Ergod. Th. & Dynam. Sys. (2009), 29, 1529–1547 © 2009 Cambridge University Press doi:10.1017/S0143385708000874

Printed in the United Kingdom

A point is normal for almost all maps $\beta x + \alpha$ mod 1 or generalized β -transformations

B. FALLER and C.-E. PFISTER

EPF-L, SB IACS, Station 8, CH-1015 Lausanne, Switzerland (e-mail: bastien.faller@a3.epfl.ch, charles.pfister@epfl.ch)

(Received 18 June 2008 and accepted in revised form 19 September 2008)

We consider the map $T_{\alpha,\beta}(x) := \beta x + \alpha \mod 1$, which admits a unique Abstract. probability measure $\mu_{\alpha,\beta}$ of maximal entropy. For $x \in [0, 1]$, we show that the orbit of x is $\mu_{\alpha,\beta}$ -normal for almost all $(\alpha, \beta) \in [0, 1) \times (1, \infty)$ (with respect to Lebesgue measure). Nevertheless, we construct analytic curves in $[0, 1) \times (1, \infty)$ along which the orbit of x = 0 is $\mu_{\alpha,\beta}$ -normal at no more than one point. These curves are disjoint and fill the set $[0, 1) \times (1, \infty)$. We also study the generalized β -transformations (in particular, the tent map). We show that the critical orbit x = 1 is normal with respect to the measure of maximal entropy for almost all β .

1. Introduction

In this paper, we consider a dynamical system (X, d, T) where (X, d) is a compact metric space endowed with its Borel σ -algebra \mathcal{B} and $T: X \to X$ is a measurable map. Let C(X) denote the set of all continuous functions from X into \mathbb{R} . The set M(X) of all Borel probability measures is equipped with the weak*-topology. $M(X, T) \subset M(X)$ is the subset of all T-invariant probability measures. For $\mu \in M(X, T)$, let $h(\mu)$ denote the measure-theoretic entropy of μ . For all $x \in X$ and $n \ge 1$, the empirical measure of order n at x is

$$\mathcal{E}_n(x) := \frac{1}{n} \sum_{i=0}^{n-1} \delta_x \circ T^{-i} \in M(X), \tag{1}$$

where δ_x is the Dirac mass at x. Let $V_T(x) \subset M(X, T)$ denote the set of all cluster points of $\{\mathcal{E}_n(x)\}_{n>1}$ in the weak*-topology.

Definition 1. Let $\mu \in M(X, T)$ be an ergodic measure and take $x \in X$. The orbit of x under T is μ -normal if $V_T(x) = \{\mu\}$, i.e. for all continuous $f \in C(X)$ we have

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(T^i x) = \int f \, d\mu.$$

By the Birkhoff ergodic theorem, μ -almost all points are μ -normal; however, it is difficult to identify a μ -normal point. This paper is devoted to the study of the normality of orbits for piecewise monotone continuous maps of the interval. We consider a family $\{T_{\kappa}\}_{\kappa \in K}$ of piecewise monotone continuous maps, parameterized by a parameter $\kappa \in K$, such that for all $\kappa \in K$ there is a unique measure μ_{κ} of maximal entropy. In our case, *K* is a subset of \mathbb{R} or \mathbb{R}^2 . For a given $x \in X$, we estimate the Lebesgue measure of the subset of *K* for which the orbit of *x* under T_{κ} is μ_{κ} -normal.

For example, let $T_{\alpha,\beta}$: $[0, 1] \rightarrow [0, 1]$ be the piecewise monotone continuous map defined by $T_{\alpha,\beta}(x) = \beta x + \alpha \mod 1$; here $\kappa = (\alpha, \beta) \in [0, 1) \times (1, \infty)$. In [13], Parry constructed a $T_{\alpha,\beta}$ -invariant probability measure $\mu_{\alpha,\beta}$, absolutely continuous with respect to Lebesgue measure, which is the unique measure of maximal entropy. The main result of §3 is Theorem 3, which shows that for all $x \in [0, 1]$, the set

