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New explicit finite element error bounds are presented for approximation by
(1) piecewise linear elements over triangles and
(2) piecewise bilinear elements over squares and rectangles.

By this the error bounds given in Barnhill, Brown & Mitchell (1981) are improved.

1. Introduction

LET G c R2 be an open and bounded region with polygonal boundary dG and let
fe L2(G). We consider the elliptic boundary value problem

I [Vu(x, y)• V»(x, y)-f(x, y)v{x, y)] dx dy = 0,
J G , , (1.1)

Vi»6/fJ(C), uetfJ(G),

which is the weak form of the classical boundary value problem

Au(x,y)+f(x,y) = 0 (x,y)eG ,
u{x,y) = 0 (x,y)edG.

The solution u of (1.1) is known to be in #J(G) (Ciarlet, 1978). If G is convex, Barnhill
& Wilcox (1977) have shown that u e H2(G) and that the inequality

2 . O . C L ] ( C , (1-3)

holds, where

Mlc == \ [a«,«(x>y)a + 2flje,«(x,y)2 + awH(x,y)2] dxdy. (1.4)
JG

We will solve the problem (1.1) by the finite element method (Schwarz, 1980):
the region G is subdivided in triangles or in squares (if possible). The finite
element space Vk c Hl(G) consists of continuous functions which are piecewise linear
or bilinear polynomials in the triangles or squares, respectively. (The index h in VH
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indicates a measure of the fineness of the subdivisions of G.) The problem (1.1) is
solved in Vk giving a finite element solution U which satisfies (Strang & Fix, 1973)

\u-U\lc:=\ \V(u-U)(x,y)\2dxdy^\u-0\lc, V 0 e Vk. (1.5)
JG

In this paper new error bounds are derived for \u — t/|i,c and for \u — U\oa improving
the bounds given in Barnhill et al. (1981).

2. Error Bound for Triangular Elements

The linear interpolant on the triangle T with vertices (0,0), (1,0) and (0,1) is

QTu(x,y):=(l-x-y)u(0,0)+xu(l,0)+yu(0,l), u e C(S). (2.1)

We define the interpolation error function by

eu(x,y):=u(x,y)-QTu(x,y). (2.2)

Barnhill et al. (1981) gave the tf'-bound

|«J, .T*S1-2Q7|U|2 .T , ueH2(T)- (2.3)

This bound can be improved. Consider an arbitrary u e H2(T). By Sobolev's
imbedding theorem (Ciarlet, 1978) u e C(T).so that QTu is defined. As all second
derivatives of QTu vanish, we have

r=l«l2.r- (2-4)

|e|j and \e\2 are norms on the error functions space

E = {e e H2(TM0, 0) = e(l,0) = «(0,1) = 0}.

With (2.3) we find that

^W = n F . ee£\{0} (2.5)
l e l l ,T

is bounded below by a positive constant (i.e. 1-207"2). We consider (2.5) as the
Rayleigh quotient of the eigenvalue problem whose variational form is:

find (A, V) e R x (£\{0}) such that

I, v dzyw+d,,v djyW'] dx dy—
T

| = 0, V w e E. (2.6)

Applying Green's formula, we obtain from (2.6) for sufficiently smooth v and w

f ,., , . f , , , , f , , , f a a , «
(A v + /Av)w dx dy— (o,av + Xdmv)w ds+ dmv omw ds+ I dMv d,w ds = 0.

Jr JiT JtT JPT (2.7)
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On the edges of the triangle Tdt = ds, thus

(2.8)dntvd,wds = -\ dMvwds,

because w vanishes in the corners of T.
Putting (2.8) into (2.7) we obtain the classical form of (2.6)

A 2 U ( J C , y) = - kAv(x, y) ( x , y ) e T

»(o,o) = !>(i,o) = »«),i) = o ( 2 9 )

dnv(x,y) = 0 (x,y)edT

dHbv{x,y)+dnav(x,y) + Xdmv(x,y) = O (x,y)edT.

With the first eigenvalue itx of (2.9) we have

M i . r ^ r ' l e k r . VeeE. (2.10)

Equality holds if e = D,, vt being the first eigenfunction of (2.9). In this sense (2.7) is
optimal, /i, was computed to a high precision using C'-finite elements. We could
achieve the inclusion

418673 ^ /ix s£ 418674.

