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Abstract:This paper is dedicated to the consistencyof systemic riskmeasureswith
respect to stochastic dependence. It compares two alternative notions of Condi-
tional Value-at-Risk (CoVaR) available in the current literature. These notions are
both based on the conditional distribution of a random variable 𝑌 given a stress
event for a randomvariable𝑋, but they use different types of stress events. We de-
rive representations of these alternativeCoVaR notions in terms of copulas, study
their general dependence consistency and compare their performance in several
stochastic models. Our central finding is that conditioning on𝑋 ≥ VaR

𝛼
(𝑋) gives

a much better response to dependence between 𝑋 and 𝑌 than conditioning on
𝑋 = VaR

𝛼
(𝑋). We prove general results that relate the dependence consistency

ofCoVaR using conditioning on𝑋 ≥ VaR
𝛼
(𝑋) to well established results on con-

cordance ordering of multivariate distributions or their copulas. These results
also apply to some other systemic risk measures, such as the Marginal Expected
Shortfall (MES) and the Systemic Impact Index (SII). We provide counterexam-
ples showing that CoVaR based on the stress event 𝑋 = VaR

𝛼
(𝑋) is not depen-

dence consistent. Inparticular, if (𝑋, 𝑌) is bivariatenormal, thenCoVaRbasedon
𝑋 = VaR

𝛼
(𝑋) is not an increasing function of the correlation parameter. Similar

issues arise in the bivariate 𝑡model and in the model with 𝑡margins and a Gum-
bel copula. In all these cases, CoVaR based on 𝑋 ≥ VaR

𝛼
(𝑋) is an increasing

function of the dependence parameter.
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1 Introduction

The present paper studies the notion of Conditional Value-at-Risk (CoVaR) intro-
duced by Adrian and Brunnermeier (2008) as a dependence adjusted version of
Value-at-Risk (VaR). The general idea behindCoVaR is to use the conditional dis-
tribution of a randomvariable𝑌 representing a particular financial institution (or
the entire financial system) given that another institution, represented by a ran-
dom variable𝑋, is under stress.CoVaR represents one of themajor threads in the
current regulatory and scientific discussion of systemic risk, which significantly
intensified after the recent financial crisis. The current discussion on systemic
riskmeasurement is far from being concluded, and the competing methodologies
are still under development. In addition to systemic risk measures (cf. Acharya
et al. (2010), Adrian and Brunnermeier (2008, 2010), Girardi and Ergün (2013),
Goodhart and Segoviano (2008), Huang et al. (2012), Zhou (2010)), related topics
include the structure of interbank networks, e.g., Boss et al. (2004), Cont et al.
(2013), models explaining how systemic risk is created, e.g., Choi and Douady
(2012), Ibragimov and Walden (2007), and attribution of systemic risk charges
within a financial system, as discussed in Staum (2012), Tarashev et al. (2010).
Also the recent survey by Bisias et al. (2012) provides an extensive overview of
different measures in the literature.

Our contribution addresses the consistency of systemic riskmeasureswith re-
spect to the dependence in the underlying stochasticmodel. In the case ofCoVaR
we give a strong indication for the choice of the stress event for the conditioning
random variable𝑋. There are two alternative definitions ofCoVaR in the current
literature. The original definition in Adrian and Brunnermeier (2008, 2009, 2010)
is derived from the conditional distribution of 𝑌 given that 𝑋 = VaR

𝛼
(𝑋). The

second one uses conditioning on𝑋 ≥ VaR
𝛼
(𝑋). This modification was proposed

by Girardi and Ergün (2013) to improve the compatibility of CoVaR with non-
parametric estimation methods. For similar reasons, such as continuity and bet-
ter compatibility with discrete distributions, conditioning on 𝑋 ≥ VaR

𝛼
(𝑋) was

also favoured by Klyman (2011) for both CoVaR and Conditional Expected Short-
fall (CoES). Finally, it is remarkable that most competitors ofCoVaR (cf. Acharya
et al. (2010), Goodhart and Segoviano (2008), Huang et al. (2012), Zhou (2010))
use conditioning on 𝑋 ≥ VaR

𝛼
(𝑋) as well. This approach goes in line with the

general concept of stress scenarios discussed in Balkema and Embrechts (2007).
Our results show that conditioning on 𝑋 ≥ VaR

𝛼
(𝑋) has great advantages

for dependence modelling. We prove that this modification of CoVaR makes it
respond consistently to dependence parameters in many important stochastic
models, whereas the original definition of CoVaR fails to do so. The counterex-
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amples even include the bivariate Gaussian model, where the original CoVaR is
decreasing with respect to the correlation 𝜌 := corr(𝑋, 𝑌) for 𝜌 > 1/√2. Thus,
CoVaR based on {𝑋 = VaR

𝛼
(𝑋)} fails to detect systemic risk when it is most pro-

nounced; and we also found this kind of inconsistency in other examples. On the
other hand, our findings for the modified CoVaR relate its dependence consis-
tency to concordance ordering of multivariate distributions or related copulas.
This may explain the comparative results in Gauthier et al. (2012), where CoVaR
stood somewhat apart from its competitors. Moreover, it gives themodified notion
of CoVaR a solid mathematical basis.

Besides CoVaR, we also discuss extensions to Conditional Expected Short-
fall (CoES). It turns out that the dependence inconsistency or dependence consis-
tency of the alternativeCoVaR notions is propagated to the corresponding defini-
tions of CoES. The dependence consistency results for CoVaR and CoES, based
on the stress scenario𝑋 ≥ VaR

𝛼
(𝑋), also apply to the Marginal Expected Short-

fall (MES) defined in Acharya et al. (2010) and to the Systemic Impact Index (SII)
introduced in Zhou (2010).

Thepaper is organizedas follows. Basic notationandalternativedefinitionsof
CoVaR andCoES are given in Section 2. In Section 3we present the general math-
ematical results, including representations ofCoVaR in terms of copulas and con-
sistency of the modified CoVaR or CoES with respect to dependence character-
istics. Section 4 contains a detailed comparison of the original and the modified
CoVaR in threedifferentmodels: thebivariatenormal, thebivariate 𝑡distribution,
and a bivariate distributionwith 𝑡margins and a Gumbel copula. Conclusions are
stated in Section 5.

2 Basic definitions and properties
Let𝑋 and𝑌 be random variables representing the profits and losses of two finan-
cial institutions, such as banks. Focusing on risks, let 𝑋 and 𝑌 be random loss
variables, so that positive values of𝑋 and 𝑌 represent losses, whereas the gains
are represented by negative values.

The issues of contagion and systemic stability raise questions for the joint
probability distribution of𝑋 and𝑌:

𝐹
𝑋,𝑌
(𝑥, 𝑦) := P(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦).

The correspondingmarginal distributionswill be denoted by𝐹
𝑋
and𝐹

𝑌
. Provided

a method to quantify the loss or gain of the entire financial system, 𝐹
𝑋,𝑌

can also
represent the joint loss distribution of a bank𝑋 and the system 𝑌.
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In the current banking regulation framework (Basel II and the so-called Basel
2.5), the calculation of risk capital is based on measuring risk of each institution
separately, with Value-at-Risk (VaR) as a risk measure. The Value-at-Risk of a ran-
dom loss𝑋 at the confidence level 𝛼 ∈ (0, 1) is the 𝛼-quantile of the loss distribu-
tion 𝐹

𝑋
(cf. McNeil et al. (2005, Definition 2.10)). That is,

VaR
𝛼
(𝑋) = 𝐹

←

𝑋
(𝛼),

where𝐹←
𝑋
(𝑦) := inf{𝑥 ∈ ℝ : 𝐹

𝑋
(𝑥) ≥ 𝑦} is the generalized inverse of𝐹

𝑋
. Themost

common values of 𝛼 are 0.95 and 0.99.
For continuous and strictly increasing 𝐹

𝑋
the generalized inverse 𝐹←

𝑋
coin-

cides with the inverse function 𝐹−1
𝑋

of 𝐹
𝑋
. In this case one hasVaR

𝛼
(𝑋) = 𝐹

−1

𝑋
(𝛼)

for 𝛼 ∈ (0, 1). For a thorough discussion of generalized inverse functions we refer
to Embrechts and Hofert (2010).

In the present paper we discuss two alternative approaches to adjust VaR to
dependence between 𝑋 and 𝑌. This is achieved by conditioning the distribution
of 𝑌 on a stress scenario for 𝑋. These two notions appear in the recent literature
under the nameConditional Value-at-Risk (CoVaR), but they use different kinds of
stress scenarios. The original notion was introduced by Adrian and Brunnermeier
(2008, 2009, 2010) and will henceforth be denoted by CoVaR=. The alternative
definition was proposed by Girardi and Ergün (2013). We denote it by CoVaR.

Definition 2.1. CoVaR
=

𝛼,𝛽
(𝑌|𝑋) := VaR

𝛽
(𝑌|𝑋 = VaR

𝛼
(𝑋));

CoVaR
𝛼,𝛽
(𝑌|𝑋) := VaR

𝛽
(𝑌|𝑋 ≥ VaR

𝛼
(𝑋)).

The computation of CoVaR= requires the knowledge of 𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)

. If 𝐹
𝑋,𝑌

has
a density 𝑓

𝑋,𝑌
, then 𝑓

𝑋
(𝑥) = ∫

∞

−∞

𝑓
𝑋,𝑌
(𝑥, 𝑦)𝑑𝑦 is a density of 𝐹

𝑋
, and

𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)
(𝑦) =

∫
𝑦

−∞

𝑓
𝑋,𝑌
(VaR
𝛼
(𝑋), 𝑡) d𝑡

𝑓
𝑋
(VaR
𝛼
(𝑋))

,

provided that𝑓
𝑋
(VaR
𝛼
(𝑋)) > 0. In somemodels, such as elliptical distributions,

𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)

is known explicitly. In general, however, computation of 𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)

requires numerical integration.
Conditioning on 𝑋 ≥ VaR

𝛼
(𝑋) is less technical. The definition of VaR

𝛼
(𝑋)

implies thatP(𝑋 ≥VaR
𝛼
(𝑋)) ≥ 1−𝛼, so that elementary conditional probabilities

are well defined. In particular, if 𝐹
𝑋
is continuous, then

𝐹
𝑌|𝑋≥VaR

𝛼
(𝑋)
(𝑦) =

P(𝑌 ≤ 𝑦,𝑋 ≥ VaR
𝛼
(𝑋))

1 − 𝛼
.

