replace the above 2-limit by a less intimidating

one. Let Y →X be an atlas, that is, a smooth surjective morphism, where Y is a scheme.

Faithfully flat descent theory implies that QCoh(X ) is equivalent to the 2-limit

QCoh(X ) ∼= lim QCoh(Y) QCoh(Y ×X Y) QCoh(Y ×X Y ×X Y)[ ].

This 2-limit amounts to the simple fact that the data of a quasi-coherent sheaf

on X is equivalent to a quasi-coherent sheaf FY on the atlas Y endowed with descent

data. In the special case that X is a global quotient stack [Y/G], where G is a smooth

algebraic group scheme, this descent data amounts to a G-equivariant structure on FY

[21, Definition I.3.46].

Below we give a definition of the bounded derived category of coherent sheaves

Db
coh(X ) on a stack X . In the cases of interest to us this definition is equivalent to the

one given in [35], but in the case of the unbounded derived category Dqcoh(X ) of quasi-

coherent sheaves we prefer to use a definition requiring slightly more machinery.
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Definition 3.1. Let X be a quasi-compact algebraic stack with affine diagonal and atlas

Y → X. We define the bounded derived category Db
coh(X ) of coherent sheaves on X to

be the full subcategory of the derived category of QCoh(X ) of complexes F • whose

cohomology sheaves are coherent when pulled back to Y and vanish for almost all

degrees. �

It is a well-known fact that the nonfunctoriality of cones leads to technical com-

plications in the theory of derived categories. For instance, it is not possible to obtain

Dqoh(X ) as a 2-limit of the derived categories Dqcoh(U ) for affine schemes U →X as we

did it for the abelian category above. And neither is the category of G-equivariant objects

in Dqcoh(Y) equivalent to the derived category of the quotient stack [Y/G]. This defect of

Dqcoh(X ) can be fixed by replacing the derived category by an enhancement, that is, a

closely related object, from which Dqcoh(X ) can be fully recovered, but which possesses

a functorial construction of cones. One way to do this is by using the theory of stable

∞-categories [36]. Every affine scheme U has an associated stable ∞-category QC (U ),

whose homotopy category is the derived category of quasi-coherent sheaves on U . For a

prestack X , one defines QC (X ) as the homotopy limit of ∞-categories

QC (X ) := lim
U∈Aff/X

QC (U ),

in analogy with the definition of the category of quasi-coherent sheaves QCoh(X ) given

at the beginning of this section.

Definition 3.2. Let X be an algebraic stack, the derived category of quasi-coherent

sheaves Dqcoh(X ) is defined to be the homotopy category of the stable ∞-category

QC (X ). �

Whenever possible, we will formulate proofs in the language of derived cate-

gories, but complementing our presentation by using stable ∞-categories. The inherent

functoriality in the language of stable ∞-categories allows straightforward construc-

tions, which would be more intricate in the world of triangulated categories. We demon-

strate this principle with an easy lemma, which lies at the heart of our treatment of

the autoduality conjecture in the special cases considered here (Theorems 4.13 and 5.5).

A second proof, avoiding stable ∞-categories, will be supplied as Lemma 3.8.

Lemma 3.3. Let X and Y be two schemes, endowed with an action of an abstract finite

group Γ ; we assume that there is an equivalence of ∞-categories

QC (X)∼= QC (Y),
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which is Γ -equivariant. This induces an equivalence

QC ([X/Γ ])∼= QC ([Y/Γ ]). �

Proof. Since X → [X/Γ ] is an atlas for the stack [X/Γ ], it is possible to write QC ([X/Γ ])

as the homotopy limit
lim

J∈Δop
QC (X[J]),

where Δ denotes the category of finite nonempty ordered sets and

X[J] := X × Γ J .

Let BΓ be the nerve of the groupoid associated to the group Γ . The Γ -action on

X induces an action on QC (X), which is encoded by an ∞-functor from BΓ to the

∞-category of ∞-categories
act : BΓ → ∞ − Cat.

The above homotopy limit can be rewritten as

lim
BΓ

act,

which is a purely ∞-categorical construction, and therefore depends only on the

∞-category QC (X) and the Γ -action up to equivalence. In general, we refer to such a

limit as the ∞-category of Γ -equivariant objects in a ∞-category. As the equivalence

QC (X)∼= QC (Y) respects the Γ -action, we obtain that the ∞-categories of Γ -equivariant

objects in QC (X) and QC (Y) must be equivalent. In particular, we have

QC ([X/Γ ])∼= QC ([Y/Γ ]). �

Even more generally, for an ∞-groupoid G, which is pointed and connected, and

an ∞-functor act : G → ∞ − Cat, we should think of the homotopy limit CΓ := limG act as

an ∞-category of G-equivariant objects in an ∞-category C. If C is stable (in particular,

its homotopy category is triangulated), then so is CΓ according to [36, Theorem 5.4]. In

[54], an alternative linearization procedure is described for triangulated categories hav-

ing a strongly pre-triangulated dg-model. Using this definition of linearization, Sosna

also obtains an analog of Lemma 3.3 in [54].

3.2 Fourier–Mukai transform

Let X , Y, and Z be algebraic stacks that we assume to be quasi-compact and having

affine diagonal. Let X →Z and Y →Z be morphisms of stacks and K ∈ Dqcoh(X ×Z Y) be
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a complex on the fiber product X ×Z Y. If we denote by pX : X ×Z Y →X the canonical

projection, and similarly for pY , we obtain an exact functor

ΦK : Dqcoh(X )→ Dqcoh(Y),

which sends the complex of sheaves F ∈ Dqcoh(X ) to

ΦK(F ) := RpY,∗(Lp∗
X F ⊗L K).

Functors between derived categories of this type are referred to as (generalized) Fourier–

Mukai transforms and were introduced by Mukai [38]. The following statement is proved

as in [38], but using a slightly more general base change formula (e.g., [8, Proposi-

tion 3.10]). The proof can also be extracted from the proof of Lemma 3.7.

Lemma 3.4. Let X , Y, and Z be W-stacks. We assume that all of these stacks are

algebraic, quasi-compact, and have affine diagonal; moreover, we require that X →W,

Y →W, and Z →W are representable flat morphisms. For L ∈ Dqcoh(X ×W Y) and K ∈
Dqcoh(Y ×W Z), we define

L ∗ K := RpXZ,∗(Lp∗
XY L ⊗L Lp∗

YZ K).

There exists a natural equivalence between the functors ΦK ◦ΦL and ΦL∗K . �

As we are mainly dealing with generalized Fourier–Mukai functors, that is, inte-

gral kernels living on a fiber product X ×Z Y, we have to investigate how the kernel

changes if we replace the base Z along a morphism Z →W. The behavior of integral

kernels under this change of base stack is expressed in the well-known lemma below,

which is proved by application of the projection formula (e.g., [8, Proposition 3.10]).

