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ABSTRACT

Motivation: We report on the development of a generic text

categorization system designed to automatically assign biomedical

categories to any input text. Unlike usual automatic text categorization

systems, which rely on data-intensivemodels extracted from large sets

of training data, our categorizer is largely data-independent.

Methods: In order to evaluate the robustness of our approach we test

the system on two different biomedical terminologies: the Medical

Subject Headings (MeSH) and the Gene Ontology (GO). Our light-

weight categorizer, based on two rankingmodules, combines a pattern

matcher and a vector space retrieval engine, and uses both stems and

linguistically-motivated indexing units.

Results and Conclusion: Results show the effectiveness of phrase

indexing for both GO and MeSH categorization, but we observe the

categorization power of the tool depends on the controlled vocabulary:

precision at high ranks ranges from above 90% for MeSH to ,20%

for GO, establishing a new baseline for categorizers based on retrieval

methods.

Contact: Patrick.Ruch@sim.hcuge.ch

1 INTRODUCTION

Automatic text categorization (ATC) aims at assigning a set of

concepts to an input text. Typical applications use a set of keywords

as concepts to be selected from a glossary. Database annotation in

genomics and proteomics is also an important application field for

categorization tools, which can help curators to select some appro-

priate categories.

1.1 Retrieval versus learning

From a methodological perspective, computer-based text catego-

rization technologies include:

� retrieval basedonstringmatching,whichassign concepts to texts

based on shared features (words, stems, phrases. . .);

� empirical learning of text-concept associations from a training

set of texts and their associated concepts.

In the former approach, the targeted concepts are indexed and

each indexing unit receives a specific weight, while for the latter, a

more complex model of the data is built-up in order to provide text-

concept associations beyond strict features sharing. Word-based

matching approaches, which include vector-space (Singhal, 2001)

and pattern matching engines (Manber and Wu, 1994), are often

presented as weak categorization methods (Yang, 1996b) (Yang and

Chute, 1992) (Wilbur and Yang, 1996), because associations

between text and categories are based on simple string matching

strategies, but in several situations learning approaches cannot

be applied. With the explosion of concepts in molecular biology

and life sciences in general, we believe the use of ranking-based

methods, and their combinations, which are computationally

cheaper and simpler than binary classifiers (Amini et al., 2005)
should be revisited.

1.2 Categorization by ranking

Designing the categorization as a retrieval task means that the

engine has to index the collection of terms of the vocabulary as

if they were documents and then it treats each input document as if it

was a query. Then, the tool uses the score (called retrieval status

value) attributed to each term to rank them. So, unlike for binary

categorization, which tries to decide whether a concept is relevant or

not, we do not try to replace the judgement of the curator and

instead, in our definition of the task, concepts are simply ranked

by order of relevance. Like for document retrieval, the curator can

screen through the returned categories to decide whether they are of

interest or not.

Because the document collection is made of terminological enti-

ties that are clearly shorter than usual documents, the study aims at

exploring the behavior of retrieval statistical models. The use of a

vector space engine and its combination with a search tool based

on pattern matching are investigated. The outline of the paper is as

follows: after presenting the research background in Section 2, we

describe the architecture of the system in Section 3 together with

results measured for each combination of our system; related results

are discussed in section 4; conclusions are presented in Section 5.

2 BACKGROUND

To our knowledge the largest set of categories ever used by text

classification systems has an order of magnitude of 104. Thus, Yang

and Chute (1992) work with the International Classification of

Diseases (�12 000 concepts), while Yang (1999) and Wilbur and

Yang (1996) report on experiments conducted with a search space

of less than 18 000 Medical Subject Headings (MeSH). To evaluate

our system, it is tested using two different benchmarks: (1) the

OHSUGEN (Hersh, 2005) collection for the MeSH terminology

and (2) the BioCreative data for Gene Ontology (GO). GO is cur-

rently the main controlled-vocabulary for molecular biology. MeSH�To whom correspondence should be addressed.
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is a more general glossary as it covers also medical and clinical

fields, but has been acknowledged as an important resource for text

mining in the domain (Shah et al., 2003).