Moreover, conditioning on events with positive probabilities is advantageous in
statistical applications, includingmodel fitting and backtesting. This is the major
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reason why the original notion ofCoVaR= wasmodified toCoVaR in Girardi and
Ergün (2013).

A straightforward extension from CoVaR to Conditional Expected Shortfall
(CoES) is based on the representation ES

𝛽
(𝑌) =

1

1−𝛽

∫
1

𝛽

VaR
𝑡
(𝑌)d𝑡.

Definition 2.2.

CoES
𝛼,𝛽
(𝑌|𝑋) :=

1

1 − 𝛽

1

∫

𝛽

CoVaR
𝛼,𝑡
(𝑌|𝑋)d𝑡, (2.1)

CoES
=

𝛼,𝛽
(𝑌|𝑋) :=

1

1 − 𝛽

1

∫

𝛽

CoVaR
=

𝛼,𝑡
(𝑌|𝑋)d𝑡. (2.2)

Remark 2.3. (a) In precise mathematical terms,CoVaR=
𝛼,𝛽

andCoVaR
𝛼,𝛽

are the
𝛽-quantiles of the conditional distributions 𝐹

𝑌|𝑋=VaR
𝛼
(𝑋)

and 𝐹
𝑌|𝑋≥VaR

𝛼
(𝑋)

:

CoVaR
=

𝛼,𝛽
(𝑌|𝑋) = 𝐹

←

𝑌|𝑋=VaR
𝛼
(𝑋)
(𝛽);

CoVaR
𝛼,𝛽
(𝑌|𝑋) = 𝐹

←

𝑌|𝑋≥VaR
𝛼
(𝑋)
(𝛽).

(b) In Adrian and Brunnermeier (2008, 2010), Girardi and Ergün (2013), Jaeger-
Ambrozewicz (2010), the authors work with a common confidence level for 𝑋
and 𝑌, i.e., the special case 𝛼 = 𝛽. Similarly to the notation used there, we will
omit 𝛽 if 𝛽 = 𝛼 and write CoVaR

𝛼
instead of CoVaR

𝛼,𝛼
if it does not lead to

confusion. However, the definition of CoES requires separate confidence levels
for𝑋 and 𝑌 in the integrand CoVaR

𝛼,𝑡
(𝑌|𝑋).

(c) SinceCoES
𝛼,𝛽
(𝑌|𝑋) = ES

𝛽
(𝑍) for a random variable𝑍 ∼ 𝐹

𝑌|𝑋≥VaR
𝛼
(𝑋)

, the co-
herence of ES in the sense of Artzner et al. (1999) is inherited by CoES

𝛼,𝛽
for

all 𝛼, 𝛽 ∈ (0, 1). The central point here is subadditivity, which is understood as

CoES
𝛼,𝛽
(𝑌 + 𝑌



|𝑋) ≤ CoES
𝛼,𝛽
(𝑌|𝑋) + CoES

𝛼,𝛽
(𝑌


|𝑋)

for any random variables (𝑌, 𝑌, 𝑋) defined on the same probability space.
(d) In Adrian and Brunnermeier (2008, 2010), CoES is defined as E[𝑌|𝑌 ≥

CoVaR
=

𝛼,𝛼
(𝑌|𝑋)]. Note that this definition replaces the stress scenario {𝑋 =

VaR
𝛼
(𝑋)} by {𝑌 ≥ CoVaR

=

𝛼,𝛼
(𝑌|𝑋)}, which is not directly related to 𝑋. Com-

pared toCoES=
𝛼,𝛽
(𝑌|𝑋), this definition is quite unnatural. Moreover, it does not

guarantee coherence, which is the central property of Expected Shortfall.
(e) The notion of Marginal Expected Shortfall (MES) introduced in Acharya et al.

(2010) is closely related to CoVaR and CoES. It is defined as

MES
𝛼
(𝑌|𝑋) := E[𝑌|𝑋 ≥ VaR

𝛼
(𝑋)]



54 | G.Mainik and E. Schaanning

where 𝑋 := ∑
𝑑

𝑖=1
𝑌
𝑖
is the financial system and 𝑌 := 𝑌

𝑖
for some 𝑖 is an institu-

tion. The idea behindMES is to quantify the insurance premia corresponding
to bail-outs which become necessary when the entire financial system is close
to a collapse. The major economic difference betweenMES and CoVaR is the
role of𝑋 and 𝑌. WithMES, the conditioning random variable𝑋 is the system,
and the target random variable𝑌 is a part of the system. In the original work on
CoVaR, 𝑌 is the system, and𝑋 is a part of it.
On the mathematical level,MES and CoVaR or CoES are quite close to each
other. It is easy to see that

MES
𝛼
(𝑌|𝑋) =

1

∫

0

𝐹
←

𝑌|𝑋≥VaR
𝛼
(𝑋)
(𝑡)𝑑𝑡 =

1

∫

0

CoVaR
𝛼,𝑡
(𝑌|𝑋)𝑑𝑡.

In view of (2.1), one could also writeMES
𝛼
(𝑌|𝑋) = CoES

𝛼,0
(𝑌|𝑋).

(f) In Klyman (2011),CoVaR
𝛼,𝛽

andCoES
𝛼,𝛽

in the sense of Definitions 2.1 and 2.2
are called DistVaR and DistES. Besides the different naming, the definitions
are essentially the same, and these notions are also compared toCoVaR= and
CoES

=. However, the comparison in Klyman (2011) is concentrated on general
representations, compatibility with discrete, e.g., empirical, distributions, and
the behaviour in the bivariate Black-Scholes model. As far as we are aware,
a study of consistency with respect to dependence parameters has beenmissing
so far.

The introduction of CoVaR= in Adrian and Brunnermeier (2008) aims not at
CoVaR

= itself, but at the contribution of a particular financial institution to the
systemic risk. In Adrian and Brunnermeier (2008), CoVaR= is used to construct
a risk contribution measure that should quantify how a stress situation for an
institution 𝑋 affects the system (or another institution) 𝑌. The authors propose
CoVaR

=

𝛼,𝛽
(𝑌|𝑋)

VaR
𝛽
(𝑌)

− 1 as a systemic risk indicator. In Adrian and Brunnermeier (2009),
the systemic risk measure is modified to

ΔCoVaR
=

𝛼,𝛽
(𝑌|𝑋) := CoVaR

=

𝛼,𝛽
(𝑌|𝑋) − VaR

𝛽
(𝑌). (2.3)

In Adrian and Brunnermeier (2010), the centring term VaR
𝛽
(𝑌) representing the

risk of𝑌 in an unstressed state is replaced by the conditionalVaR of𝑌 given that
𝑋 is equal to its median:

Δ
med

CoVaR
=

𝛼,𝛽
(𝑌|𝑋) := CoVaR

=

𝛼,𝛽
(𝑌|𝑋) − VaR

𝛽
(𝑌|𝑋 = med(𝑋)) (2.4)

to remedy some inconsistencies observed in a comparison of CoVaR= across dif-
ferent models.
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Unfortunately, the centring in (2.3) is not the only reason why ΔCoVaR= can
give a biased view of dependence between 𝑋 and 𝑌. The results presented be-
low demonstrate that there is a more fundamental issue that cannot be solved by
modifying ΔCoVaR= to ΔmedCoVaR= or taking any other centring term. The pri-
mary deficiency of ΔCoVaR= is that the underlying stress scenario𝑋 = VaR

𝛼
(𝑋)

is too selective and over-optimistic. If, for instance, 𝐹
𝑋
is continuous, then P(𝑋 =

VaR
𝛼
(𝑋)) = 0, so that this particular event actually never occurs. Generally speak-

ing, the ability of CoVaR=, ΔCoVaR=, or ΔmedCoVaR= to describe the influence
of 𝑋 on 𝑌 strongly depends on how well 𝐹

𝑌|𝑋=VaR
𝛼
(𝑋)

approximates 𝐹
𝑌|𝑋=𝑥

for
𝑥 ≥ VaR

𝛼
(𝑋). As shown in Section 4, this approximation fails even in very ba-

sic models, and it typically underestimates the contagion from𝑋 to 𝑌.

3 General results
We begin with representations of CoVaR= and CoVaR in terms of copulas. It is
well known that any bivariate distribution function 𝐹

𝑋,𝑌
admits the decomposi-

tion

𝐹
𝑋,𝑌
(𝑥, 𝑦) = 𝐶(𝐹

𝑋
(𝑥), 𝐹

𝑌
(𝑦)) (3.1)

where𝐶 is a probability distribution function on (0, 1)2 with uniformmargins (cf.
Joe (1997), Sklar (1959)). That is, there exist random variables 𝑈,𝑉 ∼ unif(0, 1)

such that 𝐶(𝑢, 𝑣) = P(𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣). The function 𝐶 is called a copula of 𝐹
𝑋,𝑌

.
If both 𝐹

𝑋
and 𝐹

𝑌
are continuous, then 𝐶 is uniquely determined by 𝐶(𝑢, 𝑣) =

𝐹
𝑋,𝑌
(𝐹
←

𝑋
(𝑢), 𝐹

←

𝑌
(𝑣)).

The decomposition (3.1) yields the following representation of CoVaR= and
CoVaR.