Lemma 3.5. Let X , Y, Z, and W be algebraic stacks that are quasi-compact and have

affine diagonal. We assume that X and Y are Z-stacks and that there is a schematic

morphism Z →W. Let

f := (pX , pY) : X ×Z Y →X ×W Y

be the canonical morphism, and K ∈ Dqcoh(X ×Z Y). Then the Fourier–Mukai transform

ΦK is naturally equivalent to ΦRf∗ K . �

We will also have to understand the behavior of Fourier–Mukai transform with

respect to base change.
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Lemma 3.6. Let X , Y, Z, and W be perfect algebraic stacks that are quasi-compact

and have affine diagonal. We assume that X and Y are flat Z-stacks, and that there is a

schematic morphism π :W →Z. Every Fourier–Mukai equivalence

ΦK : Dqcoh(X )∼= Dqcoh(Y),

relative to Z induces a Fourier–Mukai equivalence relative to W

Φπ∗ K : Dqcoh(X ×Z W)∼= Dqcoh(Y ×Z W),

by pulling back the kernel K. �

Proof. Let L ∈ Dqcoh(X ×Z Y) so that K ∗ L ∼=Δ∗OX and L ∗ K ∼=Δ∗OY . The base change

formula implies that the same relations hold for X ×Z W and Y ×Z W. �

The next lemma tells us that if Xi and Yi are Fourier–Mukai partners for i = 1,2,

then products X1 × X2 and Y1 × Y2 are Fourier–Mukai partners. Using the formalism of

stable ∞-categories, this is simply a consequence of [8, Theorem 1.2].

Lemma 3.7. For i = 1,2, let Xi, Yi, Zi, and W be perfect algebraic stacks that are quasi-

compact and have affine diagonal. We assume that Xi, Yi, Zi are W-stacks and that

the structural morphisms are flat. Let Dqcoh(Xi)∼= Dqcoh(Yi) be derived equivalences of

Fourier–Mukai type, induced by integral kernels Ki ∈ Dqcoh(Xi ×Zi Yi). Then K1 �L K2

induces a derived equivalence

Dqcoh(X1 ×W X2)∼= Dqcoh(Y1 ×W Y2),

relative to Z1 ×W Z2. �

Proof. According to Lemma 3.6, we know that the equivalences Dqcoh(Xi)∼= Dqcoh(Yi)

induce equivalences

Dqcoh(X1 ×W Y1)∼= Dqcoh(X2 ×W Y1)

and

Dqcoh(X2 ×W Y1)∼= Dqcoh(X2 ×W Y2).

By juxtaposition we obtain a derived equivalence

Dqcoh(X1 ×W Y1)∼= Dqcoh(X2 ×W Y2).
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In order to obtain a better understanding of the integral kernel of this composition, we

take a look at the following commutative diagram with Cartesian squares:

X1 ×W X2

Z1 ×W X2

Y1 ×W X2

(X1 ×Z1 Y1)×W X2

Y1 ×W Z2

Y1 ×W Y2

Y1 ×W (X2 ×Z2 Y2)

(X1 ×W X2)×(Z1×WZ2) (Y1 ×W Y2)

p q r s

α β

Let M ∈ Dqcoh(X1 × Y1), we denote by

c : (X1 ×Z1 Y1)× X2 →X1 ×Z1 Y1

and
d :Y1 × (X2 ×Z2 Y2)→X2 ×Z2 Y2

the canonical projection; the base change formula reveals now that

Rs∗((Lr∗ Rq∗(Lp∗ ⊗L Lc∗K1))⊗L Ld∗K2)∼= Rs∗(Rβ∗(Lα∗Lp∗M ⊗L K1)⊗L Ld∗K2).

Using the projection formula, we obtain

Rs∗ Rβ∗(Lα∗Lp∗M ⊗ Lα∗Lc∗K1 ⊗L Lβ∗Ld∗K2).

In particular, we see that the integral kernel is given by K1 �L K2. �

The lemma below is reminiscent from Lemma 3.3; it is formulated and proved in

a more classical language, but using more restrictive assumptions.

Lemma 3.8. Let X, Y, and Z be quasi-projective smooth k-varieties, proper, and flat over

Z , endowed with the action of an abstract finite group Γ , such that the characteristic of

k does not divide Γ ; we assume that there is a functor of Fourier–Mukai type

ΦK : Db
coh(X)→ Db

coh(Y),

given by an integral kernel K ∈ Dqcoh(X ×Z Y) of finite Tor-dimension. Moreover, we

assume that K is endowed with a Γ -equivariant structure in the sense that K ∼= f∗L for

L ∈ Db
coh([X/Γ ] ×[Z/Γ ] [Y/Γ ]),
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and the obvious map

f : X ×Z Y → [X/Γ ] ×[Z/Γ ] [Y/Γ ].

Then ΦK is an equivalences of categories if and only if ΦL is. �

Proof. Let W be a scheme with a Γ -action. We denote by

fW : W → [W/Γ ],

the canonical morphism to the quotient stack. All these maps are faithfully flat, and

therefore, we do not have to distinguish between f∗
W and L f∗

W. For L ∈ Db
coh([X/Γ ] ×[Z/Γ ]

[Y/Γ ]), we denote the associated Fourier–Mukai transform by Φ[X/Γ ][Y/Γ ] and similarly

will Φ[X/Γ ]Y denote the functor Db
coh([X/Γ ])→ Db

coh(Y) associated to the kernel obtained

from L via pullback along the obvious map, and so on.

The base change formula implies

f∗
YΦ[X/Γ ][Y/Γ ]

∼=Φ[X/Γ ]Y
∼=ΦXY f∗

X.

Since fY and fX are faithfully flat, we conclude that f∗
Y and f∗

X are fully faithful functors.

Together with ΦXY being fully faithful, we conclude that Φ[X/Γ ][Y/Γ ] is fully faithful.

The functor Φ[X/Γ ][Y/Γ ] has a right adjoint Ψ[X/Γ ][Y/Γ ] given by the integral kernel

L∨ ⊗ ω on [Y/Γ ] ×[Z/Γ ] [X/Γ ], where ω is a factor derived from a relative dualizing line

bundle. This is seen by using the standard adjunctions together with Grothendieck–Serre

duality. Replacing Φ by Ψ above, we see that

f∗
XΨ[Y/Γ ][X/Γ ](F )∼=ΨYX( f∗

Y F ),

for F ∈ Db
coh([Y/Γ ]). Since ΨYX is a quasi-inverse to ΦXY, we obtain from this relation

that Ψ[Y/Γ ][X/Γ ](F )= 0 if and only if F = 0, again by virtue of the fact that fX and fY

are faithfully flat. Lemma 2.1 of [18] implies now that Φ[X/Γ ][Y/Γ ] is an equivalence of

categories. �

We emphasize that every functor of Fourier–Mukai type Dqcoh(X )→ Dqcoh(Y)
lifts to an ∞-functor QC (X )→ QC (Y). And for a large class of stacks, every functor

between ∞-categories QC (X )→ QC (Y) is obtained from a Fourier–Mukai transform [8,

Theorem 1.2(2)]. For our purposes, it is therefore merely a matter of taste whether one

utilizes the theory of stable ∞-categories or derived categories and functors of Fourier–

Mukai type.
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3.3 The McKay correspondence

In the paper [18], an important special case of the Fourier–Mukai transform has been

considered to establish a form of the derived McKay correspondence. We denote by X a

smooth quasi-projective variety with an abstract finite group Γ acting on it. Moreover,

we assume that the characteristic of k is zero or p> |Γ |. Let us denote by Y ⊂ Hilb|Γ |[X/Γ ]

the scheme representing the functor given by Γ -equivariant subschemes

Z → X,

such that there exists a surjection of Γ -equivariant sheaves OX�OZ and Γ acts on

H0(Z ,OZ ) as the regular representation. Moreover, we remove redundant irreducible

components, so that we are left with the irreducible component containing the free Γ -

orbits.