2.1 Scalability issues

General purpose machine learning methods might be inappropriate

for some ATC tasks in biomedical terminologies because reliable

training data are often not available (Camon et al., 2003). To some

extent, this statement can be applied toMeSH as well: between 2004

and 2005, 487 new headings were introduced, while 60 were deleted

and 129 were modified, so about two concepts are added every day.

In contrast, our approach is data-economic, because it only

demands a small collection of annotated texts for fine tuning the

statistical model.

2.2 Features normalization

In information retrieval, as well as in ATC, the basic feature is the

word, or a normalized variant of the word, such as the stem. How-

ever, various phrase indexing methods have been proposed in the

past to go beyond the so-called bag-of-words representation, which

assumes that the order of words in a document can be neglected. In

the language of probability theory, this is an assumption of

exchangeability for the words in a document (Aldous, 1985),

which is intuitively wrong. Unfortunately, retrieval or categoriza-

tion performance conclusions on the use of phrases as indexing units

are inconsistent (Rasolofo and Savoy, 2003). Thus, for the 2003

Trec Retrieval Conference TREC genomics ad hoc retrieval task,

de Bruijn and Martin (2003) reported lower retrieval effectiveness

when word bigrams were used, while Kim et al. (2001) and Aronson
et al. (2005) report that recognizing MeSH phrases does help

retrieval in MEDLINE. As for our present concerns, we test the

use of noun phrases rather than statistical phrases. Indeed, usually

inspired by mutual information measures (Stolz, 1965), statistical

extraction of phrases requires important volumes of training data,

while we aim at designing a data-independent system1.

2.3 Collection and metrics

The majority of experiments made with machine learning

approaches in a standard computational environment, applies text

classification to a small set of classes; usually a few hundreds.

In contrast, our system is designed to handle large class sets:

retrieval tools are only limited by the size of the inverted file,

but 106 is still a modest range. Because there is no benchmark

with such a large set of categories, our evaluations are conducted

on smaller scales2. The search space of our system ranges from

19 936 MeSH categories, if only unique canonical MeSH terms are

taken into account, up to 139 956, if synonyms are considered in

addition to their preferred representatives. The three other sets of

concepts are provided by GO, which gathers three different sub-

vocabularies. Each GO classifier corresponds to the mutually exclu-

sive axes of the GO (Table 1): cellular components (1711 items with

synonyms), molecular functions (18 106 items with synonyms) and

biological processes (9604 items with synonyms). As usual for

retrieval systems, the main evaluation measure is based on the

mean average precision (MAP), since this is the only measure

that summarizes the performance of the full ordering of concepts.

However, top ranked concepts are clearly of major importance,

therefore we also provide the Precisionat Recall¼0 (P0), which mea-

sure the precision of the top returned category; see Cooper (1971)

for an introduction on retrieval metrics.

2.3.1 MeSH assignment The OHSUGEN collection contains

4 591 015 MEDLINE citations. We extracted two randomly-

selected sets of citations: set A (500 items) is used for tuning the

system, set B (1000 items) is used to evaluate the system. Only

citations provided with an abstract were selected. For each citation,

we merge the content of the abstract field with the content of the title

field. We do not distinguish between major and minor MeSH terms

(cf. Table 1). Experiments were done using the top 15 terms

returned by the engine, which is the average number of keywords

in MEDLINE citations.

2.3.2 GO assignment For assessing the GO categorizer, we rely

on the BioCreative benchmark (Hirschman et al., 2005). An initial

set of 640 articles (called ALL-GO) from the Journal of Biological

Chemistry, was provided by the organizers, 320 articles were used

for tuning our tools (A-GO) and the other half was used for our

evaluations (B-GO). Only abstracts and titles of the articles are

used. An example of the GO annotation is given in Table 1. The

number of GO terms per protein in BioCreative data, which are a

sample of Swiss-Prot, is extremely variable and ranges from 1 to 33

(Ehrler et al., 2005), but following the experimental design of the

BioCreative competition for the GO categorization we assume that

the number of expected categories per axis is a priori known in our

experiments.