 $\mathcal{N}(x) := \{(\alpha, \beta) \in [0, 1) \times (1, \infty) \mid \text{the orbit of } x \text{ under } T_{\alpha, \beta} \text{ is } \mu_{\alpha, \beta} \text{-normal}\}$

has full two-dimensional Lebesgue measure. This is a generalization of a theorem of Schmeling in [17], where the case with $\alpha = 0$ and x = 1 is studied. For β -transformations, the orbit of 1 plays a particular role, so the restriction to x = 1 considered by Schmeling is natural. Similarly, for $T_{\alpha,\beta}$, the orbits of 0 and 1 are very important. In Theorem 4, we show that there exist curves in the (α, β) -plane, defined by $\alpha = \alpha(\beta)$, along which the orbits of 0 or 1 are never $\mu_{\alpha,\beta}$ -normal. The curve $\alpha = 0$ is a trivial example of such a curve for the fixed point x = 0. In §4, we study the generalized β -transformations introduced by Góra [7]. A generalized β -transformation is similar to a β -transformation, but each lap is replaced by an increasing or decreasing lap of constant slope β according to a sequence of signs. For a given class of generalized β -transformations, there exists β_0 such that for all $\beta > \beta_0$ there is a unique measure μ_β of maximal entropy, and the set

$$\{\beta > \beta_0 \mid \text{the orbit of 1 under } T_\beta \text{ is } \mu_\beta\text{-normal}\}$$

has full Lebesgue measure, denoted below by λ . Since the tent maps are generalized β -transformations, we obtain an alternative proof of Bruin's results in [3].

2. Preliminaries

Let us define properly the coding for a piecewise monotone continuous map of the interval. The classical papers on this subject are [15], [13] and [10]. We consider piecewise monotone continuous maps of the following type. Let $k \ge 2$ and $0 = a_0 < a_1 < \cdots < a_k = 1$. We set $\mathbb{A} := \{0, \ldots, k-1\}, I_0 = [a_0, a_1), I_j = (a_j, a_{j+1})$ for $j \in \{1, \ldots, k-2\}, I_{k-1} = (a_{k-1}, a_k]$ and $S_0 = \{a_j \mid j = 1, \ldots, k-1\}$. For all $j \in \mathbb{A}$, let $f_j : I_j \to [0, 1]$ be a strictly monotone continuous map. A piecewise monotone continuous map $T : [0, 1] \setminus S_0 \to [0, 1]$ is defined by

$$T(x) = f_j(x) \quad \text{if } x \in I_j.$$

Later we will state, in each specific case, how to define *T* on *S*₀. We set $X_0 = [0, 1]$ and, for $n \ge 1$,

$$X_n = X_{n-1} \setminus S_{n-1}$$
 and $S_n = \{x \in X_n \mid T^n(x) \in S_0\},$ (2)

so that T^n is well defined on X_n . Finally, we let $S = \bigcup_{n \ge 0} S_n$ so that $T^n(x)$ is well defined for all $x \in [0, 1] \setminus S$ and all $n \ge 0$.

Let A be endowed with the discrete topology and let $\Sigma_k = \mathbb{A}^{\mathbb{Z}_+}$ be the product space. The elements of Σ_k are denoted by $\underline{x} = x_0 x_1 \cdots$. A finite string $\underline{w} = w_0 \cdots w_{n-1}$ with $w_j \in \mathbb{A}$ is called a *word*. The *length* of \underline{w} is $|\underline{w}| = n$. There is a single word of length 0, the *empty word* ε . The set of all words is \mathbb{A}^* . For two words \underline{w} and \underline{z} , we write $\underline{w} \ge \underline{z}$ for the concatenation of the two words. For $\underline{x} \in \Sigma_k$, let $\underline{x}_{[i,j]} = x_i \cdots x_{j-1}$ denote the word formed by the coordinates *i* to j - 1 of \underline{x} . For a word $\underline{w} \in \mathbb{A}^*$ of length *n*, the *cylinder* [\underline{w}] is the set

$$[\underline{w}] := \{ \underline{x} \in \Sigma_k \mid \underline{x}_{[0,n)} = \underline{w} \}.$$