Theorem 3.1. Let (𝑈, 𝑉) ∼ 𝐶where𝐶 is a copula of 𝐹
𝑋,𝑌

. If𝐹
𝑋
is continuous, then

(a) CoVaR=
𝛼,𝛽
(𝑌|𝑋) = 𝐹

←

𝑌
(𝐹
←

𝑉|𝑈=𝛼
(𝛽)),

(b) CoVaR
𝛼,𝛽
(𝑌|𝑋) = 𝐹

←

𝑌
(𝐹
←

𝑉|𝑈≥𝛼
(𝛽)), and 𝐹

𝑉|𝑈≥𝛼
(𝑣) =

𝑣−𝐶(𝛼,𝑣)

1−𝛼

.

Proof. Part (a). It is well known that (𝐹←
𝑋
(𝑈), 𝐹

←

𝑌
(𝑉)) ∼ 𝐹

𝑋,𝑌
, and hence

𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)
(𝑦) = P(𝐹

←

𝑌
(𝑉) ≤ 𝑦|𝐹

←

𝑋
(𝑈) = 𝐹

←

𝑋
(𝛼)).

The functions 𝐹
𝑌
and 𝐹←

𝑌
are non-decreasing and satisfy 𝑣 ≤ 𝐹

𝑌
(𝐹
←

𝑌
(𝑣)) and

𝐹
←

𝑌
(𝐹
𝑌
(𝑦)) ≤ 𝑦 for all 𝑣 ∈ (0, 1) and𝑦 ∈ ℝ. This implies that𝐹←

𝑌
(𝑉) ≤ 𝑦 is equiva-

lent to𝑉 ≤𝐹
𝑌
(𝑦).Moreover, continuity of𝐹

𝑋
implies that𝐹←

𝑋
is strictly increasing,
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so that 𝐹←
𝑋
(𝑈) = 𝐹

←

𝑋
(𝛼) is equivalent to𝑈 = 𝛼. This yields

𝐹
𝑌|𝑋=VaR

𝛼
(𝑋)
(𝑦) = P(𝑉 ≤ 𝐹

𝑌
(𝑦)|𝑈 = 𝛼) = 𝐹

𝑉|𝑈=𝛼
(𝐹
𝑌
(𝑦)),

and the result follows from the chain rule for the generalized inverse.

Part (b). Analogously to Part (a), one obtains that

𝐹
𝑌|𝑋≥VaR

𝛼
(𝑋)
(𝑦) = P(𝑉 ≤ 𝐹

𝑌
(𝑦)|𝑈 ≥ 𝛼) = 𝐹

𝑉|𝑈≥𝛼
(𝐹
𝑌
(𝑦)),

and hence CoVaR
𝛼,𝛽
(𝑌|𝑋) = 𝐹

←

𝑌
(𝐹
𝑉|𝑈≥𝛼

(𝛽)). Since (𝑈, 𝑉) ∼ 𝐶 and the margins
of 𝐶 are uniform, we obtain that

𝐹
𝑉|𝑈≥𝛼

(𝑣) =
𝑃(𝑉 ≤ 𝑣, 𝑈 ≥ 𝛼)

𝑃(𝑈 ≥ 𝛼)
=
𝑣 − 𝐶(𝛼, 𝑣)

1 − 𝛼
.

Theorem 3.1(b) provides a link between the ordering of CoVaR and the notion of
concordance ordering.

Definition 3.2 (cf. Müller and Stoyan (2002, Definition 3.8.1)). Let (𝑋, 𝑌) and
(𝑋


, 𝑌


) be bivariate random vectors with 𝐹
𝑋
= 𝐹
𝑋

 and 𝐹
𝑌
= 𝐹
𝑌
 . Then (𝑋, 𝑌)

is smaller than (𝑋, 𝑌) in concordance order ((𝑋, 𝑌) ⪯ (𝑋, 𝑌) or, equivalently,
𝐹
𝑋,𝑌

⪯ 𝐹
𝑋


,𝑌

) if

∀𝑥, 𝑦 ∈ ℝ P(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) ≤ P(𝑋


≤ 𝑥, 𝑌


≤ 𝑦).

Remark 3.3. The following equivalent characterizations of (𝑋, 𝑌) ⪯ (𝑋, 𝑌) will
be used in in the sequel:
(a) 𝑃(𝑋 > 𝑥, 𝑌 > 𝑦) ≤ 𝑃(𝑋



> 𝑥, 𝑌


> 𝑦) for all 𝑥, 𝑦 ∈ ℝ;
(b) 𝐶 ⪯ 𝐶

 for the copulas of 𝐹
𝑋,𝑌

and 𝐹
𝑋


,𝑌

 if the margins are continuous;
(c) E𝑓(𝑋, 𝑌) ≤ E𝑓(𝑋, 𝑌) for all supermodular functions𝑓 : ℝ2→ℝ, i.e., for all

𝑓 satisfying

𝑓(𝑥 + 𝜀, 𝑦 + 𝛿) + 𝑓(𝑥, 𝑦) ≥ 𝑓(𝑥 + 𝜀, 𝑦) + 𝑓(𝑥, 𝑦 + 𝛿)

for all 𝑥, 𝑦 ∈ ℝ and all 𝜀, 𝛿 > 0. This order relation is called supermodular or-
dering (⪯

sm
).

For proofs and further alternative characterizations we refer to Müller and Stoyan
(2002, Theorem 3.8.2).

The central theoretical result of the present paper is the following.
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Theorem 3.4. Let (𝑋, 𝑌) and (𝑋, 𝑌) be bivariate random vectors with copulas𝐶
and 𝐶, respectively, and assume that 𝐹

𝑌
= 𝐹
𝑌
 .

(a) If 𝐹
𝑋
and 𝐹

𝑋
 are continuous, then 𝐶 ⪯ 𝐶

 implies

∀𝛼, 𝛽 ∈ (0, 1) CoVaR
𝛼,𝛽
(𝑌|𝑋) ≤ CoVaR

𝛼,𝛽
(𝑌


|𝑋


). (3.2)

(b) If 𝐹
𝑋
, 𝐹
𝑋

 , 𝐹
𝑌
, and 𝐹

𝑌
 are continuous, then (3.2) implies𝐶 ⪯ 𝐶

.

Remark 3.5. Note that Theorem 3.4 does not need 𝐹
𝑋
= 𝐹
𝑋

 . The only assumption
on the conditioning random variables 𝑋 and 𝑋 is that they are continuously dis-
tributed.

Proof. Part (a). Let (𝑈, 𝑉) ∼ 𝐶 and (𝑈


, 𝑉


) ∼ 𝐶
. As 𝐹←

𝑋
and 𝐹

←

𝑌
are non-

decreasing, Theorem 3.1(b) reduces the problem to

∀𝛼, 𝛽 ∈ (0, 1) 𝐹
←

𝑉|𝑈≥𝛼
(𝛽) ≤ 𝐹

←

𝑉

|𝑈


≥𝛼
(𝛽). (3.3)

Moreover, it is well known that for any distribution functions𝐺 and𝐻 the order-
ing𝐺←(𝑦) ≤ 𝐻←(𝑦) for all 𝑦 ∈ (0, 1) is equivalent to𝐺(𝑥) ≥ 𝐻(𝑥) for all 𝑥 ∈ ℝ.
Thus it suffices to show that

∀𝛼, 𝑣 ∈ (0, 1) 𝐹
𝑉|𝑈≥𝛼

(𝑣) ≥ 𝐹
𝑉


|𝑈


≥𝛼
(𝑣).

The representation of 𝐹
𝑉|𝑈≥𝛼

(𝑣) in Theorem 3.1(b) reduces this to 𝐶(𝛼, 𝑣) ≤

𝐶


(𝛼, 𝑣) for all 𝛼, 𝑣, which is precisely 𝐶 ⪯ 𝐶
.

Part (b). Combining (3.2) with Theorem 3.1, one obtains

∀𝛼, 𝛽 𝐹
←

𝑌
(𝐹
←

𝑉|𝑈≥𝛼
(𝛽)) ≤ 𝐹

←

𝑌
(𝐹
←

𝑉

|𝑈


≥𝛼
(𝛽)). (3.4)

As 𝐹
𝑌
is continuous, 𝐹←

𝑌
is strictly increasing. Therefore (3.4) implies (3.3), which

is equivalent to 𝐶 ⪯ 𝐶
.

Theorem 3.4 can be applied to various stochastic models. We start with elliptical
distributions. This model class includes such important examples as the multi-
variate Gaussian and the multivariate 𝑡 distributions. Since CoVaR

𝛼,𝛽
(𝑋|𝑌) con-

siders two random variables andmultivariate ellipticity implies bivariate elliptic-
ity for all bivariate sub-vectors, we restrict the consideration to the bivariate case.

A bivariate random vector (𝑋
1
, 𝑋
2
) is elliptically distributed if

(𝑋, 𝑌)
⊤ d

= 𝜇
⊤

+ 𝑅𝐴𝑊
⊤

where 𝜇 = (𝜇
𝑋
, 𝜇
𝑌
) ∈ ℝ

2 and𝐴 ∈ ℝ
2×2 are constant,𝑊 = (𝑊

1
,𝑊
2
) is uniformly

distributed on the Euclidean unit sphere {𝑥 ∈ ℝ2 : ‖𝑥‖
2
= 1}, and 𝑅 is a non-

negative random variable independent of 𝑊. If E𝑅 < ∞, then 𝜇
𝑋
= E𝑋 and
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𝜇
𝑌
= E𝑌. The ellipticity matrix 𝛴 := 𝐴⊤𝐴 is unique except for a multiplicative fac-

tor. The covariance matrix of (𝑋, 𝑌) is defined if and only if E𝑅2 < ∞, and this
matrix is always equal to 𝑐𝛴 for some constant 𝑐 > 0. Thus, rescaling 𝑅 and 𝐴,
one can always achieve that

𝛴 = (
𝜎
2

𝑋
𝜎
𝑋
𝜎
𝑌
𝜌

𝜎
𝑋
𝜎
𝑌
𝜌 𝜎

2

𝑌

) (3.5)

where, if defined, 𝜎
𝑋
= var(𝑋), 𝜎

𝑌
= var(𝑌), and𝜌 = corr(𝑋, 𝑌). In the following

we will always assume this standardization of 𝛴 and denote the bivariate ellipti-
cal distribution with location parameter 𝜇 = (𝜇

𝑋
, 𝜇
𝑌
) and ellipticity matrix 𝛴 by

E(𝜇, 𝛴, 𝑅).
If (𝑋, 𝑌) ∼ E(𝜇, 𝛴, 𝑅) with continuous marginal distributions, then the cop-

ula 𝐶 of (𝑋, 𝑌) is uniquely determined. Copulas of this type are called elliptical
copulas. The invariance of copulas under increasing marginal transforms implies
that𝐶 depends only on the parameter 𝜌 of 𝛴 and on the distribution of 𝑅. Thus 𝜌
is the natural dependence parameter for a bivariate elliptical copula 𝐶, whereas
the distribution of 𝑅 specifies the type of the copula, such as Gaussian or 𝑡. We
will call elliptical copulas 𝐶 and 𝐶 of same type if the corresponding elliptical
distributions have identical radial parts 𝑅

d

= 𝑅
.