The fiber product Y × [X/Γ ] is endowed with the structure sheaf OZ of the uni-

versal Γ -cluster Z.

Theorem 3.9 ([18, Theorem 1.1]). We assume that the Γ -Hilbert scheme Y of X is smooth

and satisfies the estimate

dim Y ×X/Γ Y ≤ dim Y + 1,

where X/Γ denotes the GIT quotient. Then the structure sheaf of the universal family

OZ of Γ -clusters on

Y × [X/Γ ]

induces an equivalence of k-linear derived categories of Fourier–Mukai type

Db
coh(Y)∼= Db

coh([X/Γ ]). �

In [18], a slightly more general theorem is proved for k= C. The reason for this

restriction is the use of the so-called New Intersection Theorem due to Roberts [47] and

Peskine–Szpiro, which guarantees smoothness of Y. While this theorem holds in positive

characteristic, [18] uses an addendum proved in [17] in the right generality. Nonetheless,

in cases of interest to us, Y will be already known to be smooth for different reasons.

In the next lemma, we observe how this Fourier–Mukai transform interacts with

a given morphism X → S. This will be important for our analysis of autoduality of the

Hitchin fibration in Theorems 4.13 and 5.5.
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Lemma 3.10. Let π : X → S be a flat morphism of smooth quasi-projective varieties,

endowed with the action of a finite group Γ , such that π is Γ -equivariant. If X satisfies

the conditions of Theorem 3.9, Y denotes the Γ -equivariant Hilbert scheme as before,

and S/Γ the GIT quotient, then the natural equivalence of derived categories

Db
coh(Y)∼= Db

coh([X/Γ ])

is of Fourier–Mukai type relative to S/Γ . �

Proof. We only need to check that OZ is supported on the fiber product

Y ×S/Γ [X/Γ ],

which one expects to be a consequence of the Γ -equivariance of π . To show this, we may

cover S/Γ by Zariski open affine subsets Ui and cover S by the fiber products

Si := Ui ×S/Γ S,

which are still affine, as S → S/Γ is finite. Using quasi-projectivity of X, we can cover

X ×S Si ⊂ X by Zariski open affine subsets Vi, which are Γ -invariant. Henceforth, we

may assume without loss of generality that X = SpecA and S = SpecD are affine varieties

endowed with the action of an abstract group Γ .

Let now C be another algebra endowed with the trivial Γ -action and B be a C -flat

quotient of A⊗ C sitting in a short exact sequence

0 I A⊗ C B 0,

such that I is a Γ -invariant ideal of A⊗ C . In particular, this is a short exact sequence

of Γ -modules. Moreover, we assume that C → A⊗ C → B induces an isomorphism

C ∼= BΓ .

This algebraic data encodes a C -point of the Γ -Hilbert scheme of X.

Since A is a D-algebra, we obtain a natural morphism

DΓ → BΓ = C ,

endowing C with the structure of a DΓ -algebra. Therefore, we see that on the

A⊗ C -module B the action of DΓ via A agrees with the action via C . Thus, B is actually

a A⊗DΓ C -module, which is what we wanted to show. �
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An important example is given by Hilbert schemes of surfaces. To see how those

relate to equivariant Hilbert schemes, we quote the following result of Haiman [25,

Theorem 6], which is a corollary of his proof of the n!-conjecture. (In [25], this theorem

is stated for k= C. The proof translates without problems to the more general case of

characteristic zero or p>n. This is due to the fact that the main technical ingredi-

ent of Haiman’s proof, the Polygraph Theorem, is already established in the required

generality.)

Theorem 3.11 (Haiman). Let X be a surface defined over a field of characteristic p>n

or zero. Let us denote by X[n] the Hilbert scheme of length n subschemes and by Yn the

Sn-Hilbert scheme of Xn with respect to the natural group action of the symmetric group

Sn given by permuting factors. Then there is a natural isomorphism

Yn
∼= X[n]. �

Combining this result with Theorem 3.9, we obtain a well-known derived equiv-

alence.

Corollary 3.12. If X denotes a surface defined over a field of characteristic p>nor zero,

and X[n] denotes the Hilbert scheme of length n subschemes, then we have a natural

derived equivalence

Db
coh(X

[n])∼= Db
coh([X

n/Sn]). �

Note that the required dimension estimate follows from the classical result

of Briançon [16] and Iarrabino [29, Corollary 1] that for the punctual Hilbert scheme

Hilbm
0 A2 we have

dim Hilbm
0 A2 = m − 1.

4 Moduli Spaces of Dimension 2

Let Q be a Dynkin diagram, such that the corresponding affine Dynkin diagram Q̃ is

comet-shaped (see Section 2.2). The only Dynkin diagrams satisfying this assumption

are A0, D4, E6, E7, and E8. In Section 2.3, we explained how comet-shaped graphs

together with a dimension vector encode moduli problems for parabolic Higgs bundles.

The graphs Q̃ listed above together with the basic imaginary root λ are exactly the ones

corresponding to the moduli spaces of parabolic Higgs bundles of dimension 2 which

we will describe.
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The A0-case is the simplest one, it describes Higgs bundles of rank 1 on an ellip-

tic curve E, and the moduli space is T∗E . Nonetheless, there are many other examples

of 2D moduli spaces of Higgs bundles that are somehow reminiscent of this one. To each

graph describing a moduli space of parabolic Higgs bundles, we can associate a finite

group Γ . For D4, E6, E7, and E8, these groups are Z/2Z, Z/3Z, Z/4Z, and Z/6Z. Let now E

be an appropriate elliptic curve with a Γ -action. In the D4-case, E is an arbitrary elliptic

curve with Z/2Z acting on it via x �→ −x. In all the other cases, the Γ -action stems from

complex multiplication on the curve E , as has been explained in Section 1. This allows

us to formulate the following folklore theorem, which will be proved in Section 4.2.

Theorem 4.1. We consider the weighted curve associated to the orbifold [E/Γ ], for the

marked points away from 0 ∈ E we consider canonical weights. At the marked point cor-

responding to 0 ∈ E, we work with the weights αi := i
r for i < r − 1 and 1>αr−1 >

r−1
r ,

where r := |Γ |. The moduli space of stable parabolic Higgs bundles Ms
Dol(Q, λ) of orb-

ifold degree 0 with respect to these weights is naturally isomorphic to the Γ -Hilbert

scheme of the surface T∗E . �

A formula for the dimension of Ms
Dol(X̂,n, λ•) is given in [14, p. 3], assuming the

moduli space is nonempty:

2(g − 1)n2 + 2 +
∑
p∈D

(
n2 −

np∑
i=1

(λpi+1 − λpi)
2

)
. (1)

We have the estimate
np∑

i=1

(λpi+1 − λpi)
2 ≤ n2,

which follows from the inequality

n∑
i=1

x2
i ≤

(
n∑

i=1

xi

)2

, (2)

where xi ≥ 0. In particular, we see that there are two possible cases, where expression (1)

specializes to 2. If g = 1 and D = 0, since inequality (2) is strict if there are two nonzero

summands; and g = 0 and

−2n2 +
∑
p∈D

⎛
⎝n2 −

np−1∑
i=1

(λpi+1 − λpi)
2

⎞
⎠= 0.
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This expression on the other hand is −2q, where q denotes the quadratic form associated

to the star-shaped graph

•n

•λ11 •λ12 · · · •λ1(n1−1)

•
λ21

•
λ22

· · · •
λ2(n2−1)

··
·

•
λk1

•
λk2

· · · •
λk(nk−1)

If Q is of affine Dynkin type, we see in particular that all such dimension vectors

are multiples of the basic imaginary root α. In this paper, we only focus on the case

where the dimension vector is equal to the basic imaginary root α. The other cases are

currently not accessible with our methods. We refer the reader however to the work of

Kostov [32], which studies related varieties of local systems that arise in the study of

the Deligne–Simpson problem.