The family $\{ [\underline{w}] | \underline{w} \in \mathbb{A}^* \}$ is a base for the topology and a semi-algebra generating the Borel σ -algebra. For all $\beta > 1$, there exists a metric d_{β} compatible with the topology which is defined by

$$d_{\beta}(\underline{x}, \underline{x}') := \begin{cases} 0 & \text{if } \underline{x} = \underline{x}', \\ \beta^{-\min\{n \ge 0: \ \underline{x}_n \neq \underline{x}'_n\}} & \text{otherwise.} \end{cases}$$

The left shift map $\sigma : \Sigma_k \to \Sigma_k$ is defined by

$$\sigma(\underline{x}) = x_1 x_2 \cdots .$$

It is a continuous map. We define a total order on Σ_k , denoted by \prec . We set

$$\delta(j) = \begin{cases} +1 & \text{if } f_j \text{ is increasing,} \\ -1 & \text{if } f_j \text{ is decreasing,} \end{cases}$$

and, for word \underline{w} ,

$$\delta(\underline{w}) = \begin{cases} 1 & \text{if } \underline{w} = \varepsilon, \\ \delta(w_0) \cdots \delta(w_{n-1}) & \text{if } \underline{w} \text{ has length } n. \end{cases}$$

Let $\underline{x} \neq \underline{x}' \in \Sigma_k$ and define $n = \min\{j \ge 0 \mid x_j \neq x'_j\}$; then

$$\underline{x} \prec \underline{x}' \Longleftrightarrow \begin{cases} x_n < x'_n & \text{if } \delta(\underline{x}_{[0,n)}) = +1, \\ x_n > x'_n & \text{if } \delta(\underline{x}_{[0,n)}) = -1. \end{cases}$$

When all maps f_i are increasing, this is the lexicographic order.

We define the coding map $i : [0, 1] \setminus S \to \Sigma_k$ by

$$i(x) := i_0(x)i_1(x) \cdots$$
 with $i_n(x) = j \iff T^n(x) \in I_j$.

The coding map i is left undefined on *S*. Henceforth we suppose that *T* is such that i is injective. A sufficient condition for the injectivity of the coding is the existence of c > 1 such that $|f'_j(x)| \ge c$ for all $x \in I_j$ and all $j \in A$; see [13]. This condition is satisfied in all the cases considered in this paper. The coding map is order-preserving, i.e. for all $x, x' \in [0, 1] \setminus S$,

$$x < x' \Rightarrow i(x) \prec i(x').$$

Define $\Sigma_T := \overline{i([0, 1] \setminus S)}$. We now introduce the φ -expansion as defined by Parry. For all $j \in \mathbb{A}$, let $\varphi^j : [j, j+1] \to [a_j, a_{j+1}]$ be the unique monotone extension of f_j^{-1} : $(c, d) \to (a_j, a_{j+1})$, where $(c, d) := f_j((a_j, a_{j+1}))$. The map $\varphi : \Sigma_k \to [0, 1]$ is defined by

$$\varphi(\underline{x}) = \lim_{n \to \infty} \varphi^{x_0}(x_0 + \varphi^{x_1}(x_1 + \dots + \varphi^{x_n}(x_n))).$$

Parry proved that this limit exists if i is injective. The map φ is order-preserving; moreover, $\varphi|_{i([0,1]\setminus S)} = i^{-1}$ and, for all $n \ge 0$ and all $x \in [0, 1]\setminus S$,

$$T^{n}(x) = \varphi \circ \sigma^{n} \circ i(x).$$
(3)

If the coding map is injective, one can show that the map φ is continuous (see [6, Theorem 2.3]). Using the continuity and monotonicity of φ , we have $\varphi(\Sigma_T) = [0, 1]$. We remark that there is, in general, no extension of i on [0, 1] such that equation (3) would be valid on [0, 1]. For all $j \in A$, define

$$\underline{u}^{j} := \lim_{x \downarrow a_{j}} i(x) \text{ and } \underline{v}^{j} := \lim_{x \uparrow a_{j+1}} i(x) \text{ with } x \in [0, 1] \backslash S.$$