The following theorem states monotonicity of CoVaR with respect to the de-
pendence parameter 𝜌 if (𝑋, 𝑌) is elliptically distributed or has an elliptical cop-
ula. In particular, it applies to bivariate Gaussian or bivariate 𝑡 distributions, and
also to bivariate distributions with Gaussian or 𝑡 copulas.

Theorem 3.6. (a) Let (𝑋, 𝑌) ∼ E(𝜇, 𝛴, 𝑅) and (𝑋, 𝑌) ∼ E(𝜇, 𝛴, 𝑅) with con-
tinuous 𝐹

𝑋
and 𝐹

𝑋
 . If 𝜇
𝑌
≤ 𝜇
𝑌
 and 𝜎

𝑌
= 𝜎
𝑌
 , then 𝜌 ≤ 𝜌 implies (3.2).

(b) Let (𝑋, 𝑌) ∼E(𝜇, 𝛴, 𝑅)and (𝑋, 𝑌) ∼E(𝜇, 𝛴, 𝑅)with continuous𝐹
𝑋
and𝐹

𝑋
 .

If 𝜇
𝑌
≤ 𝜇
𝑌
 and 𝜎

𝑌
≤ 𝜎
𝑌
 , then 𝜌 ≤ 𝜌 implies

∀𝛼 ∈ (0, 1) ∀𝛽 ∈ [𝛽
0
, 1) CoVaR

𝛼,𝛽
(𝑌|𝑋) ≤ CoVaR

𝛼,𝛽
(𝑌


|𝑋


)

with 𝛽
0
:=
1/2−𝐶(𝛼,1/2)

1−𝛼

where 𝐶 is the copula of (𝑋, 𝑌).
(c) Let 𝐹

𝑋,𝑌
and 𝐹

𝑋

,𝑌

 have elliptical copulas of same type with dependence pa-
rameters 𝜌 and 𝜌, respectively. If 𝐹

𝑋
and 𝐹

𝑋
 are continuous and 𝐹

𝑌
(𝑦) ≥

𝐹
𝑌
(𝑦) for all 𝑦 ∈ ℝ, then 𝜌 ≤ 𝜌 implies (3.2).

Remark 3.7. (a) The assumption 𝐹
𝑌
≥ 𝐹
𝑌
 obviously includes the case of identi-

cal margins 𝐹
𝑌
= 𝐹
𝑌
 , which is the natural setting for studying the response of

CoVaR to dependence parameters.
(b) It is easy to see that the lower bound 𝛽

0
in Theorem 3.6(b) is decreasing in 𝜌. In

particular, one has 𝛽
0
≤ 1/2 for 𝜌 ≥ 0. This guarantees thatCoVaR

𝛼,𝛽
(𝑌|𝑋) ≤
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CoVaR
𝛼,𝛽
(𝑌


|𝑋


) for 𝛼, 𝛽 ∈ [1/2, 1), which is fully sufficient for assessing de-
pendence between rare events.

Proof of Theorem 3.6. Part (a). It is obvious that CoVaR
𝛼,𝛽
(𝑐 + 𝑌|𝑋) = 𝑐 +

CoVaR
𝛼,𝛽
(𝑌|𝑋). Hence, as 𝜇

𝑌
≤ 𝜇
𝑌
 , it suffices to consider 𝜇

𝑌
= 𝜇
𝑌
 , so that we

have 𝐹
𝑌
= 𝐹
𝑌
 . Since the case 𝜎

𝑌
= 0 is trivial, we only need to consider 𝜎

𝑌
> 0.

The continuity of 𝐹
𝑋
yields 𝜎

𝑋
> 0, and as (𝑋, 𝑌) is elliptically distributed,

we have 𝑌
d

=
𝜎
𝑌

𝜎
𝑋

𝑋. Hence 𝐹
𝑌
is continuous as well, and therefore the copulas 𝐶

and 𝐶 of (𝑋, 𝑌) and (𝑋, 𝑌) are uniquely defined.
According to Theorem 3.4(a), it suffices to show that 𝜌 < 𝜌 implies 𝐶 ⪯ 𝐶

.
This is equivalent to E(0, 0, 𝛤(𝜌), 𝑅) ⪯ E(0, 0, 𝛤(𝜌), 𝑅) for 𝜌 ≤ 𝜌 and 𝛤(𝜌) =

(
1 𝜌

𝜌 1
). This ordering result is proven in Cambanis and Simons (1982). In the

bivariate Gaussian case it is also known as Slepian’s inequality (cf. Tong (1990,
Theorem 5.1.7)).

Part (b). Without loss of generality we can assume that 𝜇
𝑌
= 𝜇
𝑌
 and 𝜎

𝑌
> 0.

Part (a) gives us𝐶 ⪯ 𝐶
 and hence (3.3). Moreover, 𝜎

𝑌
≤ 𝜎
𝑌
 implies that 𝐹←

𝑌
(𝑡) ≤

𝐹
←

𝑌
 (𝑡) for 𝑡 ∈ [1/2, 1). Hence, according to Theorem 3.1(b), it suffices to verify that

𝐹
←

𝑉|𝑈≥𝛼
(𝛽) ≥ 1/2. This inequality is equivalent to 𝛽 ≥ 𝐹

𝑉|𝑈≥𝛼
(1/2) = 𝛽

0
.

Part (c). According to Part (a), we have 𝐶 ⪯ 𝐶
 and hence (3.3). Since 𝐹

𝑌
(𝑦) ≥

𝐹
𝑌
(𝑦) for all 𝑦 ∈ ℝ is equivalent to 𝐹

𝑌
(𝑦)
←

(𝑡) ≤ 𝐹
←

𝑌
 (𝑡), Theorem 3.1(b) yields

CoVaR
𝛼,𝛽
(𝑌|𝑋) ≤ 𝐹

←

𝑌
 (𝐹
←

𝑉|𝑈≥𝛼
(𝛽)) ≤ CoVaR

𝛼,𝛽
(𝑌


|𝑋


).

A very popular copula model is the Gumbel copula. In the bivariate case it is de-
fined as

𝐶
𝜃
(𝑢, 𝑣) = exp (− ((− log 𝑢)

𝜃

+ (− log 𝑣)
𝜃

)
1/𝜃

) . (3.6)

Thedependenceparameter𝜃 assumesvalues in [1,∞], where𝜃 = 1and𝜃 =∞ re-
fer to𝐶

1
(𝑢, 𝑣) := 𝑢𝑣 (independence copula) and𝐶

∞
(𝑢, 𝑣) := min(𝑢, 𝑣) (comono-

tonicity copula) respectively. As shown in Wei and Hu (2002), 𝜃 ≤ 𝜃 implies
𝐶
𝜃
⪯
sm
𝐶
𝜃
 and hence 𝐶

𝜃
⪯ 𝐶
𝜃
 (cf. Remark 3.3(c)). This immediately yields the

following analogue of Theorem 3.6(c).

Corollary 3.8. Let (𝑋, 𝑌) and (𝑋, 𝑌) have Gumbel copulas with dependence pa-
rameters 𝜃 and 𝜃, respectively. If 𝐹

𝑋
and 𝐹

𝑋
 are continuous and 𝐹

𝑌
(𝑦) ≥ 𝐹

𝑌
(𝑦)

for all 𝑦 ∈ ℝ, then 𝜃 ≤ 𝜃 implies (3.2).

Remark 3.9. Corollary 3.8 also holds for Galambos copulas with dependence pa-
rameters 𝜃 ≤ 𝜃; see Wei and Hu (2002) for 𝐶

𝜃
⪯
sm
𝐶
𝜃
 in this case.
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The monotonicity of CoES
𝛼,𝛽
(𝑋, 𝑌) with respect to dependence parameters fol-

lows from the integral representation (2.1).

Corollary 3.10. Suppose that E|𝑌| and E|𝑌| are finite.
(a) If (𝑋, 𝑌) and (𝑋, 𝑌) satisfy the assumptions of Theorem 3.6(a) or (c), or those

of Corollary 3.8, then

∀𝛼, 𝛽 ∈ (0, 1) CoES
𝛼,𝛽
(𝑌|𝑋) ≤ CoES

𝛼,𝛽
(𝑌


|𝑋


). (3.7)

(b) If (𝑋, 𝑌) and (𝑋, 𝑌) satisfy the assumptions of Theorem 3.6(b), then

∀𝛼 ∈ (0, 1) ∀𝛽 ∈ [𝛽
0
, 1) CoES

𝛼,𝛽
(𝑌|𝑋) ≤ CoES

𝛼,𝛽
(𝑌


|𝑋


).

with 𝛽
0
=
1/2−𝐶(𝛼,1/2)

1−𝛼

.

We conclude this section by relating the results obtained here to another systemic
risk measure.