4.1 Duality for elliptic curves with symmetries

Let A be an abelian variety, the dual abelian variety A∨ is equivalent to the stack

Mapgrp(A, BGm) representing morphisms of group stacks A→ BGm [49, p. 184]. Equiva-

lently, we can say that A∨ classifies extensions of A by Gm. This construction is analo-

gous to the dual of a vector space V∨ := Hom(V,k), with BGm taking the place of the 1D

vector space k. For the same reason as there is a canonical morphism V → V∨∨ for vector

spaces there is a canonical morphism

ψA : A→ A∨∨,

which is an isomorphism. This in turn gives rise to a morphism

A× A∨ → BGm.

As the stack BGm classifies line bundles, we see that there is a canonical line bundle P
on A× A∨, called Poincaré bundle. There is a general duality theory for group stacks, an

exposition of which is given in [2].

It has been shown by Mukai [38] that the Poincaré line bundle P induces a natu-

ral equivalence of categories

Db
coh(A)∼= Db

coh(A
∨). (3)
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If φ : A→ B is a morphism, we obtain a dual morphism φ∨ : B∨ → A∨ which sends an

S-point f : B × S → BGm × S of B∨ to the composition

A× S B × S BGm × S.
φ × idS f

By definition the diagram

A

B

A∨∨

B∨∨

φ φ∨∨

is commutative. In particular, we conclude that if Γ is a finite group acting on A, then

Mukai’s equivalence (3) is Γ -equivariant; in the strong sense that the integral kernel P
is endowed with a Γ -equivariant structure.

If E denotes an elliptic curve, we may identify

T∗E = E × A=MDol(E
∨,1),

where A denotes the Hitchin base. Note that there is a canonical identification of elliptic

curves E ∼= E∨, given by the Abel–Jacobi map. This induces an identification of Hitchin

bases

A(E)=A(E∨).

Using this autoequivalence, the remarks above, and Lemmas 3.5 and 3.8, we arrive at

the following well-known observation.

Proposition 4.2. There is a canonical equivalence of derived categories of Fourier–

Mukai type relative to A

Db
coh(T

∗E)∼= Db
coh(T

∗E∨).

If E is equipped with a Γ -action, this equivalence respects the Γ -action, and in par-

ticular, we have an equivalence of derived categories of Fourier–Mukai type relative to

A/Γ

Db
coh([T

∗E/Γ ])∼= Db
coh([T

∗E∨/Γ ]). �
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4.2 Higgs bundles and crepant resolutions

In this subsection, we show how moduli spaces of Higgs bundles give rise to crepant

resolutions of certain quotients of cotangent bundles of elliptic curves. We start with

a technical definition, which turns out to be essential for relating Higgs bundles with

torsion sheaves via Fourier–Mukai transform.

Definition 4.3. Let X be an orbicurve and (E, θ) be a Higgs bundle on it. A composition

series for (E, θ) is an increasing filtration by Higgs subbundles

(E•, θ)⊂ (E, θ),

such that the successive quotients Ei+1/Ei, called factors, are locally free and have no

nontrivial Higgs bundle as a quotient. The Higgs bundle (E, θ) is said to be admissible

if there exists a composition series, such that all factors are of rank 1 and degree 0. An

S-family of Higgs bundles is called admissible if it is admissible over every geometric

point of S. We denote the stack of rank nadmissible Higgs bundles on an orbicurve X by

Mad
Dol(X,n). �

It is a well-known fact [46, Lemma 4.2(1)] that an extension of semistable objects

of the same slope is again semistable. We record the following implication for admissi-

ble Higgs bundles for later use.

Remark 4.4. Admissible Higgs bundles are semistable of slope zero. �

We will see later that admissible Higgs bundles correspond to torsion sheaves

supported on a dual Hitchin fibration. This will induce an equivalence of stacks.

Definition 4.5. For an orbisurface S, we denote by T (S,n) the stack of length n torsion

sheaves on S, that is, the 2-functor

Affop → Grpd

which sends an affine scheme T to the groupoid of quasi-coherent sheaves F on S × T ,

such that π : suppF → T is finite and π∗F is locally free of rank n on S. �

In the next lemma, we formulate how admissible Higgs bundles are related to

torsion sheaves.
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Lemma 4.6. The equivalence of Proposition 4.2 gives rise to an equivalence of stacks

T (T∗E,n)∼=Mad
Dol(E

∨,n). �

Proof. Given a T-point F of T (T∗E,n), we have to verify that the Fourier–Mukai trans-

form Φ(F) on T∗E∨ is a T-family of quasi-coherent sheaves on T∗E∨, that is, a Higgs

bundle on E∨ via the BNR correspondence (Proposition 2.2). This formulation is justified,

as we know from Lemma 3.6 that for every k-scheme T there is an induced Fourier–Mukai

transform

Φ : Db
coh(T

∗E × T)∼= Db
coh(T

∗E∨ × T).

If

π : T∗E∨ → E∨

denotes the canonical projection, we need to verify that π∗Φ(F) is a locally free sheaf of

rank n. This push-forward can be calculated as the Fourier–Mukai transform of F along

the functor

Ψ : Db
coh(T

∗E × T)→ Db
coh(E

∨ × T)

induced by the Poincaré bundle P on E × E∨. Let p1 : T∗E × E∨ → T∗E and p2 : T∗E ×
E∨ → E∨ denote the canonical projections, respectively, their base changes with respect

to T . Then we have

π∗Φ(F)=Ψ (F )= p2,∗(p∗
1F ⊗ P).

But since suppF → T is finite and P is a line bundle, we see that this is a locally free

sheaf of rank non E∨. A similar Fourier–Mukai setup was used in [23] to define the vector

bundle underlying the Higgs bundle constructed from a torsion sheaf.

We also need to check that the Fourier–Mukai transform Φ(F) is a family of

admissible Higgs bundles on [E/Γ ]. For this, we may replace S by a geometric point and

therefore assume that F has a composition series F•, such that the successive quotients

F i+1/F i are skyscraper sheaves of length 1. This composition series can be encoded in a

sequence of distinguished triangles

F i F i+1 F i+1/F i
.

•

Applying the equivalence Φ to F , we see that Φ(F) may be filtered by distinguished

triangles
Φ(F i) Φ(F i+1) Φ(F i+1/F i) .

•
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By assumption Φ(F i+1/F i) is a quasi-coherent sheaf T∗E∨, corresponding to a rank 1

degree 0 Higgs bundle on E∨ via the BNR correspondence (Proposition 2.2). By induction

on n, we obtain that Φ(F) corresponds to an admissible Higgs bundle.