The strings \underline{u}^{j} and \underline{v}^{j} are called critical orbits and (see, for instance, [10])

$$\Sigma_T = \{ \underline{x} \in \Sigma_k \mid \underline{u}^{x_n} \preceq \sigma^n \underline{x} \preceq \underline{v}^{x_n} \; \forall n \ge 0 \}.$$
(4)

Moreover, the critical orbits \underline{u}^{j} and \underline{v}^{j} satisfy, for all $j \in A$,

$$\begin{cases} \underline{u}^{u_n^j} \leq \sigma^n \underline{u}^j \leq \underline{v}^{u_n^j} \\ \underline{u}^{v_n^j} \leq \sigma^n \underline{v}^j \leq \underline{v}^{v_n^j} \end{cases} \quad \text{for all } n \geq 0. \tag{5}$$

Let us recall the construction of the Hausdorff dimension. Let (X, d) be a metric space and consider $E \subset X$. Let $\mathcal{D}_{\varepsilon}(E)$ be the set of all finite or countable covers of E with sets of diameter smaller than ε . For all $s \ge 0$, define

$$H_{\varepsilon}(E, s) := \inf \left\{ \sum_{B \in \mathcal{C}} (\operatorname{diam} B)^{s} \mid \mathcal{C} \in \mathcal{D}_{\varepsilon}(E) \right\}$$

and $H(E, s) := \lim_{\epsilon \to 0} H_{\epsilon}(E, s)$, the s-Hausdorff measure of E. The Hausdorff dimension of E is

$$\dim_H E := \inf\{s \ge 0 \mid H(E, s) = 0\}.$$

In [1], Bowen introduced a definition of the topological entropy of non-compact sets for a continuous dynamical system on a metric space. We now recall this definition. Let (X, d) be a metric space and $T: X \to X$ a continuous map. For $n \ge 1$, $\varepsilon > 0$ and $x \in X$, let

$$B_n(x, \varepsilon) = \{ y \in X \mid d(T^J(x), T^J(y)) < \varepsilon \; \forall j = 0, \dots, n-1 \}.$$

For $E \subset X$ such that $T(E) \subset E$, let $\mathcal{G}_n(E, \varepsilon)$ be the set of all finite or countable covers of *E* with Bowen's balls $B_m(x, \varepsilon)$ for $m \ge n$. For all $s \ge 0$, define

$$C_n(E, \varepsilon, s) := \inf \left\{ \sum_{B_m(x,\varepsilon) \in \mathcal{C}} e^{-ms} \mid \mathcal{C} \in \mathcal{G}_n(x, \varepsilon) \right\}$$

and $C(E, \varepsilon, s) := \lim_{n \to \infty} C_n(E, \varepsilon, s)$. Now, let

$$h_{top}(E, \varepsilon) := \inf\{s \ge 0 \mid C(E, \varepsilon, s) = 0\}$$

and, finally, take $h_{top}(E) = \lim_{\varepsilon \to 0} h_{top}(E, \varepsilon)$ (this last quantity increases to the limit $h_{top}(E)$). There is an evident similarity between this definition and that of the Hausdorff dimension; this similarity is the key to the next lemma.

LEMMA 1. For $\beta > 1$, consider the dynamical system $(\Sigma_k, d_\beta, \sigma)$. Let $E \subset \Sigma_k$ be such that $\sigma(E) \subset E$; then

$$\dim_H E \le \frac{h_{\rm top}(E)}{\log \beta}.$$

Proof. Let $\varepsilon \in (0, 1)$, $s \ge 0$, $n \ge 0$ and $\mathcal{C} \in \mathcal{G}_n(E, \varepsilon)$. Since diam $B_m(x, \varepsilon) \le \varepsilon \beta^{-m+1} \le \varepsilon \beta^{-n+1}$ for all $B_m(x, \varepsilon) \in \mathcal{C}$, \mathcal{C} is a cover of E with sets of diameter smaller than $\varepsilon \beta^{-n+1}$. Moreover,

$$\sum_{B_m(x,\varepsilon)\in\mathcal{C}} \operatorname{diam} (B_m(x,\varepsilon))^{s/\log\beta} \leq (\varepsilon\beta)^{s/\log\beta} \sum_{B_m(x,\varepsilon)\in\mathcal{C}} e^{-ms}$$