Remark 3.11. (a) Corollary 3.10(a) also applies to theMarginal Expected Shortfall
from Acharya et al. (2010). Setting 𝛽 = 0 in (3.7) and applying Remark 2.3(e),
one obtainsMES

𝛼
(𝑌|𝑋) ≤ MES

𝛼
(𝑌


|𝑋


) for all 𝛼.
(b) In Zhou (2010), the Systemic Impact Index (SII) of an institution 𝑌

𝑖
is defined

as

SII
𝑖
(𝛼) := E(

𝑑

∑

𝑗=1

1{𝑌
𝑗
≥ VaR

𝛼
(𝑌
𝑗
)}

𝑌
𝑖
≥ VaR

𝛼
(𝑌
𝑖
))

= 1 + ∑

𝑗 ̸=𝑖

P(𝑌
𝑗
≥ VaR

𝛼
(𝑌
𝑗
)|𝑌
𝑖
≥ VaR

𝛼
(𝑌
𝑖
)).

It is easy to see that (3.2) is equivalent to

P(𝑌 > VaR
𝛽
(𝑌)|𝑋 > VaR

𝛼
(𝑋)) ≤ P(𝑌



> VaR
𝛽
(𝑌


)|𝑋


> VaR
𝛼
(𝑋


))

for all 𝛼, 𝛽. Thus, for 𝑌 = 𝑌
𝑗
and 𝑋 = 𝑌

𝑖
, the assumptions of Theorems 3.4(a)

and 3.6 also imply dependence consistency of the single conditional default
probabilities P(𝑌

𝑗
≥ VaR

𝛼
(𝑌
𝑗
)|𝑌
𝑖
≥ VaR

𝛼
(𝑌
𝑖
)).

4 Examples
In this section we compare CoVaR and CoVaR= in three different models: the
bivariate Gaussian, the bivariate 𝑡, and the bivariate distribution with a Gumbel
copula and 𝑡margins.
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4.1 The bivariate Gaussian distribution

It is well known that the bivariate Gaussian distribution is elliptical. Hence The-
orem 3.6(a) guarantees that CoVaR is an increasing function of the correlation
parameter 𝜌. Moreover, CoVaR= can be calculated explicitly in this case, so that
it is particularly easy to compareCoVaR to CoVaR=.

Computation of CoVaR=

Let (𝑋, 𝑌) ∼ N(𝜇, 𝛴) with mean vector 𝜇 = (𝜇
𝑋
, 𝜇
𝑌
) and covariance matrix 𝛴 as

in (3.5). As for all bivariate elliptical models, the dependence between 𝑋 and
𝑌 is fully described by the correlation parameter 𝜌. An appealing property of
the bivariate normal distribution is the interpretation as a linear model. Indeed,
(𝑋, 𝑌) ∼ N(𝜇, 𝛴) is equivalent to

𝑌 − 𝜇
𝑌

𝜎
𝑌

= 𝜌
𝑋 − 𝜇

𝑋

𝜎
𝑋

+ √1 − 𝜌2𝑍, (4.1)

where𝑋 ∼ N(𝜇
𝑋
, 𝜎
2

𝑋
) and𝑍 ∼ N(0, 1), independent of𝑋.

Due to 𝑋 ∼ N(𝜇
𝑋
, 𝜎
2

𝑋
) we have VaR

𝛼
(𝑋) = 𝜇

𝑋
+ 𝜎
𝑋
Φ
−1

(𝛼), where Φ is the
distribution function ofN(0, 1). Substituting𝑋 = VaR

𝛼
(𝑋) in (4.1), one obtains

𝑌 = 𝜇
𝑌
+ 𝜎
𝑌
(𝜌Φ
−1

(𝛼) + √1 − 𝜌2𝑍) .

This shows that the distribution lawL(𝑌|𝑋 = VaR
𝛼
(𝑋)) =N( ̃𝜇, �̃�2)with ̃𝜇 = 𝜇

𝑌
+

𝜎
𝑌
𝜌Φ
−1

(𝛼) and �̃� = 𝜎
𝑌
√1 − 𝜌2. Hence we obtain that

CoVaR
=

𝛼,𝛽
(𝑌|𝑋) = VaR

𝛽
(𝑌|𝑋 = VaR

𝛼
(𝑋)) = ̃𝜇 + �̃�Φ

−1

(𝛽)

= 𝜇
𝑌
+ 𝜎
𝑌
(𝜌Φ
−1

(𝛼) + Φ
−1

(𝛽)√1 − 𝜌2) . (4.2)

Computation of CoVar
To computeCoVaR, we use the copula representation from Theorem 3.1(b). From
𝑌∼N(𝜇

𝑌
, 𝜎
2

)oneobtains that𝐹−1
𝑌
(𝑣) = 𝜇

𝑌
+𝜎
𝑌
Φ
−1

(𝑣) for𝑣 ∈ (0, 1).Moreover, the
copula of (𝑋, 𝑌) ∼N(𝜇, 𝛴) is the Gaussian copula𝐶

𝜌
with dependence parameter

𝜌. For 𝜌 = 0 it is the independence copula,𝐶
0
(𝑢, 𝑣) = 𝑢𝑣, and for 𝜌 ≠ 0 it has the

following representation:

𝐶
𝜌
(𝑢, 𝑣) = 𝐹

𝑋,𝑌
(𝐹
←

𝑋
(𝑢), 𝐹

←

𝑌
(𝑣))

=

Φ
−1

(𝑣)

∫

−∞

Φ
−1

(𝑢)

∫

−∞

1

2𝜋√1 − 𝜌2
exp (

−(𝑠
2

1
− 2𝜌𝑠

1
𝑠
2
+ 𝑠
2

2
)

2(1 − 𝜌2)
) d𝑠
2
d𝑠
1
. (4.3)
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Applying Theorem 3.1(b), we obtain

CoVaR
𝛼,𝛽
(𝑌) = 𝜇

𝑌
+ 𝜎
𝑌
Φ
−1

(𝐹
−1

𝑉|𝑈≥𝛼
(𝛽))

where 𝐹
𝑉|𝑈≥𝛼

(𝑣) =
𝑣−𝐶

𝜌
(𝛼,𝑣)

1−𝛼

. The values of CoVaR can be obtained by numerical
integration of (4.3) and numerical inversion of the function 𝐹

𝑉|𝑈≥𝛼
(𝑣).

An alternative method to compute CoVaR is the numerical computation and
inversion of the function

𝐹
𝑌|𝑋≥VaR

𝛼
(𝑋)
(𝑡) =

1

1 − 𝛼

𝑡

∫

−∞

∞

∫

VaR
𝛼
(𝑋)

𝑓
𝑋,𝑌
(𝑥, 𝑦) d𝑥 d𝑦, (4.4)

where 𝑓
𝑋,𝑌

is the joint density of 𝑋 and 𝑌. Depending on the application, each
method has its advantages. Whilst (4.4) is more direct and hence faster for nu-
merically tractable 𝑓

𝑋,𝑌
, the conditional copula values obtained in (4.3) can be

re-used with different marginal distributions.

Monotonicity in 𝜌
As bivariate Gaussian distributions are elliptical, Theorem 3.6(a) guarantees that
CoVaR is always increasing in𝜌. However, this is not the case forCoVaR=. Partial
differentiation of (4.2) in 𝜌 yields

𝜕
𝜌
CoVaR

=

𝛼,𝛽
(𝑌|𝑋) = 𝜎

𝑌
(Φ
−1

(𝛼) −
𝜌Φ
−1

(𝛽)

√1 − 𝜌2
), (4.5)

which is positive if Φ−1(𝛼)√1 − 𝜌2 > 𝜌Φ−1(𝛽) and negative if Φ−1(𝛼)√1 − 𝜌2 <
𝜌Φ
−1

(𝛽). Besides the degenerate case𝛼 = 𝛽 = 1/2with constantCoVaR=
𝛼,𝛽
, there

are 4 cases depending on the signs ofΦ−1(𝛼) andΦ−1(𝛽):
(i) If 𝛼 ≥ 1/2 and 𝛽 ≥ 1/2, then CoVaR=

𝛼,𝛽
(𝑌|𝑋) is increasing in 𝜌 for 𝜌 < 𝜌

0
:=

|Φ
−1

(𝛼)|

√(Φ
−1
(𝛼))

2
+(Φ

−1
(𝛽))

2

and decreasing for 𝜌 > 𝜌
0
.

(ii) If 𝛼 ≥ 1/2 and 𝛽 < 1/2, then CoVaR=
𝛼,𝛽
(𝑌|𝑋) is increasing in 𝜌 for 𝜌 > −𝜌

0

and decreasing for 𝜌 < −𝜌
0
.

(iii) If 𝛼 < 1/2 and 𝛽 ≥ 1/2, then CoVaR=
𝛼,𝛽
(𝑌|𝑋) is increasing in 𝜌 for 𝜌 < −𝜌

0

and decreasing for 𝜌 > −𝜌
0
.

(iv) If 𝛼 < 1/2 and𝛽 < 1/2, thenCoVaR=
𝛼,𝛽
(𝑌|𝑋) is increasing in 𝜌 for 𝜌 > 𝜌

0
and

decreasing for 𝜌 < 𝜌
0
.