3 METHODS AND RESULTS

In this section, we present the basic modules and the strategies,

which were chosen to merge these basic modules. Results reported

in this section were computed on the evaluation sets (sets B-MeSH

and B-GO). Tuning experiments, which include varying the

Table 1. MesH terms and GO categories for an abstract (PMID ¼ 9506968)

describing the Cyclin-dependent kinase 2-associated protein 1

MeSH Terms Amino Acid Sequence; Animals; Catalysis;

Cells, Cultured; Chromosome Mapping;

Chromosomes, Human, Pair 12; Cloning,

Molecular; DNA Polymerase I; DNA Primase;

DNA Replication; DNA, Complementary; Genes,

Tumor Suppressor�; Hamsters; Humans; Molecular

Sequence Data; Mutation; Proteins�; Sequence
Homology, Amino Acid; Tumor Cells, Cultured;

Tumor Suppressor Proteins�

GO Annotation

Functions DNA binding

Processes S phase of mitotic cell cycle; DNA dependent DNA

replication; protein amino acid phosphorylation

Components Nucleus; cytoplasm

Major MeSH are marked with �; check tags and subheadings are removed.

1However, data needed to extract statistical phrases are not of the same kind

as those needed for training a classifier: the former approach requires only

large corpora, while the latter needs manual annotation, so both tasks are

data-dependent but statistical phrase extraction is much cheaper than super-

vised text categorization.
2In the following, statistics are given for September 2003 releases.
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different weighting schema of the vector space ranker to compute

the optimal combination factors3, were conducted on the tuning sets

(A-MeSH and A-GO). Table 2 shows results for the MeSH

categorizer. Table 3 reports averaged results for the three axes of

the GO.

Two main modules constitute the skeleton of our system: the

regular expression (REx) component, and the vector space (VS)

component. The former component uses tokens as indexing

units, while the latter uses stems (Porter). The first tool is based

on a regular expression pattern matcher. it is expected to perform

well when applied on very short textual segments such as MeSH

keywords or GO categories. This second tool, based on a vector

space model, is expected to provide high recall in contrast with the

regular expression-based tool, which should favor precision.

For the VS module, different combination of the weighting fac-

tors were tested to obtain the best schema for the task. We used the

SMART notation to represent our statistical model (Ruch and Baud,

2002): the first triplet letter indicates the weighting applied to the

document collection, i.e. the concepts, while the second is for the

query collection, i.e. the abstracts. The first parameter of the triplet

refers to the term frequency (n: real, l: logarithmic or a: augmented),

the second parameter refers to the inverse document frequency

(n: no inverse document frequency factor; t: inverse document

frequency) and the third parameter refers to the length normaliza-

tion (n: no normalization; c: cosine). We observe that the term

frequency applied on the collection of concepts can be regarded

as constant, since in general an indexing term appears only once in a

given category4.

3.1 Ranking based on pattern matching

This module does not use any specific string normalization and

settings are similar for MeSH and GO categorization. The system

extracts every contiguous sequence of N tokens by moving a win-

dow through the abstract. The value of N is empirically set to 5,

which is the maximum number of tokens in a MeSH terms. This

number can be higher for GO terms, but 80% of GO terms contain

four words or less than four words (Ehrler et al., 2005). Pentagrams

are then matched against the collection of terms. Basically, the

manually crafted finite-state automata allow two insertions or one

deletion within a term, and ranks the proposed candidate terms

based on these basic edit operations: insertion costs 1, while dele-

tion costs 2. The same type of operations are allowed at the string

level, so that the system is able to handle minor string variations, as

between diarrhea and diarrhoea. String variations are only com-

puted on tokens that have more than 8 characters to avoid string

confusion. A description of the string edit distance algorithm can be

found in Ruch (2002). The resulting pattern matcher behaves like a

term proximity scoring system (Rasolofo and Savoy, 2003), but

with a 5 token matching window.