Thus, $H_{\delta}(E, s/\log \beta) \leq (\varepsilon \beta)^{s/\log \beta} C_n(E, \varepsilon, s)$ with $\delta = \varepsilon \beta^{-n+1}$. Taking the limit $n \to \infty$, we obtain

$$H(E, s/\log \beta) \le (\varepsilon \beta)^{s/\log \beta} C(E, \varepsilon, s).$$

If $s > h_{top}(E, \varepsilon)$, then $H(E, s/\log \beta) = 0$ and $s/\log \beta \ge \dim_H E$. This is true for all $s > h_{top}(E, \varepsilon)$; thus

$$\dim_H E \le \frac{h_{\text{top}}(E,\varepsilon)}{\log \beta} \le \frac{h_{\text{top}}(E)}{\log \beta}.$$

The next lemma is a classical result about the Hausdorff dimension; it is [4, Proposition 2.3].

LEMMA 2. Let (X, d), (X', d') be two metric spaces and let $\rho : X \to X'$ be an α -Hölder continuous map with $\alpha \in (0, 1]$. Let $E \in X$; then

$$\dim_H \rho(E) \leq \frac{\dim_H E}{\alpha}.$$

Finally, we restate [14, Theorem 4.1]. This theorem will be used to estimate the topological entropy of the sets we are interested in.

THEOREM 1. Let (X, d, T) be a continuous dynamical system and let $F \subset M(X, T)$ be a closed subset. Define

$$G := \{ x \in X \mid V_T(x) \cap F \neq \emptyset \}.$$

Then

$$h_{\mathrm{top}}(G) \le \sup_{\nu \in F} h(\nu).$$

3. Normality for the maps $\beta x + \alpha \mod 1$

In this section, we study the piecewise monotone continuous maps $T_{\alpha,\beta}$ defined by $T_{\alpha,\beta}(x) = \beta x + \alpha \mod 1$, with $\beta > 1$ and $\alpha \in [0, 1)$. These maps were studied by Parry in [13] as a generalization of the β -transformations. In his paper Parry constructed a $T_{\alpha,\beta}$ -invariant probability measure $\mu_{\alpha,\beta}$ which is absolutely continuous with respect to Lebesgue measure. Its density is

$$h_{\alpha,\beta}(x) := \frac{d\mu_{\alpha,\beta}}{d\lambda}(x) = \frac{1}{N_{\alpha,\beta}} \frac{\sum_{n\geq 0} 1_{x < T_{\alpha,\beta}^n(1)} - \sum_{n\geq 0} 1_{x < T_{\alpha,\beta}^n(0)}}{\beta^{n+1}},$$
(6)

with $N_{\alpha,\beta}$ being the normalization factor. In [8], Halfin proved that $h_{\alpha,\beta}(x)$ is non-negative for all $x \in [0, 1]$. Let $i^{\alpha,\beta}$ denote the coding map under $T_{\alpha,\beta}$, and $\varphi^{\alpha,\beta}$ the corresponding φ -expansion. Also define $\sum_{\alpha,\beta} := \sum_{T_{\alpha,\beta}} \subset \Sigma_k$ with $k := \lceil \alpha + \beta \rceil, \underline{u}^{\alpha,\beta} := \lim_{x \downarrow 0} i^{\alpha,\beta}(x)$, and $\underline{v}^{\alpha,\beta} := \lim_{x \uparrow 1} i^{\alpha,\beta}(x)$. We specify how $T_{\alpha,\beta}$ is defined at the discontinuity points. We choose to define $T_{\alpha,\beta}$ by right-continuity at $a_j \in S_0$. By doing this, we can also extend the definition of the coding map $i^{\alpha,\beta}$ using the disjoint intervals $[a_j, a_{j+1})$ for $j \in \mathbb{A}$, so that $i^{\alpha,\beta}$ is now defined for all $x \in [0, 1)^{\ddagger}$. We can show that $\underline{u}^{\alpha,\beta} = i^{\alpha,\beta}(0)$ and