With this (2.10) becomes

l«-Qr«l1.T^0-4888|u|2.r. (2.11)

Transformation on the triangle Tk with vertices (0,0), [h, 0), (0, h) gives

v (2.12)

3. Error Bound for Square Elements

The bilinear interpolant on the square S with vertices (0, 0), (1, 0), (1,1) and (0,1)
is defined by

Qs"(x, y) = (1 -x)(l -yHO, 0) + (l -x)yu(l, 0) +
jc(l-yM<U) + xyw(l,l), ueC(S). (3.1)

We define the interpolation error function by

em(x,y) = u(x,y)-Qsu(x,y) (3.2)

and the space of all possible error functions obtained by interpolating functions in
H2(S) by

E = {v e H2(S)\v(0,0) = o(l,0) = !>(0,1) = »(l, 1) = 0}.

Barahill et al. (1981) gave the error bound

\ejus ^ O625|«|,.s, ueH2(S). (3.3)

As in the former section this bound can be improved. Consider an arbitrary
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u e H2{S). Qsu is again defined. Here K2su|2-S / 0 due to the xy-terms in (3.1)! But
dxyQsu(x,y) is a constant and because

I I dx,e{x,y)dydx=\ [3,e(x, l)-d,e(x,0)] dx
Jo Jo Jo

0,0) = 0I V e e £, (3.4)

it follows that

o Jo

n r r1 ci , (35)

— kJls+4 o^e^d^Qsudxdy + 2 oxyQsu dxdy
Jo Jo Jo Jo

s ^ kJi.s, V u e H2(S).

Therefore we can argue as in Section 2 and compute a new bound by minimizing the
Rayleigh quotient

in £\{0}. The minimum /ij = n2 is attained for functions in the two-dimensional
subspace of £ spanned by sin nx and sin ny. With this and the use of (3.5) we obtain
the inequality

-Qs«|2.s ( 3 6 )

< 0-3l84|M|2tS, V u e H2(S).

Transformation on the square Sk = (0, h) x (0, h) gives

l«-Qj.«li.s^0-3184fc|tt|iSi. (3.7)

Remark: For a rectangle with sidelengths hx and h2 > ht (3.7) holds with h = h2.

4. Numerical Results

The new bounds (2.12) and (3.7) are compared with the bounds in Bamhill et al.
(1981) and with the numerical results given therein. The three test problems
considered there have known solutions. Therefore the theoretical (upper) bounds can
be compared with corresponding computable values (Barnhill et al., 1981)

l""Jf = 1 . 2 : M = S,T, (4.1)
where u is the actual solution and UM its approximant in a finite element space of
mesh width h consisting of triangular (M =• T) or square (M = S) elements. Each test
problem was solved with three different mesh sizes h giving nine numbers KP

M for each
pair (p, M). The results are summarized in Table 1.

The bounds
(4-2)
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TABLE 1

Range of computable values K?M Bounds in Bamhill et al. (1981) Our bounds

0-1489 sj K\ < 02519 0-7906 0-3184
00405 s£ K\ ^ 00761 0-6250 0-1014
0-1517 < K\ < 0-3466 1-207 0-4888
0-0417 j£Kf«: 0-1333 1-457 02389

and

l"-t/slo.S«S0-1014fc2|/lo (4.3)

are obtained from (2.12) and (3.7) using the so-called Nitsche trick (Ciarlet, 1978).

5. Concluding Remarks

The error bounds seem to be useful for problems of the form (1.1) on convex
domains G.

For the three test problems the theoretical bounds are near to the greatest values of
KL, p = 1, 2, M = S, T. K\- and K^ arc overestimated by factors from 1-2 to 3-2, KT

and Ks by factors from 1-3 to 5-7. So the upper bounds are of the correct order. The
bounds are better for the energy norm than for the L2-norm which is clear because the
L2-norm bounds have been obtained only indirectly.

In another approach to Poisson's equation Kuttler (1979) gives the inequality

\»-4>\o.G .«;

and determines the constants ct and c2 explicitly. Here u is the solution of (1.2), \f/ an
arbitrary approximation in the domain of A. This inequality is not applicable on finite
element approximations because piecewise linear or bilinear functions arc not
elements of the domain of the Laplace operator.
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