3.2 Ranking based on retrieval

The engine uses stems as indexing units, and a stop word list (544

items). As for setting the weighting factors, we observe that cosine

normalization (expressed by the c letter) was especially effective for
our task, which is consistent with the fact that cosine normalization

tends to perform well when all documents have similar length

(Singhal et al., 1996).
In table 2, we report results obtained by two of the best schemas:

ltc.atn and ltc.lnn. ltc.atn performs better regarding the average

precision, but ltc.lnn is slightly better for precision at high ranks.

As for the average precision of each basic module, Tables 2 and

3 show that the REx system performs better than any tf.idf schema

used by the VS engine, so regular pattern-matchers provide better

average precision than VS engines: for MeSH, REx¼ 0.1655 versus

ltc.atn ¼ 0.0653; for GO, REx ¼ 0.0691 versus VS ¼ 0.0595).

Regarding the number of relevant categories proposed by each

system (column Relevant retrieved), which provides an estimate

of the recall, we observe that for MeSH categories, the best VS

schema retrieves 2701 relevant terms, while REx retrieves 2842

relevant terms. For GO categorization, the REx modules performs

better regarding average precision (REx ¼ 0.0691 versus VS ¼
0.0595) and global recall (104 relevant categories for REx versus

100 for the VS module), but not regarding precision at high ranks

(VS¼ 0.1523 and REx¼ 0.1469). This differences suggest that the

two retrieval methods might be complementary, and so combining

the two approaches might result in a better system.

Looking at the respective performances on the two different

vocabularies, these tables show that assigning MeSH keywords is

easier than assigning GO categories. The precision of the top pro-

posed GO category is only 15% (P0 ¼ 0.1523 for VS) versus 70%

for MeSH concepts (P0¼ 0.7168 for ltc.atn). Obviously, returning a
relevant category out of 15 possible MeSH keywords is easier than

out of two or three GO categories, but this statement is also

consistent with the nature of the two terminological systems:

MeSH terms are intended to express textual contents, while GO

concepts express biological descriptions.

Table 2. Results of REx and VS classifiers for automatic assignment of

MeSH terms

System or Relevant Prec. at Av.

parameters retrieved Rec. ¼ 0 Prec.

REx 2842 0.7168 0.1655

VS

ltc.atn 2736 0.5752 0.0653

ltc.lnn 2701 0.5862 0.0557

The total number of relevant terms is 12591.

Table 3. Results of REx and VS classifiers, averaged for each GO subgraph

System or Relevant Prec. at Av.

parameters retrieved Rec. ¼ 0 Prec.

REx 104 0.1469 0.0691

VS 100 0.1523 0.0595

The total number of relevant terms is 1607. The VS system applies the following

weighting profiles: ltc.atn for molecular functions, ltc.atn for cellular components

and atc.atn for biological processes.

3See (Ruch and Baud, 2002) and (Singhal, 2001) for a formal description.
4There are a few exceptions, like in DNA dependent DNA replication, where

DNA appears twice.
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3.3 Terminological resources

Both the MeSH and the GO vocabulary provide a large set of

synonyms, which are linked to a unique representative (the pre-

ferred term) in the vocabulary. Synonyms provided in the GO are of

good quality (for example: protoplasm/lintracellular; cell division/

lcytokinesis) and can be used to expand the matching power of

our tools without introducing any additional noise. In contrast,

we remark that the MeSH thesaurus gathers morpho-syntactic vari-

ants, real synonyms and a last class of related terms, which mixes

up generic and specific terms. For instance, Inhibition is mapped

to Inhibition (Psychology). To solve this issue, a dozen of obvious

confusing synonyms were manually removed from the MeSH the-

saurus during the tuning procedure.

When synonyms are used, they are indexed as if they were dif-

ferent concepts. The normalization step removes synonyms from

the proposed ranked list of terms. Indexing synonyms implies that a

unique concept can be found at different ranks in the list of retrieved

terms, so to ensure the uniqueness of the concept, only the first

occurrence of the concept is kept and the following occurrences are

deleted.