$$i([0, 1)) = \{ \underline{x} \in \Sigma_k \mid \underline{u}^{\alpha, \beta} \preceq \sigma^n \underline{x} \prec \underline{v}^{\alpha, \beta} \; \forall n \ge 0 \}$$

and that equation (3) is true for all $x \in [0, 1)$. It is easy to check that formula (4) becomes

$$\Sigma_{\alpha,\beta} = \{ \underline{x} \in \Sigma_k \mid \underline{u}^{\alpha,\beta} \preceq \sigma^n \underline{x} \preceq \underline{v}^{\alpha,\beta} \; \forall n \ge 0 \}$$
(7)

and that the inequalities (5) become

$$\begin{cases} \underline{u}^{\alpha,\beta} \leq \sigma^{n} \underline{u}^{\alpha,\beta} \leq \underline{v}^{\alpha,\beta} \\ \underline{u}^{\alpha,\beta} \leq \sigma^{n} \underline{v}^{\alpha,\beta} \leq \underline{v}^{\alpha,\beta} \end{cases} \quad \text{for all } n \geq 0.$$
(8)

It is known that the dynamical system $(\Sigma_{\alpha,\beta}, \sigma)$ has topological entropy log β . Moreover, Hofbauer showed in [11] that it has a unique measure $\hat{\mu}_{\alpha,\beta}$ of maximal entropy, that $\mu_{\alpha,\beta} = \hat{\mu}_{\alpha,\beta} \circ (\varphi^{\alpha,\beta})^{-1}$ and $\mu_{\alpha,\beta}$ is the unique measure of maximal entropy for $T_{\alpha,\beta}$. In view of (7) and (8), for a pair $(\underline{u}, \underline{v}) \in \Sigma_k^2$ satisfying

$$\begin{cases} \underline{u} \leq \sigma^{n} \underline{u} \leq \underline{v} \\ \underline{u} \leq \sigma^{n} \underline{v} \leq \underline{v} \end{cases} \quad \text{for all } n \geq 0, \tag{9}$$

we define the shift space

$$\Sigma_{\underline{u},\underline{v}} := \{ \underline{x} \in \Sigma_k \mid \underline{u} \preceq \sigma^n \underline{x} \preceq \underline{v} \; \forall n \ge 0 \}.$$
⁽¹⁰⁾

We now give a lemma and a proposition which will be the keys to the main theorem of this section. The lemma says that for given *x* and α , there is exponential separation between the orbits of *x* under the two different dynamical systems T_{α,β_1} and T_{α,β_2} . The proposition asserts that the topological entropy of $\Sigma_{\underline{u},\underline{v}}$ is upper semi-continuous with respect to the critical orbits \underline{u} and \underline{v} .

[†] This convention differs from that made in the previous section; it is, however, the most convenient choice when all the f_i are increasing.

LEMMA 3. Let $x \in [0, 1)$, $\alpha \in [0, 1)$ and $1 < \beta_1 \le \beta_2$. Define $l = \min\{n \ge 0 \mid i_n^1(x) \ne i_n^2(x)\}$ with $i^j(x) = i^{\alpha, \beta_j}$ for j = 1, 2. If $x \ne 0$, then

$$\beta_2 - \beta_1 \le \frac{\beta_2}{x} \beta_2^{-l}.$$

If x = 0 and $\alpha \neq 0$, then

$$\beta_2 - \beta_1 \le \frac{\beta_2^2}{\alpha} \beta_2^{-l}.$$

Proof. Let $\delta := \beta_2 - \beta_1 \ge 0$. We prove by induction that for all $m \ge 1$, $i_{[0,m)}^1(x) = i_{[0,m)}^2(x)$ implies

$$T_2^m(x) - T_1^m(x) \ge \beta_2^{m-1} \delta x,$$

where $T_i = T_{\alpha,\beta_i}$. For m = 1,

$$T_2(x) - T_1(x) = \beta_2 x + \alpha - i_0^2(x) - (\beta_1 x + \alpha - i_0^1(x)) = \delta x.$$