Similarly, we see that an admissible Higgs bundle of rank n on E∨ is sent to a

length n torsion-free sheaf on T∗E . �

We have found a way of relating torsion sheaves on the surface T∗E to Higgs

bundles on the dual elliptic curve E∨. As a next step, we investigate the transform of

a point of the Γ -Hilbert scheme Y of T∗E . Such a point gives rise to a Γ -equivariant

torsion sheaf F on T∗E together with a Γ -equivariant surjection s : OT∗ E �F . As a first

approximation, we expect to obtain a Γ -equivariant Higgs bundle of rank |Γ | on E∨,

due to the functoriality of the construction described above. In the proof below, we

investigate the structure corresponding to the surjection s.

Proof of Theorem 4.1. The Γ -Hilbert scheme Y of T∗E can be defined in terms of T =
T (T∗[E/Γ ]). An S-point of Y consists of an S-point F of T together with a surjection

s :O[T∗ E/Γ ]×S�F .

Moreover, we demand that the Γ -representation

Hom(O[T∗ E/Γ ]×S,F)

is the regular S-linear representation of Γ . We can now try to understand how s trans-

forms under the equivalence of categories Φ.

Let us denote by T∗
0 E the closed subscheme of T∗E given by the fiber over zero

of T∗E → E . The equivalence Db
coh(T

∗E)∼= Db
coh(T

∗E∨) sends OT∗ E to OT∗
0 E∨ [−1]. In partic-

ular, we see that v :=Φ(s) is a morphism

v :OT∗
0 E∨ [−1] →Φ(F).

Serre duality tells us that this is equivalent to a morphism

v′ : (Φ(F)0)∨ → k,
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that is, an element v ∈Φ(F)0. Under this equivalence, a morphism OT∗ E →F corresponds

to a linear map τ∗(V∨ ⊗ O/L−1
0 )→ k, where (V, θ) is the Γ -equivariant Higgs bundle asso-

ciated to F ∈ T , and we use the notation of Definition 2.15. But

τ∗(V∨ ⊗ O/L−1
0 )∼= E∨

0 /F ∨
1 ,

where we use the notation of Definition 2.4 to denote the quasi-parabolic structure. In

particular, we obtain a nontrivial linear map

k→ Fn0−1,

by dualizing, that is, a nonzero vector v ∈ Fn0−1.

The vector space Hom(O[T∗ E/Γ ]×S,F) corresponds toΦ(F)0, as the argument given

above tell us. In particular, we see that Y is equivalent to the moduli stack of the data

(E, θ, v),

where (E, θ) is an admissible Higgs bundle on [T∗E/Γ ], E0 is the regular Γ -

representation, and v ∈ EΓ0 is a nonzero vector spanning the invariant part of E0. The lat-

ter is naturally equivalent to the moduli space of admissible Higgs bundles on [T∗E/Γ ],

such that E0 carries the regular representation. Now we may apply Lemma 2.20 to see

that this corresponds exactly to the required type of parabolic bundles.

Stability of the parabolic Higgs bundles follows from the fact that all Γ -

invariant subbundles are of orbifold slope ≤ 0 (see Remark 4.4) and that Φ(F) is the

only degree 0 subbundle containing v. Since the weights are the canonical weights except

from αn−1, stability follows.

Note that Y is naturally a A/Γ -space with respect to the structural morphism

Y → T∗E/Γ →A/Γ.

Here the first morphism is the Hilbert–Chow morphism. The fact thatΦ : Db
coh([T

∗E/Γ ])∼=
Db

coh([T
∗E∨/Γ ] is defined relative to A/Γ implies that the morphism Y →M( ̂[E∨/Γ ], Q, λ)

is a morphism of A/Γ -spaces. We observe as well that this map is proper.

Therefore, we have a morphism

Y →M( ̂[E∨/Γ ], Q, λ)

of proper A/Γ -spaces. Since both spaces are of equal dimension and connected, we

conclude that it is surjective. In particular, we obtain that every Higgs bundle in the
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moduli space M( ̂[E∨/Γ ], Q, λ) is admissible. This allows us to conclude that

Y ∼=M( ̂[E∨/Γ ], Q, λ),

with the inverse map provided by the inverse of the Fourier–Mukai transform Φ−1. �

4.3 Local systems and crepant resolutions

Using the categorification of geometric class field theory obtained in [34, 48], we are able

to prove the analogous result for moduli spaces of local systems by similar techniques.

In the following, we denote by Dqcoh(X, DX) the derived category of quasi-coherent DX-

modules on a smooth variety X.

Theorem 4.7 (Laumon and Rothstein). If A is an abelian variety defined over an alge-

braically closed field of characteristic zero, we denote by A� the moduli space of rank 1

local systems on A. Then there exists a canonical equivalence of derived categories

ΦC F T : Dqcoh(A
�)∼= Dqcoh(A

∨, DA∨). �

Note that in positive characteristic we define the ring of differential operators

DX of a smooth variety to be the universal enveloping algebra of the Lie algebroid of

tangent vectors ΘX. The analog of the above theorem in positive characteristic is proved

in [19, Corollary 3.8], using the techniques developed in [9, 10].

Theorem 4.8 (Chen–Zhu). If A is an abelian variety defined over an algebraically closed

field of positive characteristic, we denote by A� the moduli space of rank 1 local systems

on A. Then there is a canonical equivalence of derived categories

Dqcoh(A
�)∼= Dqcoh(A

∨, DA∨). �

Remark 4.9. In this paper, we will only be interested in the case where A= E is an

elliptic curve. This special case is also covered by [9, Theorem 4.10(2)]. �

As before, we start by relating torsion sheaves on the surface MdR(E,1)= E�

with local systems on E∨. Although the next proposition is completely analogous to

Lemma 4.6, it is more powerful, since every local system defined over an algebraically

closed field of characteristic zero is admissible due to the fact that every vector bundle

on a curve supporting an algebraic connection has degree 0. As in Definition 4.3, one

defines admissible local systems. We observe, however, that in characteristic zero every
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local system is automatically admissible, since a vector bundle carrying an algebraic

flat connection has to be of degree 0.

Proposition 4.10. The equivalence ΦC F T of Theorem 4.7 (respectively, Theorem 4.8)

induces an equivalence of stacks

T (E�,n)∼=Mad
dR(E

∨,n),

relating length n torsion sheaves on the surface E� to admissible rank n local systems

on E∨. If the base field k is of zero characteristic, then Mad
dR(E

∨,n)=MdR(E∨,n). �

Proof. Let us denote by S an affine scheme, by X an arbitrary smooth scheme, and

by Dqcoh(X × S, p∗
X DX) the derived category of p∗

X DX-modules, where pX : X × S → X is

the canonical projection. Objects of this category should be thought of as S-families

of complexes of DX-modules. It is clear that we also have an equivalence of derived

categories

Dqcoh(A
� × S)∼= Dqcoh(A

∨ × S, p∗
A∨ DA∨),

as it follows, for instance, from [8, Proposition 4.1] and the fact that the above equiv-

alence of Laumon and Rothstein can be lifted to the canonical enhancements as stable

∞-categories.

Using the forgetful functor

Ψ : Dqcoh(E
∨, DE∨)→ Dqcoh(E

∨),

we can describe the underlying quasi-coherent sheaf (Ψ ◦ΦC F T )(F) as the Fourier–Mukai

transform

Dqcoh(E
�)→ Dqcoh(E

∨),

with integral kernel given by the universal flat connection L on E� × E . As in the proof

of Lemma 4.6, we obtain therefore that ΦC F T (F) is a complex of a family of D-modules

concentrated in a single degree.