3.4 Linguistically-motivated phrases

GO terms have a more variable length—between 1 and 28 tokens—

than MeSH terms but each terminology contains almost verb-

free noun phrases (NP), if we ignore some rare participle forms;

therefore NP indexing is expected to be beneficial for both

vocabularies.

Our shallow parser combines statistical and manually written

patterns. Patterns are applied at the syntactic level (part-of-

speech) of each sentence (Ruch et al., 2000). The parser concen-

trates on adjective (A) and noun (N) sequences, such as: [A�][N�],
i.e. N, AN, NN, ANN, NNN, AANN, ANNN, NNNN. . . Adjectives
as well as prepositions such as of or with are optional. Apart from

adjectives and nouns, we counted 1376 conjunctions (mainly and

and or) in the MeSH, including the thesaurus, i.e. 1% out of 139 956

items. The GO vocabulary is syntactically more complex and

the proportion of conjunctions increases to 2%. Nevertheless,

unlike in some technical vocabularies (Park et al., 2002), which
may need more advanced linguistic methods (Gaizauskas, 2003),

this proportion means that patterns with conjunctions are rare

both in MeSH and GO items, so we decided to simply

ignore them and we assume that long distance term

dependencies will be handled by the bag-of-words model of the

VS module.

The identification of phrases is based on the input query, which

merges together the title and the abstract. Our working hypothesis is

a weak variant of the Phrase Retrieval Hypothesis (Arampatzis et al.,
2000): we assume that NP recognition can help reducing noisy
mapping for subterms. We call noisy subterm mapping the errone-

ous behavior of the mapping process, when it selects some errone-

ous terms that are subpart of a relevant one. Thus, a text dealing with

cystic fibrosis is relevantly indexed by the term cystic fibrosis, while

fibrosis is irrelevant. However, discarding all subterms from the

candidate list may have negative effects, therefore subterm removal

must be based on additional evidence. The category is removed

only if it does not occur in the set of NPs extracted from the abstract.

The way this index of NPs fuses with the index of stems is described

in the next paragraph.

3.5 Fusion of basic modules

The first combination merges the REx and the VS module. This new

list of candidates is then compared with the NP index to produce a

final ranked list of categories.

3.5.1 Combination of rankers The hybrid system combines the

regular expression classifier with the vector-space classifier.

Because the REx module does not return a scoring consistent

with the vector space system, we do not merge our classifiers by

linear combination Larkey and Croft (1996). The combination uses

the list returned by the vector space module as a reference list (RL),

while the list returned by the regular expression module is used as

boosting list (BL), which serves to improve the ranking of terms

listed in RL. A third factor takes into account the length of terms:

both the number of characters (L1) and the number of tokens (L2,

with L2 > 3) are computed, so that long and compound terms, which

appear in both lists, are favored over single and short terms. We

assume that the reference list has good recall, and we do not set any

threshold on it. For each concept t listed in the RL, the combined

Retrieval Status Value (cRSV, Equation 1) is:

cRSVt ¼
(
RSVVSðtÞ ·LnðL1ðtÞ · L2ðtÞ · kÞ if t 2 BL,
RSVVSðtÞ otherwise: ð1Þ

The value of the k parameter is set empirically by direct search on

the tuning sets. The objective function we maximize is the mean

average precision. The combined system is evaluated with and

without the thesaurus (+T). For MeSH the simple combination of

VS and REx significantly5 improves (with P < 10� 6) the average

precision of the tool: from 0.1655 (Table 2) for the REx module

alone to 0.1991 (+20%, Table 4) for the combination ltc.atn + REx.