Thus CoVaR= is monotonic with respect to 𝜌 only in degenerate cases. In par-
ticular, in the most important case 𝛼, 𝛽 ∈ (1/2, 1), CoVaR= is decreasing for
𝜌 > 𝜌

0
, which means that CoVaR= fails to detect dependence where it is most
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Fig. 4.1: CoVaR=
𝛼
(𝑌|𝑋) and CoVaR

𝛼
(𝑌|𝑋) (i.e., with 𝛽 = 𝛼) in the bivariate normal model as

functions of 𝜌.

pronounced. In the special case 𝛼 = 𝛽, the critical threshold 𝜌
0
is always equal to

1/√2.
A graphic illustration to this fact is given in Figure 4.1, showing

CoVaR
=

𝛼
(𝑌|𝑋) and CoVaR

𝛼
(𝑌|𝑋) for 𝜌 ∈ [−1, 1] and 𝛼 = 𝛽 assuming values

0.90, 0.95, or 0.99. The short writing CoVaR=
𝛼
refers to CoVaR=

𝛼,𝛼
; analogously,

CoVaR
𝛼
denotes CoVaR

𝛼,𝛼
. This notation was used in the original definitions of

CoVaR
= and CoVaR, which were restricted to 𝛼 = 𝛽 (cf. Remark 2.3(b)). For the

sake of simplicity we set 𝜇
𝑌
= 0 and 𝜎

𝑌
= 1. These parameters have no influence

on the decreasing or increasing behaviour of CoVaR or CoVaR= as functions
of 𝜌.

Normalized values of CoVaR and CoVaR=

The relative impact of a stress event for 𝑋 on the institution 𝑌 can be quan-
tified by the ratio CoVaR=

𝛼,𝛽
(𝑌|𝑋)/ VaR

𝛼
(𝑌) or by CoVaR

𝛼,𝛽
(𝑌|𝑋)/ VaR

𝛼
(𝑌).

A similar indicator of systemic risk was proposed in Adrian and Brunnermeier
(2008). Figure 4.2 shows these ratios for 𝛼 = 𝛽 and 𝜇 = 0 as functions of 𝛼.
The different line types in the plots correspond to 𝜌 = 0.5, 0.7, and 0.9. The ra-
tios CoVaR=

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) are constant, which is also easy to see from (4.2).

The interesting part here is the ordering of the lines for different 𝜌. In case
of CoVaR=, the line for 𝜌 = 0.7 is above the two others, illustrating that the
inconsistency problem persists for all confidence levels 𝛼 ∈ (1/2, 1). The plot
of CoVaR

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) shows correct ordering for all 𝛼 w.r.t. 𝜌, as guar-

anteed by Theorem 3.6(a). Another observation one can make here is that
CoVaR

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) is decreasing in 𝛼. This, however, is a model property

that seems to be related to the light tail of the normal distribution. In heavy-tailed
models considered in Sections 4.2 and 4.3 the ratio CoVaR

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) is

increasing in 𝛼.
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Fig. 4.2: Bivariate normal model with 𝜇
𝑌
= 0: Ordering of the ratios CoVaR=

𝛼
(𝑌|𝑋)/VaR

𝛼
(𝑌) and

CoVaR
𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) for different 𝛼.

Backtesting and violation rates
The results above show that CoVaR reflects the dependence between 𝑋 and 𝑌
much more consistently than CoVaR=. An intuitive and very general explana-
tion of this fact is that conditioning on𝑋 ≥ VaR

𝛼
(𝑋) corresponds to a reasonable

“what if” question, whereas conditioning on𝑋 = VaR
𝛼
(𝑋) does not. Indeed, the

scenario {𝑋 ≥ VaR
𝛼
(𝑋)} includes all possible outcomes for 𝑋 if 𝑋 is stressed,

whereas the scenario {𝑋 = VaR
𝛼
(𝑋)} selects only the most benign among them,

thereby constituting an overly optimistic stress scenario.
In backtesting of VaR one expects that 𝑋 exceeds VaR

𝛼
(𝑋) with probabil-

ity not larger than 1 − 𝛼. Abbreviating “Conditional VaR”, the term CoVaR
=

𝛼,𝛽

suggests that 𝑌 exceeds CoVaR=
𝛼,𝛽
(𝑌|𝑋) with conditional probability 1 − 𝛽 or

less, given that𝑋 is stressed. The definition ofCoVaR understands stress of𝑋 as
{𝑋 ≥ VaR

𝛼
(𝑋)}, so that the expected violation rate forCoVaR

𝛼,𝛽
under this stress

scenario is by construction equal to 1−𝛽. In contrast to that,CoVaR= is designed
to have the violation rate 1−𝛽 under the less natural andmore optimistic scenario
{𝑋 = VaR

𝛼
(𝑋)}. As a consequence, the violation rates for CoVaR=

𝛼,𝛽
backtesting

experiments based on the natural stress scenario {𝑋 ≥ VaR
𝛼
(𝑋)} are significantly

higher than 1 − 𝛽.
This issue is illustrated in Table 4.1. The underlying Monte Carlo experiment

generates an i.i.d. sample (𝑋
𝑖
, 𝑌
𝑖
) ∼ N(0, 𝛴) for 𝑖 = 1, . . . , 𝑛 and counts the joint

exceedances {𝑌
𝑖
≥ CoVaR

=

𝛼,𝛽
(𝑌|𝑋), 𝑋

𝑖
≥ VaR

𝛼
(𝑋)}. The CoVaR= violation rate

for the stress scenario {𝑋 ≥ VaR
𝛼
(𝑋)} is the ratio of the joint excess count and the

count of the excesses {𝑋
𝑖
≥ VaR

𝛼
(𝑋)}. The violation rate for CoVaR is obtained

analogously from the number of joint exceedances {𝑌
𝑖
≥ CoVaR

𝛼,𝛽
(𝑌|𝑋), 𝑋

𝑖
≥

VaR
𝛼
(𝑋)}. We chose 𝑛 = 107 and 𝛼, 𝛽 being either 0.95 or 0.99.

It is remarkable that the violation rate for CoVaR= increases with 𝜌. This
demonstrates that the underestimation of risk by CoVaR= is most pronounced
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Table 4.1: Violation rates in the bivariate normal case. Monte Carlo backtesting with 𝑛 = 107 and
𝛼, 𝛽 ∈ {0.95, 0.99}.

Bound 𝜌 = 0 𝜌 = 0.2 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9

CoVaR
=

0.95,0.95
(𝑌|𝑋) 0.0503 0.0601 0.0857 0.1229 0.2520

CoVaR
=

0.99,0.99
(𝑌|𝑋) 0.0099 0.0124 0.0189 0.0292 0.0875

CoVaR
=

0.95,0,99
(𝑌|𝑋) 0.0101 0.0130 0.0213 0.0375 0.1224

CoVaR
=

0.99,0.95
(𝑌|𝑋) 0.0500 0.0588 0.0785 0.1045 0.2053

CoVaR
0.95,0.95
(𝑌|𝑋) 0.0503 0.0500 0.0503 0.0495 0.0499

CoVaR
0.99,0.99
(𝑌|𝑋) 0.0099 0.0101 0.0104 0.0099 0.0098

CoVaR
0.95,0.99
(𝑌|𝑋) 0.0101 0.0102 0.0102 0.0099 0.0098

CoVaR
0.99,0.95
(𝑌|𝑋) 0.0500 0.0507 0.0509 0.0501 0.0491
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Fig. 4.3: Bivariate normal samples (size 𝑛 = 2000) and the joint excess regions in the
backtesting experiment for 𝛼 = 𝛽 = 0.95.

in case of strong dependence and, hence, high systemic risk. At a high confi-
dence level of 𝛼 = 0.99 and a strong correlations of 𝜌 = 0.9, theCoVaR=

0.99,0.99
and

CoVaR
=

0.95,0.99
levels are exceeded by up to 12 times as often as their nomenclature

might suggest.
A graphical illustration of this issue is given in Figure 4.3 by bivariate normal

samples from the simulation study described above. The horizontal lines mark
the levels of CoVaR=

𝛼
(𝑌|𝑋) and CoVaR

𝛼
(𝑌|𝑋), and VaR

𝛼
(𝑌). The vertical lines

markVaR
𝛼
(𝑋). The joint excess counts are the numbers of points above the corre-

sponding horizontal line and on the right hand side from the vertical linemarking
VaR
𝛼
(𝑋). The sample size is 𝑛 = 2000, which suffices to demonstrate how corre-

lation changes the shape of the sample cloud and thus increases the number of
the joint excesses {𝑌

𝑖
≥ CoVaR

=

𝛼
(𝑌|𝑋), 𝑋

𝑖
≥ VaR

𝛼
(𝑋)}.
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Risk contribution measures ΔCoVaR= and ΔmedCoVaR=

As mentioned in Section 2, Adrian and Brunnermeier (2008) aims not atCoVaR=

itself, but at the difference between CoVaR= and some characteristic of an un-
stressed state. The two most common definitions of such a risk contribution mea-
sure areΔCoVaR= andΔmedCoVaR= (see (2.3) and (2.4)). In the bivariate normal
case one hasVaR

𝛽
(𝑌) = 𝜇

𝑌
+ 𝜎
𝑌
Φ
−1

(𝛽), so that (4.2) yields

ΔCoVaR
=

𝛼,𝛽
(𝑌) = 𝜎

𝑌
(Φ
−1

(𝛼)𝜌 + Φ
−1

(𝛽) (√1 − 𝜌2 − 1)) .

For𝛼 = 𝛽 this simplifies toΔCoVaR=
𝛼
(𝑌) = 𝜎

𝑌
Φ
−1

(𝛼) (𝜌 + √1 − 𝜌2 − 1). Regard-
less of 𝛼 and 𝛽, ΔCoVaR= inherits the non-monotonicity in 𝜌 from CoVaR

=. An
illustration of this issue is given in Figure 4.4, which shows plots ofΔCoVaR= and
Δ
med

CoVaR
= as functions of 𝜌 for 𝛼 = 𝛽.