Vice versa starting with a family of local systems (V,∇) on E∨, we see from the

existence of a composition series for (V,∇) as in the proof of lemma 4.6 that Φ−1
C F T (V) is

a torsion sheaf on E�. �

For k= C, Proposition 4.10 seems natural from a complex analytic view-

point. Since π1(E)∼= Z2, the Riemann–Hilbert correspondence implies that MdR(E,n) is
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complex analytically isomorphic to the quotient stack

[{(A, B) ∈ GLn × GLn|AB = B A}/GLn].

This algebraic quotient stack in turn is equivalent to T (C× × C×,n), as we record below.

Remark 4.11. Let k be an algebraically closed field. There exists a canonical equivalence

of stacks

T (Gr
m × As,n)∼= [{(A1, . . . , Ar, Ar+1, . . . , Ar+s) ∈ GLr

n × glsn|[Ai, Aj] = 0 ∀ (i, j)}/GLn],

where GLn acts by conjugation on this variety of matrices. �

Proof. The data of a length n torsion sheaf on Gr
m × As are equivalent to a rank n

k-vector space V , endowed with the structure of a k[X±1
1 , . . . , X±1

r , Xr+1, . . . , Xr+s]-module.

This in turn is tautologically the same thing as a k-vector space V together with r + s

pairwise commuting endomorphisms (Ai)i=1,...,r+s, such that det Ai �= 0 for i ≤ r. As the

same statements hold in families, we conclude the proof of the assertion. �

On the other hand, the surface C× × C× is complex analytically equivalent to E�,

which induces an isomorphism of complex analytic stacks

T (E�,n)∼= T (C× × C×,n)∼=MdR(E,n).

Proposition 4.10 allows us to prove a version of Theorem 4.1 for moduli spaces

of parabolic local systems, by the exact same methods.

Theorem 4.12. Let k be an algebraically closed field of characteristic zero or p> |Γ |. The

moduli space of stable parabolic local systems Ms
dR(Q, λ) of orbifold degree 0, associ-

ated to the orbifold [E/Γ ] with the same weights as in Theorem 4.1 and eigenvalues

given by the canonical weights, is naturally isomorphic to the Γ -Hilbert scheme (E�)[Γ ]

of the surface E�. �

Proof. As in the proof of Theorem 4.1, we use Proposition 4.10 and Serre duality to

construct a morphism

(E�)[Γ ] →Ms
dR(Q, λ).
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In order to show that this is an isomorphism, it suffices to establish that every local

system in Ms
dR(Q, λ) is admissible. In characteristic zero, this is automatically satis-

fied, since every vector bundle admitting of an algebraic flat connection is of degree

0. In positive characteristic, one has a proper Hitchin map, at one’s disposal, as

explained in Section 5.3 and [24]. This allows us to conclude the proof as the one of

Theorem 4.1. �

In the D̃4-case, similar 2D moduli spaces of flat connections have been studied

by Okamoto [43] in the context of the sixth Painlevé equation.

4.4 Derived equivalences

In Proposition 4.2, we have shown that there is a derived equivalence

Db
coh([T

∗E∨/Γ ])∼= Db
coh([T

∗E/Γ ]).

Using Theorem 4.1 and the derived equivalence of Theorem 3.9, we arrive at a string of

equivalences

Db
coh(M)∼= Db

coh([T
∗E∨/Γ ])∼= Db

coh([T
∗E/Γ ])∼= Db

coh(M∨),

where M and M∨ denote the respective moduli spaces of parabolic Higgs bundles.

Theorem 4.13. Let M :=MDol([̂E/Γ ], Q) denote the moduli space over the Hitchin base

A studied in Section 4.2. We have a natural equivalence of derived categories of Fourier–

Mukai type

Φ : Db
coh(M)∼= Db

coh(M∨),

relative to A, extending the Fourier–Mukai transform for dual abelian varieties over the

locus Asm. The corresponding Fourier–Mukai kernel is given by a Cohen–Macaulay sheaf

P̄ on the fiber product M ×A M∨. �

Proof. This is an equivalence of Fourier–Mukai type relative to A by construction.

Therefore, we only need to verify the second assertion, namely that the integral kernel

P̄ restricts to the Fourier–Mukai transform associated to the Poincaré bundle P on

Msm ×Asm M∨,sm.
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Over the smooth locus Asm the two morphisms

M

T∗E∨/Γ

[T∗E∨/Γ ]

are actually isomorphisms and the restriction of the equivalence of Theorem 3.9 to the

smooth locus (which is possible because of Lemma 3.10) is the equivalence induced from

this isomorphism. Étale locally on Asm we may identify the relative abelian variety given

by the Hitchin fibration with E∨. We see that the equivalence in question is just Fourier–

Mukai duality for the abelian variety E .

To verify the last assertion, we need to show that the equivalence Db
coh(M∨)∼=

Db
coh(M) sends the M∨-family of quasi-coherent sheaves on M∨ given by the struc-

ture sheaf of the diagonal Δ∗OM∨ to a Cohen–Macaulay sheaf. This equivalence can

be divided into several steps

Db
coh(M)∼= Db

coh([T
∗E∨/Γ ])∼= Db

coh([T
∗E/Γ ])∼= Db

coh(M∨).

According to Theorem 4.1, the composition of the first two equivalences send Δ∗OM∨ to

the universal family Q̄ of Higgs orbibundles on M∨ × [T∗E/Γ ]. If

π : [T∗E/Γ ] → [E/Γ ]

denotes the canonical projection, we have that

(idM × π)∗Q̄,

the M-family of vector bundles underlying the universal family of Higgs bundles Q̄. In

particular, since π : suppQ̄→ [E/Γ ] is finite, we see that Q̄ is Cohen–Macaulay. There-

fore, we need to show that the equivalence Ψ : Db
coh([T

∗E/Γ ])∼= Db
coh(M∨) sends Q̄ to a

Cohen–Macaulay sheaf P̄ on M ×A M∨.

Z

[T∗E/Γ ] M∨

p q

The universal Γ -cluster is endowed with a line bundle K and Ψ can be written as

Rq∗(Lp∗ − ⊗LK).
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Because q is a finite morphism and K is a line bundle,

Ψ (Q̄)= R(id × q)∗(L(id × p)∗Q̄ ⊗L K)

is Cohen–Macaulay if and only if Lp∗Q̄ is Cohen–Macaulay. Lemma 2.3 of [3] implies

Cohen-Macaulyness of this pullback, if M ×A [T∗E/Γ ] is Gorenstein, (id × p) is Tor-

finite and M ×A Z is Cohen–Macaulay. Tor-finiteness of p follows from smoothness

of M and is preserved by base change along a flat morphism. The two fiber products

M ×A [T∗E/Γ ] and M ×A M are locally complete intersections (see tags 01UH, 01UI in

[55]), and
M ×A Z →M ×A M

is a finite morphism, which implies Cohen-Macaulayness of M ×A Z. �

We obtain a similar result for moduli spaces of flat connections, which should

be seen as an instance of the Geometric Langlands correspondence.

Theorem 4.14. Let Ms
dR([̂E/Γ ], Q, λ) denote the moduli space of local systems studied

in Section 4.2. We have a natural equivalence of derived categories

ΦGL : Dqcoh(Ms
dR([̂E/Γ ], Q, λ))∼= Dqcoh([E

∨/Γ ], D[E∨/Γ ]). �

Proof. For a smooth stack Y, let us denote by D(Y) the canonical ∞-enhancement of the

derived category of D-modules on Y, to which we have already alluded to in the proof of

Proposition 4.10. According to Theorem 4.7, we have an equivalence

QC (E�)∼=D(E∨).