For GO, the VS + REx combination achieves a MAP ¼ 0.0753

(Table 5) versus 0.0691 (Table 3) for REx alone, i.e. + 9%. This

confirms that REx and VS are complementary. In Table 5, we can

see that the impact of synonyms for the MeSH categorization is

rather modest (+0.2%). The impact of the GO thesaurus is more

significant (+3.45%, Table 5). A possible explanation for these

differences can be that GO synonyms are more focused than

MeSH synonyms, which may introduce misleading associations

between concepts. Indeed, several abbreviations proposed as

MeSH synonyms are likely to have a particular meaning in

genomics. Thus, ret is used as abbreviation for retired, while it

also refers to the ret proto-oncogene. For several of these acronyms,

contextual disambiguation (Pustejovsky et al., 2001) may be

necessary.

Table 4. Combining VS with REx for MeSH categorization

Weighting function Relevant Prec. at Av.

concepts.abstracts retrieved Rec. ¼ 0 Prec.

VS + REx

ltc.atn 3073 0.9202 0.2073

ltc.lnn 2856 0.9110 0.1991

5Tests are computed using a non-parametric signed test, cf. (Zobel, 1998) for

more details.
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3.5.2 Using noun phrases The index of phrases is used to reorder

the set of terms returned by the engine. The strategy is the following:

when a given term is found in the list of terms (TL) returned by the

hybrid system (REx + VS), and this term is not found alone in the

phrase list (PL) generated from this abstract, then the RSV of

this concept is downscored. The shorter the subterm, the more

its RSV is affected, as expressed in Equation (2), which gives

the final RSV (fRSV; m is the maximal number of tokens per

term in the vocabulary):

f RSV ¼
cRSV

m� L2ðtÞ
if t 2 TL and t =2 PL

cRSV1
otherwise :

8<
: ð2Þ

For MeSH, in Table 5, we observe that the NP index improves the

average precision by up to 2.8%. The improvement is statistically

significant (P < 10�6). The use of the thesaurus brings no significant

improvement (+0.2%), while it degrades the categorization effec-

tiveness when used with NP indexing. As expected with query

expansion in general and thesaurus in particular, using a thesaurus

means that we trade recall for precision (Hirschman et al., 2005), it
is particularly true at P0 when phrase indexing is not used: from

0.9202 to 0.9051 (�1.7%). These contrasts validate our architec-

tural choices regarding the integration of the NP index, since the

proposed combination is effective. For GO categorization, the

impact of NPs and synonyms is even stronger than for MeSH

terms: Table 5 shows that the overall improvement goes up

to 6.51%.

4 DISCUSSION

Comparison with the state-of-the-art is difficult because information

retrieval methods have rarely been used for text categorization and

also because studies based on supervised learning cannot be directly

compared to our approach.

4.1 MeSH assignment

As for MEDLINE collections and MeSH categorization, they have

been used by very few researchers for text categorization. Most of

these studies were carried on a tiny fraction of the MeSH, using the

OHSUMED collection (Hersh et al., 1994). Lewis (1995) has

published results using the subset of categories from the ‘Heart

Diseases’ sub-tree of the MeSH (so-called HD-119, because the

search space is then reduced to 119 categories). In Lewis et al.
(1996), 42 categories of the HD sub-tree were excluded because

they occurred only 15 times in the training set. Yang (1996a)

reduces the collection to only those documents that are positive

examples of the categories of the HD-119. The resulting test col-

lection has 1.4 concepts per abstract, versus about 15 in our experi-

ments. Joachims (1999) has also published results for the

OHSUMED collection using support vector machines, but he

uses only the high level disease categories, i.e. 20 concepts.

These studies achieve a precision up to 65%. More comparable

regarding the scales, Yang and Chute (1992) and Wilbur and

Yang (1996) report results ranging from 0.34 to 0.40 for the average

precision and about 0.85 for the top precision, which makes our

simpler approaches competitive with trained systems for precision

at high ranks. But the only directly comparable result concerns

their baseline method, which uses the SMART retrieval engine,

and which achieves �30% of the average precision of our best

combination.

In any case, direct comparison should go beyond classification

performances: while sufficiently trained systems would in principle

outperform any simple retrieval system, other important aspects

such as availability of training data, overfitting and complexity6

should be considered.