At a first glance, ΔmedCoVaR= seems to be an improvement because it is in-
creasing in 𝜌. In fact,ΔmedCoVaR= is even linear here. Due tomed(𝑋) = 𝜇

𝑋
, (4.1)

yields 𝐹←
𝑌|𝑋=med(𝑋)

(𝛽) = 𝜇
𝑌
+ 𝜎
𝑌
√1 − 𝜌2Φ

−1

(𝛽). Applying (4.2), one obtains that

Δ
med

CoVaR
=

𝛼,𝛽
(𝑌)

= 𝜇
𝑌
+ 𝜎
𝑌
(Φ
−1

(𝛼)𝜌 + Φ
−1

(𝛽)√1 − 𝜌2) − (𝜇
𝑌
+ 𝜎
𝑌
Φ
−1

(𝛽)√1 − 𝜌2)

= 𝜎
𝑌
Φ
−1

(𝛼)𝜌. (4.6)

Thus, in the bivariate normal model, ΔmedCoVaR=
𝛼,𝛽
(𝑌|𝑋) is linear with positive

slope that depends on 𝜌 and 𝛼, but not on 𝛽, i.e. precisely the confidence level
for 𝑌. In view of the linear structure (4.1) of the bivariate Gaussian model, this
even appears reasonable. However, examples in Sections 4.2 and 4.3 show that
Δ
med

CoVaR
= is not a monotonic function of dependence parameters in other

models. Thus the applicability of ΔmedCoVaR= is restricted to linear models of
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Fig. 4.4: ΔCoVaR=
𝛼
and Δmed

CoVaR
=

𝛼
as functions of 𝜌 in the bivariate normal model.
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Fig. 4.5: CoES=
𝛼
(𝑌|𝑋) and CoES

𝛼
(𝑌|𝑋) in the bivariate normal model as functions of 𝜌.

type (4.1), where it is superfluous because it carries quite the same information as
the correlation parameter 𝜌 or the linear regression parameter from the classical
Capital Asset Pricing Model (the so-called CAPM-𝛽), which is equal to 𝜌𝜎

𝑌
/𝜎
𝑋
in

the present setting.

Extension from CoVaR to CoES
Due to Corollary 3.10(a) we already know that CoES

𝛼,𝛽
is increasing in 𝜌 for all

𝛼 and 𝛽. The special case 𝛼 = 𝛽 is illustrated in Figure 4.5, which also shows
that CoES= is not increasing in 𝜌. Due to the light tail of the normal distribu-
tion, these plots are similar to those ofCoVaR andCoVaR= in Figure 4.1. A closer
look at (2.2) confirms that the non-monotonicity of CoES= in 𝜌 is inherited from
CoVaR

=. Hence, also the best possible extension to Conditional Expected Short-
fall based on CoVaR= fails to reflect dependence properly.

4.2 Bivariate 𝑡 distribution

The next example we consider is the bivariate 𝑡 distribution, which is elliptical,
but heavy-tailed. The comparison follows the same scheme as in the previous sec-
tion. A bivariate 𝑡 distributed randomvectorwith𝜈 > 0degrees of freedom (bivari-
ate 𝑡(𝜈)) can be obtained as follows:

(𝑋, 𝑌) := (𝜇
𝑋
, 𝜇
𝑌
) + √

𝜈

𝑊
(𝑋, �̃�) ,

where (𝑋, �̃�) ∼ N(0, 𝛴) and𝑊 ∼ 𝜒
2

(𝜈), independent of (𝑋, �̃�). The parameters
𝜇
𝑋
, 𝜇
𝑌
∈ ℝ specify the location of (𝑋, 𝑌). For simplicity, we consider a centred

model with 𝜇
𝑋
= 𝜇
𝑌
= 0.

It iswell known that the bivariate 𝑡distribution is ellipticalwith ellipticityma-
trix 𝛴. The corresponding sample clouds have an elliptical shape (cf. Figure 4.8).
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Fig. 4.6: Bivariate 𝑡(3) distribution: CoVaR=
𝛼
and CoVaR

𝛼
as functions of the correlation

parameter 𝜌.

The second moments of𝑋 and𝑌 are finite for 𝜈 > 2, and in this case the correla-
tion between 𝑋 and 𝑌 is equal to 𝜌. The role of 𝜌 is the same as for all elliptical
models: larger values of 𝜌 increase association between large values of𝑋 and 𝑌.
Analytic expressions for CoVaR= or CoVaR are not obtainable in this model, so
that computations have to be carried out numerically.

Monotonicity in 𝜌
The behaviour of CoVaR= and CoVaR as functions of the correlation parame-
ter 𝜌 is shown in Figure 4.6 for 𝜈 = 3. Similarly to the Gaussian case, CoVaR is
increasing in 𝜌 due to Theorem 3.6(a), whereas CoVaR= is not. Moreover, the rel-
ative distance betweenCoVaR= andCoVaR (as it could be quantified by the ratio
CoVaR /CoVaR

=) is larger than in the Gaussian case. A possible explanation to
this effect could be the heavy tail of the 𝑡(3) distribution.
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Fig. 4.7: Bivariate 𝑡(3) distribution with 𝜇
𝑌
= 0: Ordering of the ratios CoVaR=

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌)

and CoVaR
𝛼
(𝑌|𝑋)/VaR

𝛼
(𝑌) for different 𝛼.
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Normalized values of CoVaR and CoVaR=

Figure 4.7 shows the ratios CoVaR
=

𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) and CoVaR

𝛼
(𝑌|𝑋)

/ VaR
𝛼
(𝑋) as functions of 𝛼 for selected values of 𝜌. This comparison is anal-

ogous to Figure 4.2 in the Gaussian case. Similarly to the Gaussian case, the
ordering of CoVaR=

𝛼
/ VaR

𝛼
with respect to the dependence parameter 𝜌 is

inconsistent, whereas the ratios CoVaR
𝛼
/ VaR

𝛼
are ordered correctly for all 𝛼:

the line for the largest 𝜌 is entirely above the line for the second largest 𝜌, etc.
In contrast to the Gaussian case, these ratios are increasing in 𝛼. This could
be explained by the heavy tail of the 𝑡(3) distribution or by the positive tail
dependence in the bivariate 𝑡model.

Backtesting and violation rates
The backtesting study was implemented analogously to the bivariate Gaussian
example. The results are shown in Table 4.2, and they go in line with those from
the Gaussian case. While CoVaR – again, by construction – has a violation rate
close to1−𝛽, the violation rates ofCoVaR= are significantlyhigher and increasing
in 𝜌. Going up to 36% for 𝜌 = 0.9, the violation rates forCoVaR= are even higher
than in the Gaussian model.

The corresponding sample plots with lines marking VaR
𝛼
(𝑋),

CoVaR
=

𝛼
(𝑌|𝑋), and CoVaR

𝛼
(𝑌|𝑋) are shown in Figure 4.8. Similarly to Fig-

ure 4.3, these graphics demonstrate how the increasing dependence parameter 𝜌
changes the shape of the corresponding sample clouds and thereby increases the
numbers of joint excesses.

Risk contribution measures ΔCoVaR= and ΔmedCoVaR=

The comparison ofΔCoVaR= andΔmedCoVaR= is shown in Figure 4.9. The graph-
ics demonstrate clearly how these CoVaR= based risk contribution measures in-

Table 4.2: Violation rates in the bivariate 𝑡(3) case. Monte Carlo backtesting with 𝑛 = 107 and
𝛼, 𝛽 ∈ {0.95, 0.99}.

𝜌 = 0 𝜌 = 0.2 𝜌 = 0.5 𝜌 = 0.7 𝜌 = 0.9

CoVaR
=

0.95,0.95
(𝑌|𝑋) 0.1017 0.1213 0.1659 0.2202 0.3638

CoVaR
=

0.99,0.99
(𝑌|𝑋) 0.0358 0.0433 0.0643 0.0939 0.1909

CoVaR
=

0.95,0.99
(𝑌|𝑋) 0.0341 0.0429 0.0640 0.0944 0.1954

CoVaR
=

0.99,0.95
(𝑌|𝑋) 0.1036 0.1229 0.1658 0.2184 0.3546

CoVaR
0.95,0.95
(𝑌|𝑋) 0.0497 0.0500 0.0499 0.0506 0.0504

CoVaR
0.99,0.99
(𝑌|𝑋) 0.0103 0.0099 0.0104 0.0105 0.0103

CoVaR
0.95,0.99
(𝑌|𝑋) 0.0100 0.0099 0.0100 0.0102 0.0101

CoVaR
0.99,0.95
(𝑌|𝑋) 0.0501 0.0493 0.0499 0.0508 0.0507
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Fig. 4.8: Bivariate 𝑡(3) samples (size 𝑛 = 2000) and the joint excess regions in the backtesting
experiment for 𝛼 = 𝛽 = 0.95.
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Fig. 4.9: ΔCoVaR=
𝛼
and Δmed

CoVaR
=

𝛼
as functions of 𝜌 in the bivariate 𝑡(3)model.

herit the inconsistency of CoVaR=. Both ΔCoVaR= and ΔmedCoVaR= fail to be
increasing with respect to the dependence parameter 𝜌, and the shapes of the
corresponding curves are similar to those of CoVaR= in Figure 4.6. Although
Δ
med

CoVaR
= is slightly better behaved than ΔCoVaR=, it is still strongly incon-

sistent with respect to 𝜌. In particular, this example demonstrates that the mono-
tonicity of ΔmedCoVaR= with respect to 𝜌 in the Gaussian case is a special prop-
erty of the bivariate Gaussian model, so that the advantage of ΔmedCoVaR= over
ΔCoVaR

= is rather limited in this respect.

Extension from CoVaR to CoES
The comparison of CoES vs. CoES= is shown in Figure 4.10. The monotonicity
or non-monotonicity in 𝜌 is again inherited fromCoVaR orCoVaR= respectively.
See also Corollary 3.10(a).
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Fig. 4.10: CoES=
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(𝑌|𝑋) and CoES
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(𝑌|𝑋) in the bivariate 𝑡(3)model as functions of 𝜌.
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Fig. 4.11: Gumbel copula with 𝑡(3)margins: CoVaR=
𝛼
(𝑌|𝑋) and CoVaR

𝛼
(𝑌|𝑋) as functions of 𝜃.