Taking Γ -equivariant objects, that is, utilizing the same construction as in the proof of

Lemma 3.3, we recover the above equivalence. �

5 Hilbert Schemes, Higgs Bundles, and Local Systems

If Q is a graph with a marked vertex v, we denote by Q′ the quiver obtained by adjoining

an extra edge, linking v with a new vertex v′. If λ is a dimension vector for Q, we denote

by λ′ the dimension vector satisfying

λ′|Q = λ,

and λ′(v′)= 1.
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If Q is a Dynkin diagram, then the associated affine Dynkin diagram Q̃ has a

marked vertex v, called the affine vertex. In this section, we discuss the geometric analog

for moduli spaces of Higgs bundles and local systems of the transition

Q̃� Q̃′.

5.1 Hilbert schemes as moduli spaces

Theorem 5.1. Let k be an algebraically closed field of characteristic zero or p>

max(|Γ |,n). We denote by M the moduli spaces of parabolic Higgs bundles Ms
Dol(Q, λ)

from Theorem 4.1. Then the Hilbert scheme M[n] is again a moduli space of Higgs bun-

dles. More precisely, we have

M[n] ∼=Ms
Dol(Q̃

′, (nλ)′),

where the weights at the marked point corresponding to 0 ∈ E are αi := i
n for i <nand 1>

αn>
n−1

n , and all the other weights are given by the canonical weights; and the orbifold

degree is 0. The Hitchin map M[n] →An factors through the Hilbert–Chow map

M[n] →M(n) →A(n)
1 =An,

where M(n) →A(n)
1 is the map induced by Mn →An

1. �

In the case of Q = Ã0, this is a theorem of Gorsky–Nekrasov–Rubtsov [23,

Section 5.1].

Proof. Theorems 3.9 and 4.13 imply that we have an equivalence

Db
coh(M)∼= Db

coh([T
∗E/Γ ]),

defined relative to A1. In particular, we can show as in Lemma 4.6 that the moduli stack

of length ntorsion sheaves on M is equivalent to the moduli stack of Γ -equivariant rank

n admissible Higgs bundles on E :

T (M)∼=MDol([E/Γ ],n).

As in the proof of Theorem 4.1, we see that under this equivalence a morphism OM →F
corresponds to a linear map τ∗(V∨ ⊗ O/L−1

0 )→ k, where (V, θ) is the Γ -equivariant Higgs
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bundle associated to F ∈ T . But

τ∗(V∨ ⊗ O/L−1
0 )∼= E∨

0 /F ∨
1 .

In particular, we obtain a nontrivial linear map

k→ Fn0−1,

by dualizing, that is, a nonzero vector v ∈ Fn0−1.

We claim that the condition that OM →F is surjective, equivalent to the fact

that (V, θ, v) does not contain any degree 0 Higgs subbundles containing v.

Let us assume that OM is surjective. If (V, θ, v) contains a nontrivial degree

0 Higgs subbundle, which contains v, then there is a smallest such Higgs subbundle

(V ′, θ, v) of rank k<n. In particular, its transform G gives rise to a commutative diagram

OM

G

F

Because the horizontal arrow is surjective and W is a length k torsion sheaf, this is a

contradiction.

Similarly, one shows that if (V, θ, v) does not contain a nontrivial degree 0

Higgs subbundle containing v, then the corresponding morphism OM →F is surjective.

Namely, if it is not surjective, its image gives rise to a nontrivial Higgs subbundle of

(V, θ, v) containing v. Stability is checked as in the proof of Theorem 4.1.

We obtain a morphism of An-spaces

M[n] →Ms
Dol(Q̃

′, (nλ)′),

as the type of the corresponding parabolic bundle can be checked for a single point,

by connectivity of the moduli spaces, for instance over the locus of smooth spectral

curves. Properness of the Hitchin morphism and the fact that both spaces have equal

dimension and are connected, imply that this morphism is surjective. In particular,

we may conclude that every parabolic Higgs bundle in Ms
Dol(Q̃

′, (nλ)′) is admissible.

This implies that the above morphism is an isomorphism, with the inverse given by the

inverse Fourier–Mukai transform. �

There is an analogous statement for moduli spaces of local systems that is

proved by the same means as the Theorems 4.12 and 5.1. The role of the derived
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equivalence Db
coh(T

∗E)∼= Db
con(T

∗E∨) is taken by Laumon–Rothstein’s geometric class

field theory (Theorem 4.7).

Theorem 5.2. Let k be an algebraically closed field of characteristic zero or p>

max(|Γ |,n). We denote by M one of the moduli spaces of parabolic local systems

Ms
dR(Q, λ) from Theorem 4.12 defined over k. Then the Hilbert scheme M[n] is again a

moduli space of local systems. More precisely, we have

M[n] ∼=Ms
dR(Q̃

′, (nλ)′),

where the weights αi are as in Theorem 5.1, the orbifold degree is fixed to be 0 and the

eigenvalues of the residues are given by ωi := αi for i <n and ωn := αn−1. �

Remark 5.3. The reader might be wondering whether the moduli spaces of Theorems 5.1

and 5.2 are related via nonabelian Hodge theory [51]. According to [51, Table, p. 720], the

weight α and eigenvalue b + ic of the residues of a parabolic Higgs bundle give rise to

weight α − 2b and eigenvalue α + i2c of the corresponding parabolic local system. In our

case, the eigenvalues are zero in the Higgs case (nilpotent residue). In particular, we see

that these Higgs bundles correspond to local systems with the same weights, but eigen-

values given by the weights. Comparing weights and eigenvalues in the local system

case, as given by Theorem 5.2, one sees that the two moduli spaces do not correspond to

each other with respect to nonabelian Hodge theory. �

5.2 Derived equivalences

We begin this subsection with the following observation. We refer the reader to [44,

Proposition 8], where this result is proved for varieties defined over the field of complex

numbers.

Lemma 5.4. Let X and Y be two quasi-projective smooth surfaces defined over an

algebraically closed field of characteristic p>n. If we have an equivalence of derived

categories

Db
coh(X)∼= Db

coh(Y)

of Fourier–Mukai type, then this induces an equivalence

Db
coh(X

[n])∼= Db
coh(Y

[n])

of Fourier–Mukai type. �
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Proof. Lemma 3.7 allows us to take the nth power of the equivalence Db
coh(X)

∼= Db
coh(Y),

Db
coh(X

n)∼= Db
coh(Y

n).

On both spaces we have a natural action of the symmetric group Sn by permuting the fac-

tors. The integral kernel is a sheaf naturally endowed with an Sn-equivariant structure;

therefore, we may apply Lemma 3.8 and conclude that

Db
coh([X

n/Sn])∼= Db
coh([Y

n/Sn]).

Together with Corollary 3.12, we obtain

Db
coh(X

[n])∼= Db
coh(Y

[n]). �

Theorem 5.5. We denote by M[n] the moduli space of parabolic Higgs bundles associ-

ated to [E/Γ ] of Theorem 5.1. By M∨[n], we denote the same moduli space for ̂[E∨/Γ ].