4.2 GO assignment

Although direct comparison with other participants of the BioCre-

ative challenge is difficult because: (1) official evaluations were

based on utility measures and human judgements and (2) a short

segment of text was also to be provided to support the assignment of

the category, our lightweight methods achieved competitive recall

and precision ratio in this competition; see Ehrler et al. (2005) for a
detailed presentation and Couto et al. (2004) and Hirschman et al.
(2005) for a synthetic comparison of the different methods and

results.

4.3 Qualitative evaluation: questioning metrics

An example of the automatic MeSH and GO assignment as pro-

posed by the tool is given in Table 6. The expected categories are

provided in Table 1. MeSH categories proposed on the top of the list

were expected and marked as major: tumor suppressor proteins;

genes, tumor suppressor. Some other relevant concepts, such as

species (hamsters) or more specific like DNA Polymerase I,

DNA Replication, Mutation are provided, but we also observe

that suggested categories are often too generic. Thus, chromosome

is proposed instead of Chromosome Mapping; Chromosomes,

Human, Pair 12. These observations apply to GO categorization

as well: cellular components (cytoplasm and nucleus) are good

categories in this example. While nucleus does not occur in the

abstract, the stemming is able to associate nuclei to nucleus. Like for

MeSH, genericity is problematic: DNA replication is proposed

Table 5. Comparison of different combinations on the evaluation sets

Combination Relevant Prec. at Av.

retrieved Rec. ¼ 0 Prec.

MeSH

Baseline + T + NP 3075 0.9118 0.2117 (+2.1%)

Baseline + NP 3068 0.9205 0.2130 (+2.8%)

Baseline + T 3075 0.9051 0.2079 (+0.2%)

Baseline 3073 0.9202 0.2073 (100%)

Gene Ontology

Baseline + T + NP 112 0.1711 0.0802 (+6.51%)

Baseline + T 110 0.1711 0.0779 (+3.45%)

Baseline 105 0.1696 0.0753 (100%)

The baseline is given by the combination VS + REx. Top performing combinations are

in bold.

6Although some Bayesian classifiers (Domingos and Pazzani, 1997) (Ruch

et al., 2005) have linear complexity, most algorithms have a quadratic

complexity. Thus, the so-called scalable implementation of Support Vector

Machines proposed by Joachims (1999) needed three weeks to train a clas-

sifier tailored to discriminate categories listed in a subset of the Cardiovas-

cular Diseases sub-tree, i.e. less than 100 concepts. Transporting such an

approach to the GO and disregarding the fact that annotated data are not

available would need approximately 20 years!

P.Ruch

662



instead of DNA dependent DNA replication, and phosphorylation is

proposed while protein amino acid phosphorylation is expected.

From a user perspective, the reported precision at high ranks

means that more than nine MeSH categories out of ten are relevant,

while only one GO category out of five is relevant. Finally, it would

be interesting to question the quality of our benchmarks. Inter-

annotator studies on the subject are rare, but Funk and Reid

(1983) report that a 40% agreement should be regarded as a

good score, suggesting that any precision above that score might

be the result of some overfitting phenomena. In the same vein,

current categorization metrics are not able to use the hierachical

information embedded in terminologies, although some errors are

less irrelevant than others: thus, if the term Rats is proposed instead

of Rattus Norvegicus, it is still a better match than Mammals, which

is better than Animals!

5 CONCLUSION

We have reported on the development of a generic categorization

system. The systems combines a pattern matcher and a vector space

retrieval engine, which uses both stems and NPs. The addition of

synonyms to handle polysemy had minor effect on the MeSH cate-

gorization task but higher effect on GO categorization. The use of

phrases significantly improve the categorization’s average preci-

sion, both for MeSH and GO assignment. From a comparative

perspective, the MeSH categorizer shows results competitive with

machine learning tools for top returned concepts and establish a new

baseline for retrieval methods. For GO categories, precision is gen-

erally lower than for MeSH categories.
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