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Introduction

As in Littlewood [5], we let ̂ ,, be the class of all polynomials of the form

n

gn(Q)= I exp(afci)z\
fc = O

where the afe are arbitrary real constants and z = exp(27i/0). Clearly \\gn\\Lt = (n +1)1

for all gne&n, and the question "how close can such a gn come to satisfying
|g,,| = (n+1)*?" has long been the object of intense study. In [5] Littlewood
conjectured that there are positive absolute constants Ak and A2 such that, for
arbitrarily large n, there exist gnt&n with ^ ^ ^ \gn(0)\ ^ A2n* for all 0. In [3]
Erdos conjectured that there is a universal constant c > 0 such that for n ̂  2,

* for all &,€*„.

It was shown by Littlewood [5] that the function

g(6)= £
m = 0

satisfies: (i) for any d > 0, \g\n~* -» 1 uniformly in n~i+d ^ \6\ ^ -̂ , and
(») l#l ^ l#4n* for all 0. In the first part of this paper we strengthen part (i) of the
Littlewood result in two ways by producing polynomials g which yield an improved
estimate for |g|n~* in a larger subset of the unit circle. In the second part we use the
methods already developed to construct functions which are " almost" in ^,, and
which satisfy the Littlewood conjecture with (within the error) Ax = A2 = 1.

1. To begin our work, we require two elementary lemmas.

LEMMA 1. Let

F(x,T)=(l-e2«ix) 2
m=o m+ T

where T > 1 and F is defined by continuity when x is an integer. Then \F(x, T)\ < 3/7
for all x.

Proof of Lemma 1. Let x be fixed and not an integer. Then

R e2nimx j 1 °° g2n imx

F(x, T) = lim (i-e2nix) 2
7 m = i (m2-™)7 + 2 m + 7 - l
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and „, i rTi

J xz
X

T

completing the proof of Lemma 1.

LEMMA 2. / / r and x are not integers, then

« e2nimx 2nie2nikr

£ = 1^'
m = -oo m-\-r \—e

where k = \x\.

of Lemma 2. Simply compute the Fourier Series of the function F(x) of
period 1 which, for 0 < x < 1, is given by

2ni . .

\-e-2n,r

Employing these Lemmas, we are able to prove our basic result.

THEOREM 1. Let N be a positive integer, and define the function
N-lN-l

Pe^Ni-iby P(9)= £ £ exp(2nijkN-i)zj+kN, z = exp(27H0).

Then

(a) Pi-^r = N for all integers j ,

(b)For any e, N~1<e<$, | P ( 0 ) | = J V + £ for - l + e^O ^ -e, where
\E\ < 1 1

/ 1 \ /N-l\
(c) For N odd, P\— = 0(1), while for N even, P ) = 0(1), and

\2N J \ 2N2 )

(d) \P(0)\ < 12+ —\ N+ 0(1) for all 9.

Proof of Theorem 1. A straightforward calculation shows that for integers
m, r with 0 ^ m, r < N we have

and (a) follows.
To obtain (b) we define the functions

iN

2n * = -oo k+N6

and. • \T v—i ~kN
iN

H(0) = — (1 -zN
KJ 2

(1 z) £ ,
2n fc = o k+NO
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and the error functions

R(9) = P(6)-H(0) and S(0) = H(0)-G(0).

To estimate R(6) we let

173

sin x 1
a n d

1 i 1

2(1 - cos x) x

We can now write

1— exp(/x) x — + '</> (*).

R(9) = (l-zN[
k=0

which, together with the facts that <f)'(x) < 0, — 2n < x < 2n, and — 1 +e ^ 0 ^ — E,
E < % yields

N-l

s
k=0

(*?+•"->
N - l

in (^ -4> (in — +e))l
1 / 1 1 \

V
 2TT \ l+0 0/

1

27Tfi(l-e)

2 2

—+ —
It TIE

(1)

To estimate S(0), we observe that 1 -NO ^ EN > 1 and A (̂l +0) ^ eiV > 1, so
that we may apply Lemma 1 with x = ±N9 and T = EN to get

fcN- i z

y
= -oo A:+iV0

TkJV

+ I

,2«Wfl| II y

2TT " ' l|fe=0 A:+1-N0 = ok+N(l+9) j
(2)

Tie

(3)

Finally, combining (1), (2) and (3) with the fact that P(9) = G(9) + R(9) + S(9),
we obtain (b).