Both moduli spaces M[n] and M∨[n] are A-spaces, where A is the Hitchin base. Under the

assumptions of Lemma 5.4, there is a canonical equivalence of derived categories

Db
coh(M[n])∼= Db

coh(M∨[n]),

relative to A. The integral kernel of this derived equivalence is a Cohen–Macaulay sheaf

P̄ on M[n] ×A M∨[n], which restricts to the Poincaré bundle P over the locus of smooth

spectral curves Asm. �

Proof. This is a consequence of Theorem 5.1 and Lemma 5.4. Note that the construc-

tion in the proof of this lemma respects the morphism to the Hitchin base (due to

Lemma 3.10). The last two assertions are verified as in the proof of Theorem 4.13, with

the single exception that this time the sheaf Q̄ cannot be thought of as a universal fam-

ily of Higgs bundles. Therefore, Cohen-Macaulayness has to be established by differ-

ent means. The sheaf Q̄ is the transform of the structure sheaf OZ of the universal

Sn-cluster on M[n] ×A [Mn/Sn] along the equivalence Db
qcoh([M

n/Sn])∼= Db
qcoh([M

∨n/Sn]); we

denote the integral kernel of the latter equivalence by R, and it is Cohen–Macaulay

according to Theorem 4.13 and Lemma 3.7. Let ι : Z → [Mn/Sn] be the canonical mor-

phism; [3, Lemma 2.3] implies that Lι∗R is Cohen–Macaulay, since Z is finite over M[n]

and therefore Cohen–Macaulay itself. The natural morphism π : Z →M[n] is finite, and

so is every base change thereof. In particular, we obtain that the transform of OZ is

Cohen–Macaulay, as we wanted. �
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Similarly, one obtains an analog for local systems.

Theorem 5.6. We denote by M[n] the moduli space of parabolic local systems asso-

ciated to the weighted curve [̂E/Γ ] studied in Theorem 5.2. Under the assumptions of

Lemma 5.4, there is a canonical equivalence of derived categories

Dqcoh(M[n])∼= Dqcoh([[E/Γ ]n/Sn], D[[E/Γ ]n/Sn]). �

5.3 Moduli of parabolic local systems in positive characteristic

In a previous paper [24], the author investigated a general relation between the mod-

uli stacks and spaces of local systems and Higgs bundles on a curve X defined

over an algebraically closed field k of positive characteristic. Extending a result from

Bezrukavnikov–Braverman [9], it is shown there that the two moduli stacks are étale

locally equivalent over the Hitchin base. The Hitchin map for local systems exists only

in positive characteristic and is constructed using the p-curvature [33].

Let E be an elliptic curve, the moduli space of rank 1 and degree 0 Higgs bundles

on E is given by T∗E∨; the moduli space of local systems MdR is an extension of E∨ by

the vector space A= H0(E,Ω1
E ). The Hitchin map for local systems is a map

χdR :MdR →A(1),

where A(1) denotes the Frobenius twist of the variety A. Let ω ∈ H0(E,Ω1
E ); [30, formula

2.1.16] asserts that

τ := χdR(OE ,d+ ω) : A→A(1)

is a sum of a p-linear and a linear map. Since A is a 1D vector space, we may assume

without loss of generality that this morphism is given by the Artin–Schreier morphism

AS : A1 → A1,

which sends λ→ λp − λ. In particular, this morphism is étale. This is an explicit con-

struction of an étale local section of the Hitchin morphism MdR →A(1), that is, étale

locally around every a∈A(1) we assign a solution to the equation a= χdR(O,d+ ω).

Any other local system (E,∇) over a can now be tensored with (O,d+ ω)∨ to obtain

(E,∇′), which is a flat connection of p-curvature zero. According to a theorem of Cartier,

such local systems are in bijection with line bundles on the Frobenius twist E (1) [31,
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Theorem 5.1.1]. We conclude that after base change along τ, we obtain a natural isomor-

phism (The author thanks C. Pauly for explaining this example to him.)

MdR ×A(1) A∼= (E (1),∨ × A(1))×A(1) A.

One would expect that this étale local equivalence induces a similar comparison

result for Γ -Hilbert schemes of the cotangent bundle of E (1) and MdR(E), respectively.

Theorems 4.1 and 5.1 suggest that a similar étale local equivalence holds as well for

certain moduli spaces of parabolic local systems. In paper [41], Nevins establishes this

local equivalence on the locus of regular spectral curves (in the mirabolic case) in order

to generalize Bezrukavnikov–Braverman’s work on the Geometric Langlands correspon-

dence in positive characteristic to the mirabolic case.

Strictly speaking, the parabolic case is not covered by the authors paper [24], as

we assume there that X is a curve. Nonetheless, the same methods used there to deduce

the étale local equivalence of local systems and Higgs bundles, apply to orbicurves as

well. The proof of the following proposition can also be found in the work of Poma [45].

Proposition 5.7. Let X be a smooth complete orbicurve defined over an algebraically

closed field k of characteristic p, satisfying Assumption 2.13. Then the moduli stack of

rank n local systems MdR(X,n) is étale locally equivalent to MDol(X(1),n) relative to the

Hitchin base A(1). The same assertion holds for (semi)stable local systems and Higgs

bundles. �

Proof. The only part of the proof that is sensitive to orbifold structures is [24,

Theorem 3.4]. But as before it suffices to show that every Gm-gerbe neutralizes on a

smooth complete orbicurve Y defined over an algebraically closed field. After this is

established, one can evoke the same argument as in [24] to deduce representability of

the stack of splittings; the corresponding result for the Picard stack is proved in [1,

Theorem 5.1]. As in the curve case, one expects to be able to deduce this from Tsen’s

Theorem [37, Ex. III.2.22(d)], which states that for a smooth curve defined over an alge-

braically closed field k, every Gm-gerbe neutralizes over the generic point

H2
et(Spec K(X),Gm).

It turns out that the argument of [37] applies to our situation, after some small mod-

ifications. Let U ⊂ X be a maximal schematic open subset of X; we have K(X)= K(U )
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due to the birational nature of K(X). We denote by K×
X the sheaf of nonvanishing ratio-

nal function on X; the sheaf-theoretic quotient K×
X/O×

X is the sheaf of divisors DivX. By

definition, we have a short exact sequence

1 →O×
X →K×

X → DivX → 1,

called Weil divisor sequence. Taking global sections, we obtain the following interesting

bit of the associated long exact sequence

H1
et(X,DivX)→ H2

et(X,O×
X)→ H2

et(X,K×
X).

The complement X − U is a union of finitely many orbifold points p1, . . . , pk, with stabi-

lizer group Γi. We then have

DivX =
⊕

x∈U (k)

ix,∗Z ⊕
k⊕

i=1

ji,∗Z,

where ix denotes the closed immersion Spec k→ X associated to a point x ∈ U , and ji

denotes the closed immersion

BΓi → X

associated to an orbifold point pi. Since closed immersions are finite, we have Rlix,∗ = 0

and Rl ji,∗ = 0 for l > 0. In particular, we obtain the vanishing result H1
et(X,DivX)= 0.

Let η : Spec K(X)→ X denote the inclusion of the generic point. We have

K×
X = η∗Gm,

and therefore have to show that Rlη∗Gm = 0 for l > 0. As in [37] this is checked stalkwise,

by identifying (Rlη∗Gm)x̄ for every x different from the generic point with the Galois

cohomology group

Hl(Spec Kx,Gm)= 0,

where Kx denotes the fraction field of the Henselization of x and evoking a vanishing

result in Galois cohomology due to Lang. �
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