4.3 Gumbel copula with 𝑡margins
The last model we consider is obtained by endowing a bivariate Gumbel copula
(cf. (3.6))with 𝑡margins. Thus it has the sameheavy-tailedmargins as theprevious
example, but a different dependence structure. Indeed, being an extreme value
copula, it allows in particular more generously for joint excesses. An illustration
of the sample clouds generated from this distribution is given in Figure 4.13.

On the qualitative level, all comparison results obtained in this case are sim-
ilar to the bivariate 𝑡model, so that a brief overview is fully sufficient:
– Corollary 3.8 guarantees that CoVaR

𝛼,𝛽
is increasing with respect to the de-

pendence parameter 𝜃, whereasCoVaR=
𝛼,𝛽

fails to be increasingwhen depen-
dence is at its largest (see Figure 4.11 for the case 𝛼 = 𝛽). The strongest decay
ofCoVaR= takes place for 𝜃 ∈ (1.5, 2) and slows down for 𝜃 > 2. On the other
hand, CoVaR

𝛼
is almost constant for 𝜃 > 2. It seems that for 𝜃 > 2 the joint

distribution of large values of (𝑋, 𝑌) is almost comonotonic, so that there is
no much change after 𝜃 exceeds 2.
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Fig. 4.12: Gumbel copula with 𝑡(3)margins: Ordering of the ratios CoVaR=
𝛼
(𝑌|𝑋)/VaR

𝛼
(𝑌) and

CoVaR
𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) for different 𝛼.

Table 4.3: Violation rates for the Gumbel copula with 𝑡(3)margins: Monte Carlo backtesting
with 𝑛 = 107 and 𝛼, 𝛽 ∈ {0.95, 0.99}.

𝜃 = 1 𝜃 = 1.1 𝜃 = 1.2 𝜃 = 1.5 𝜃 = 2 𝜃 = 3

CoVaR
=

0.95,0.95
(𝑌|𝑋) 0.0498 0.0982 0.1282 0.1911 0.2771 0.4090

CoVaR
=

0.99,0.99
(𝑌|𝑋) 0.0101 0.0346 0.0461 0.0752 0.1321 0.2423

CoVaR
=

0.95,0.99
(𝑌|𝑋) 0.0098 0.0309 0.0434 0.0754 0.1319 0.2450

CoVaR
=

0.99,0.95
(𝑌|𝑋) 0.0500 0.1050 0.1335 0.1916 0.2745 0.4043

CoVaR
0.95,0.95
(𝑌|𝑋) 0.0498 0.0494 0.0503 0.0498 0.0501 0.0502

CoVaR
0.99,0.99
(𝑌|𝑋) 0.0101 0.0099 0.0101 0.0102 0.0100 0.0097

CoVaR
0.95,0.99
(𝑌|𝑋) 0.0098 0.0099 0.0100 0.0099 0.0100 0.0098

CoVaR
0.99,0.95
(𝑌|𝑋) 0.0500 0.0497 0.0499 0.0492 0.0503 0.0492
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Fig. 4.13: Gumbel copula with 𝑡(3)margins: simulated samples (size 𝑛 = 2000) and the joint
excess regions in the backtesting experiment for 𝛼 = 𝛽 = 0.95.
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Fig. 4.15: Gumbel copula with 𝑡(3)margins: CoES=
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(𝑌|𝑋) as functions of 𝜃.

– The ratios CoVaR
𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) are ordered correctly with respect to 𝜃,

whereas the ratiosCoVaR=
𝛼
(𝑌|𝑋)/ VaR

𝛼
(𝑌) are not (see Figure 4.12).

– The violation rates for CoVaR=
𝛼,𝛽

in a simulated backtesting study are signif-
icantly larger than 1 − 𝛽, going up to 40% for 𝛼 = 𝛽 = 0.95 and 𝜃 = 3 (cf.
Table 4.3 and Figure 4.13). This is even more than in the bivariate 𝑡 case.

– Both ΔCoVaR= and ΔmedCoVaR= fail to be increasing in 𝜃 (Figure 4.14).
– Again, CoES is increasing in 𝜃 while CoES= is not; see Corollary 3.10(a) and

Figure 4.15.

5 Conclusions

The present paper demonstrates that the alternative definition of Conditional
Value-at-Risk proposed in Girardi and Ergün (2013), Klyman (2011) (hereCoVaR)
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gives amuchmore consistent response to dependence than the original definition
used in Adrian and Brunnermeier (2008, 2009, 2010) (here CoVaR=).

The general results in Section 3 show that the monotonicity of
CoVaR

𝛼,𝛽
(𝑌|𝑋) with respect to dependence parameters is related to the

concordance ordering of bivariate distributions or copulas. This gives the notion
of CoVaR based on the stress scenario {𝑋 ≥ VaR

𝛼
(𝑋)} a solid mathematical

fundament. On the other hand, comparative studies in Section 4 show that
conditioning on {𝑋 = VaR

𝛼
(𝑋)} makes CoVaR= and its derivatives unable to

detect systemic risk where it is most pronounced. Related counterexamples
include several popular models, in particular the very basic bivariate normal
case.

Based on these results, we claim that, if Conditional Value-at-Risk of an insti-
tution (or system) 𝑌 related to a stress scenario for another institution 𝑋 should
enter financial regulation, then it should use conditioning on {𝑋 ≥ VaR

𝛼
(𝑋)}.

This kind of stress scenario has a much more meaningful practical interpretation
than the highly selective and over-optimistic scenario {𝑋 = VaR

𝛼
(𝑋)}. Condition-

ing on {𝑋 ≥ VaR
𝛼
(𝑋)} also makesCoVaRmore similar to the systemic risk mea-

sures proposed in Acharya et al. (2010), Goodhart and Segoviano (2008), Huang
et al. (2012), Zhou (2010).

The question how to define risk contributionmeasures based on stress events
to the financial system is currently open. Besides CoVaR,CoES with proper con-
ditioning may also be an option. The advantage of CoES over CoVaR is its co-
herency. In the caseVaR vs.ES, this pointhas gainednew interest from regulators,
see e.g. Basel Committee on Banking Supervision (2012), Gauthier et al. (2012).

In some sense,CoVaR= repeats two times the design error that is responsible
for the non-coherency of VaR. In the first step, it follows the VaR paradigm and
thus favours a single conditional quantile of 𝑌 over an average of such quantiles.
In the second step, it favours the most benign outcome of 𝑋 in a state of stress
over considering the full range of possible values in this case. Financial regula-
tion based onCoVaR= has the potential to introduce additional instability, to set
wrong incentives, and to create opportunities for regulatory arbitrage.

Another argument supportingCoES is that it is particularly suitable for stress
testing. In a system with several factors𝑋

1
, . . . , 𝑋

𝑑
, the numbersCoES

𝛼
𝑖
,𝛽
(𝑌|𝑋
𝑖
)

describe the influence of the different 𝑋
𝑖
on 𝑌. Assigning relative weights 𝑤

𝑖
to

the scenarios𝑋
𝑖
≥ VaR

𝛼
𝑖

(𝑋
𝑖
) and taking the weighted sum
𝑑

∑

𝑖=1

𝑤
𝑖
CoES

𝛼
𝑖
,𝛽
(𝑌|𝑋
𝑖
), (5.1)

one always obtains a sub-additive riskmeasure. If the weights𝑤
𝑖
sum up to 1, the

resulting risk measure is coherent in the sense of Artzner et al. (1999). The choice
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of the weights𝑤
𝑖
or of the confidence levels 𝛼

𝑖
may change over time, incorporat-

ing the newest information about the health of the institutions𝑋
1
, . . . , 𝑋

𝑑
.

To make the weighted risk measure (5.1) even more meaningful, one could
modify it by implementing not only the single risk factor excesses𝑋

𝑖
≥ VaR

𝛼
𝑖

(𝑋
𝑖
),

but also the joint ones. Consistent choice of the corresponding weights can be
derived by methods presented in Rebonato (2010). A detailed discussion of this
goes beyond the scope of the present paper and would also require additional
mathematical research.

Motivated by the recent financial crisis and the following discussions on ap-
propriate reforms in financial regulation, systemic risk measurement has become
a vivid topic in economics and econometrics. Our results show that some impor-
tant contributions are also to be made in related mathematical fields, including
probability and statistics. In particular, the dependence consistency or, say, de-
pendence coherency of systemic risk indicators is a novel problemarea that needs
further study. Thepresentpaper providesfirst examples and counter-examples for
compatibility of systemic risk indicators with the concordance order. The ques-
tions for general characterizations or representations of functionals with this
property are currently open.

In addition to dependence consistency, implementation of systemic riskmea-
sures in practice obviously needs estimation methods. The estimation of CoVaR
in GARCHmodels is discussed in Girardi and Ergün (2013). As non-parametric es-
timation of rare events requires a lot of data, methods from Extreme Value Theory
may be used to extrapolate the rear events from a larger number of data points.
Recent applications of these methods to the estimation of systemic risk frommar-
ket data include Zhou (2010) and Nguyen and Samorodnitsky (2013). Another ap-
proach to the estimation of systemic risk levels via a so-called herd behaviour in-
dex (HIX) is taken in Dhaene et al. (2012). Using instantaneous market data, this
method has the potential to react immediately when new information enters the
financial markets.

We would like to conclude with a comment on the applicability of CoVaR.
A lot of market data based stress measures failed to pick up the subliminal build-
up of systemic risk in the run-up to the financial crisis. Since CoVaR estimates
are based on market data, they can only reflect the information that is already
available in the financialmarkets. In particular, mutual exposures of financial in-
stitutions are highly relevant to the stability of financial systems, but for obvious
reasons most of this information is not disclosed. Using a unique dataset, this
approach is pursued in Cont et al. (2013), where interbank exposure data – repre-
senting potential future losses – is used to measure systemic risk. Therefore, we
consider CoVaR rather as an indicator of current “market temperature” than as
a genuine early warning measure. However, as our results illustrate, consistent
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quantification of market stress is highly important. It is particularly relevant to
regulators when evaluating different policy responses to stressed financial mar-
kets.
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