ON POLYNOMIALS WITH COEFFICIENTS OF
MODULUS ONE

J. S. BYRNES

Introduction

As in Littlewood [5], we let &, be the class of all polynomials of the form
gn(e) = kgo exp(ak i)zks

where the «, are arbitrary real constants and z = exp(27if). Clearly |ig,|l;2 = (n+1)*
for all g,e%,, and the question “how close can such a g, come to satisfying
lgal = (n+1)¥?” has long been the object of intense study. In [5] Littlewood
conjectured that there are positive absolute constants 4; and A, such that, for
arbitrarily large n, there exist g, €%, with 4, n* < |g,(0)] < 4, n* for all 0. In (3]
Erd8s conjectured that there is a universal constant ¢ > 0 such that for »n > 2,
Ignlleo = (1 +c)n for all g, e,

1t was shown by Littlewood [5] that the function
g() = X exp(Im(m+ Dri(n+1)~1)z"
m=0

satisfies: (i) for any 6>0, |gln™t =1 uniformly in n™#*°< |0 <4, and
(i) lg| < 1-4nt for all 0. In the first part of this paper we strengthen part (i) of the
Littlewood result in two ways by producing polynomials g which yield an improved
estimate for |gln~* in a larger subset of the unit circle. In the second part we use the
methods already developed to construct functions which are “almost”™ in %, and
which satisfy the Littlewood conjecture with (within the error) 4, = 4, = L.

1. To begin our work, we require two elementary lemmas.

LEMMA 1. Let

eZm'mx

Fou 1) = (1=€™) Zo m+T

where T > 1and F is defined by continuity when x is an integer. Then |F(x, T)| < 3/T
for all x.
Proof of Lemma 1. Let x be fixed and not an integer. Then

2nimx e2m'mx

F(x, T) = lim (1-€*"™) Z
R-

1 1 §
m=om+T T T m=

1 (mM=m)T ' 4+2m+T~1
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and o 1 1w < dx
=%+ ¥ <147 [ =2,
X
T

mgl (m*=m)T 42m+T—-1 T (1141

completing the proof of Lemma 1.

LeMMA 2. If r and x are not integers, then

5 2mirx
3

© e2m‘mx 2ni eZm’kr

- | — e~ 2mir

m=—-c0o M+T e

where k = [x].
Proof of Lemma 2. Simply compute the Fourier Series of the function F(x) of
period 1 which, for 0 € x < 1, is given by

2mi —2ai
F(x) = 1____ e ﬂll‘X~

_ e-Zm‘r
Employing these Lemmas, we are able to prove our basic result.

THEOREM 1. Let N be a positive integer, and define the function

N-1N-1
Pe%y by PO) = T 3 expuijkN~1)z/**N 7z = exp(2nif).
K=0 j=0

J
*()
(b)For any ¢ N '<eg<i, |PO)|=N+E for ~14+e<0< —¢, where

|E|] < 142n~ 1 +5(ne)™ 1,

T hen

(a) = N for all integers j,

1
For N odd, P |—— ) = 0(1), whil N , P
(c) For N o (ZN) (1), while for N even ( YD

) = 0(1), and
3
@) |P@)| < (2+ —;) N+0(1) for all 8.

Proof of Theorem 1. A straightforward calculation shows that for integers
m,r with 0 < m, r < N we have

mN+r MmN +r
(— N )=Nexp(—-2m ¥ r),

and (a) follows.
To obtain (b) we define the functions

kN

6O =N 1-M ¥ =
@ =7, 0-20 2 7N
and N-1 ZkN

HO) =2 (1=
oo ? v=0 k+N@’
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and the error functions
R(6) = P(8)—H(8) and S(8) = H(B)~G(B).

To estimate R(0) we let

sin x 1 1 i 1
px)=7——"—"-— and Y =""""———-—-= - Hiew).

2(1 —cos x) T x 1 —exp(ix) x

L o w2 k o
)=+ 2= (5 #))-
which, together with the facts that ¢'(x) < 0, —2n < x < 2w, and —1+e <0 € —¢,
£ < % yields
w2 kil g 2 k+e
— 7r_
”(N ) v (N )
We+ 5 1627 (L 1o 2n (2L 1
s oo () o o (59

ey (L
- el o (75 )

We can now write

RO = (1 —2My@rf)+ 5 2+ DN {¢ (2;: (k+
k=0 N

N~-1
IR(O)| < 2|y 2nO)| + Eo

< 2{3+¢(2n(—1+)} + Zne(l—2)

2 2
<l4-—=+—. M
4 TE

To estimate S(f), we observe that 1 —NG = eN > 1 and N(1+8) 2 eN > 1, so
that we may apply Lemma 1 with x = +Nf and T = ¢N to get

s@ =n-M| 3 oy 2
2n k=-wo kK+NO &=~ k+NBO
<o 1 { it Y i } <= o
27 k=0 k+1—NO k=0k+N(1+6) TE
Next we apply Lemma 2 with x = r = N8 to conclude that
|G(6)] = N for all 6. 3

"Finally, combining (1), (2) and (3) with the fact that P(8) = G(6) +R(8)+ S(6),
we obtain (b). :
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For (c) we assume that |f] < % and apply the techniques of the proof of (b) to get