Next we apply Lemma 2 with x = r = NO to conclude that

=Nforal l0.
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For (c) we assume that |0| < \ and apply the techniques of the proof of (b) to get

/JV /[±JV] e
2"ikN0 N-l elni\N9 v

P(0) = — (1 -e2«m) I + £ +0(1)
2n U = o k+NO *=[iJv]+i k-N+NOJ
:\T . oo 2nikN0 _t 2nikN0x

= — (1 -e2"1"0) 2 +*2'""20 I +0(1) (4)

If N is odd, (4) immediately implies that

P (—) = 0(1).
\2NJ

For N even, (4) yields

/ N - U 2iN_ / « {•
P l 2 N 2 ) = * l ? o 2Ar-hl fc=o 2A:+1

2/JV .,„ « ( - l ) k cos (kn/N) 4N » ( - l ) k s i n (A:7r/iV)
_ — n —en>/) y -— —'—- + — y ——-—-—•—-

n \=o 2k+\ n k = i 2k+l

+ 0(1) = 0(1),

where the final estimate follows, for example, from Gradshteyn and Ryzhik [4], p. 38,
formulas 1.442-3 and 4, and (c) is proven.

To establish (d) we may assume that |0| < £ , and we let NO = M + t, where
M = [NO]. For M ^ - 1 we have, by Lemmas 1 and 2,

(i-e2niN0)
00 £ 2nikN0

fc = o k+NO
(1

2nikt Af -1

( oo e2nikt Af -1 e2iri/ct v I
I " £ " <2TT + 3. (5)

jt = -oo k + t fc = -oo k + t }\

It is equally trivial to obtain an identical estimate for M ^ 0, and the same method
also yields

<2n + 3 for |0| < ±. (6)

Finally, (d) follows from (4), (5), and (6), and the proof of Theorem 1 is complete.
We point out several immediate consequences of this theorem. First, if a is a fixed

real number and if we define Q by Q(0) = P(0 + a), it is obvious that Q e ^ . ] .
Therefore, the bad interval in (b) can be shifted to any interval of length 2e.

Second, if we are interested in a fixed subinterval of the unit circle, the estimate in
(b) becomes quite remarkable. For example, setting e = i we obtain

COROLLARY 1. On the unit semicircle — | ^ 0 ^ —i we have \P(0)\ =N + E, where
\E\ < 1+227T1 < 9 .

Third, by employing, for example, a result of Beller [1], we are able to extend
Theorem 1 to the case of polynomials of arbitrary degree. We have
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COROLLARY 2. Let n be a positive integer. Then there is a g&^n satisfying

(e) For any e, [n*]"1 < £ < \, |g(0)| = n* + E for - 1 +£ < 0 ^ - £ ,

( 0 l*(0)l < (2 + 3/7r)w* + 2w± + O(l) for all 0.

Proof of Corollary 2. LetiV = [w*], /w = n-N2, and choose P(0)as in Theorem 1.
By Beller's result [1], we can choose/e^ m such that |/(0)| < W72m* < 2AI* for all 0.
If we now let g(6) = P(6)+zN2f(0), the required estimates follow immediately from
the Theorem, and Corollary 2 is proven.

Finally we observe that if we choose e in Corollary 2 to be, for example, n~* log n,
we obtain the improvement of Littlewood's result mentioned in the introduction.

2. We now proceed with our construction of functions G(0) which are almost in
&„, and which satisfy |G(0)| = w* + O(/i*) for all 0. Toward this end, we have

THEOREM 2. Let n be a positive integer, and let N be the even positive integer
satisfying N2 ^ n < (N + 2)2. Then there exist functions / and g such that

(A) z^f+geV,,, and

(B) |/(0)+g(0)| = «* + O(w*), where the error is uniform in 6 and n.

Remark. It will be seen from the following construction that g consists of two
parts; a polynomial in 0/I_2,I3/4 + O(ni/2), plus z to an integral power multiplied by a
polynomial with coefficients of modulus \ and degree 4«* + O(/?*) in z*. Also, / is a
function of precisely the same type as the second part of g, just described. Thus we
see that, except for a relatively small number (i.e., O(n*)) of terms, f+g£&n, and so
we can u s e / + g as the function G(0) mentioned above.

Proof of Theorem 2. Define 8 by SN = [JV±], let z = exp(27r/0), - £ < 0 < £, let
m = n—N2, and choose Gx&^m such that |G1(0)| = Oty*) (see the proof of
Corollary 2). Define the functions

2N-1

zjN £
fc=O

i 2N-1

F(0)=z^N-dN)N h £ zJN £
I k=0

N-l \
zJN £ exp2Jbr/(/Ar1+0)

k = 0 }

and
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A straightforward calculation yields (A). To establish (B) we proceed as in the
proof of Theorem 1 (b), and we obtain

/ iN+SN-l Z
jN

-zN)— i —
In j = -iN-5

z
JN

2n j = -<»j
+0{n*).

Therefore, by Lemma 2, \f+g\ = JV + 0(w*) = n* + O(n% and the proof of
Theorem 2 is complete.

In conclusion we mention a result with a similar flavour to Theorem 2 by Beller
and Newman [2], who prove the Littlewood conjecture, with AL and A2 both much
smaller than 1, for polynomials whose coefficients are bounded by 1 in modulus.
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