PO) = - (11— v (“zm S ) +0q)
2n k=0 k+NO «=tim+1 k—N+ N8
w  o2RikNO —1  p2mikne
T (l < (k§0 k+N0 +e2"“"’0k=z_m k+N9) +oWM @

If N is odd, (4) immediately implies that

()0

For N even, (4) yields

)k ni(k/N)

_ . o (— 1K o= Ri(k/N)
P(N 1) _ 2iN ( (—De SR Z
k

— ) +0(
2N? =0 2k+1 2k +1 ) 0

n

« (=1)fcos (kn/N) 4N = (=D*sin (kn/N)

2iN
=== (- 3
T k=0 2k+1 T k=1 2k+1

+0(1) = 0()),

where the final estimate follows, for example, from Gradshteyn and Ryzhik [4], p. 38,
formulas 1.442-3 and 4, and (c) is proven.
To establish (d) we may assume that |0] <%, and we let NO = M+, where
= [N6). For M £ —1 we have, by Lemmas 1 and 2,

w p2nikNO

2mN0
’( )kzo k+NO

ean'kl M-1- eZRfkl )

o (£ 2 -

< 2n+3. 5
k=-w k4t k=z—:-oo k+t )

it is equally trivial to obtain an identical estimate for M > 0, and the same method
also yields

-1 2nikNG

’( Zu:NG) Z

I | <2y for o<k 6)

Finally, (d) follows from (4), (5), and (6), and the proof of Theorem 1 is complete.
We point out several immediate consequences of this theorem. First, if « is a fixed
real number and if we define Q by Q(0) = P(0+u), it is obvious that Qe Fya_ .
Therefore, the bad interval in (b) can be shifted to any interval of length 2e.
Second, if we are interested in a fixed subinterval of the unit circle, the estimate in
(b) becomes quite remarkable. For example, setting ¢ =1 we obtain

COROLLARY 1. On the unit semicircle —% <0 < —% we have |P(0)| = N+ E, where
|E| < 1+22n! < 9.

Third, by employing, for example, a result of Beller [1], we are able to extend
Theorem 1 to the case of polynomials of arbitrary degree. We have
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COROLLARY 2. Let n be a positive integer. Then there is a ge %, satisfying

(e) For any ¢, [n*]"' <e<3, |g0) =n+E for —1+e<0< —¢ where
|E| < 2422~ '+ 5(ne) " +2nt, and

(F) 1g®)] < 2+3/mnt+2n +0(1) for all 6.

Proof of Corollary 2. Let N = [n*], m = n—N?, and choose P(8) as in Theorem 1.
By Beller’s result [1], we can choose fe€ %, such that | f(0)] < 1:172m?* < 2n? for all 6.
If we now let g(8) = P(8)+z" f(0), the required estimates follow immediately from
the Theorem, and Corollary 2 is proven.

Finally we observe that if we choose ¢ in Corollary 2 to be, for example, n™*log n,
we obtain the improvement of Littlewood’s result mentioned in the introduction.

2. We now proceed with our construction of functions G() which are almost in
@,, and which satisfy [G(6)| = n* +O(n*) for all . Toward this end, we have

THEOREM 2. Let n be a positive integer, and let N be the even positive integer
satisfying N2 < n < (N+2)%. Then there exist functions f and g such that

(A) 2 f+ge 9, and
(B) | f(0)+g(0)| = n*+0O(n?), where the error is uniform in 0 and n.

Remark. 1t will be seen from the following construction that g consists of two
parts; a polynomial in %,_;,3/44 o(mi/2), PlUs z to an integral power multiplied by a
polynomial with coefficients of modulus + and degree 4n* + O(n?) in z*. Also, fis a
function of precisely the same type as the second part of g, just described. Thus we
see that, except for a relatively small number (i.e., O(n?*)) of terms, f+ge %, and so
we can use f+g as the function G(#) mentioned above.

Proof of Theorem 2. Define § by N = [N¥], let z = exp(27if), —3 < 0 < 3, let
m = n—N?, and choose G,e%, such that |G,(0) = O(n*) (see the proof of
Corollary 2). Define the functions

_ (N =BN)IN ~4N+S6N=-1 N 2N-1 o
f0) =3z S ¥ Y expkni(jNT'+6),
j=-4N-8N k=0

N+ON-1  2N~1
F(@) =8NV 1 s NS expkri(jN ™' +6)
k=0

j=4N-8N

N=ON~1  N=1
+ ¥ ¥ exp 2kmi(jN ! +0)} ,
Jj==4N+4oN k=0

and
2(8) = F(0)+2"* G(0).
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A straightforward calculation yields (A). To establish (B) we proceed as in the

proof of Theorem 1(b), and we obtain
(AN =8N)N N AR A il 1 3
0)+g®) =z 1-z")— ———— +0(6" )+ 0(n
10)+2(6) ( )27”__%; o GIN) 40 (67)+0@*)
iN = 2V
= ZUN=8NN (| _ Ny
( )2n 1—2-200 +N9

Therefore, by Lemma 2, |f+g| = N+0(n?) = n*+0(n?), and the proof of

Theorem 2 is complete.

+0(n?).

In conclusion we mention a result with a similar flavour to Theorem 2 by Beller
and Newman [2], who prove the Littlewood conjecture, with 4, and A4, both much
smaller than 1, for polynomials whose coefficients are bounded by 1 in modulus,
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