Now suppose that the statement is true for a certain *m*; then $i_{[0,m+1)}^1 = i_{[0,m+1)}^2$ implies

$$T_2^{m+1}(x) - T_1^{m+1}(x) = \beta_2 T_2^m(x) + \alpha - i_m^2(x) - (\beta_1 T_1^m(x) + \alpha - i_m^1(x))$$

= $\beta_2 (T_2^m(x) - T_1^m(x)) + \delta T_1^m(x) \ge \beta_2^m \delta x.$

On the other hand, $1 \ge T_2^m(x) - T_1^m(x) \ge \beta_2^{m-1} \delta x$. Thus $\delta \le \beta_2^{-m+1}/x$ for all *m* such that $i_{[0,m)}^1 = i_{[0,m)}^2$. If x = 0, then $T_1(x) = T_2(x) = \alpha$ and we can apply the first statement to $y = \alpha > 0$.

PROPOSITION 1. Let the pair $(\underline{u}, \underline{v}) \in \Sigma_k^2$ satisfy (9). For all $\delta > 0$, there exists $L(\delta, \underline{u}, \underline{v})$ such that for all $L \ge L(\delta, \underline{u}, \underline{v})$ the following claim is true: let the pair $(\underline{u}', \underline{v}') \in \Sigma_k^2$ satisfy (9), and suppose further that $\underline{u}, \underline{u}'$ have a common prefix of length L and that $\underline{v}, \underline{v}'$ have a common prefix of length L; then

$$h_{\text{top}}(\Sigma_{\underline{u}',\underline{v}'}) \le h_{\text{top}}(\Sigma_{\underline{u},\underline{v}}) + \delta.$$

To prove Proposition 1, one associates to the subshift $\sum_{\underline{u},\underline{v}}$ a graph $\mathcal{G}(\underline{u},\underline{v})$, called the Markov diagram [11]. One then proves a property equivalent to Proposition 1 for these graphs; see Appendix A.

We now state our first theorem and a corollary about the normality of orbits under $T_{\alpha,\beta}$. The proof of the theorem is inspired by the proof of [17, Theorem C], where the case of x = 1 and $\alpha = 0$ is considered.

THEOREM 2. Take any $x \in [0, 1)$ and $\alpha \in [0, 1)$ except for $(x, \alpha) = (0, 0)$. Then the set

$$\{\beta > 1 \mid \text{the orbit of } i^{\alpha, \rho}(x) \text{ under } \sigma \text{ is } \hat{\mu}_{\alpha, \beta}\text{-normal}\}$$

has full λ -measure.

COROLLARY 1. Take any $x \in [0, 1)$ and $\alpha \in [0, 1)$ except for $(x, \alpha) = (0, 0)$. Then the set

 $\{\beta > 1 \mid \text{the orbit of } x \text{ under } T_{\alpha,\beta} \text{ is } \mu_{\alpha,\beta}\text{-normal}\}$

has full λ -measure.

We remark that the theorem and its corollary may also be formulated for $x \in (0, 1]$ by using a left-continuous extension of $T_{\alpha,\beta}$ on (0, 1] and a coding $i^{\alpha,\beta}$ defined using intervals $(a_j, a_{j+1}]$ for $j \in A$.

Proof of Theorem 2. We briefly sketch the proof. It is sufficient to consider a finite interval $[\beta, \overline{\beta}]$. We use the uniqueness of the measure $\hat{\mu}_{\alpha,\beta}$ of maximal entropy: for a $\underline{x} \in \Sigma_{\alpha,\beta}$ which is not $\hat{\mu}_{\alpha,\beta}$ -normal, there exists $\nu \in V_{\sigma}(\underline{x})$ such that $h(\nu) < h(\hat{\mu}_{\alpha,\beta}) = \log \beta$. We therefore cover the set of abnormal β in $[\beta, \overline{\beta}]$ by sets $\Omega_N, N \in \mathbb{N}$, given by

$$\Omega_N := \{\beta \in [\beta, \overline{\beta}] \mid \{\mathcal{E}_n(\mathbb{1}^{\alpha, \beta}(x))\}_n \text{ clusters on } \nu \text{ with } h(\nu) < (1 - 1/N) \log \beta\}.$$

We consider each Ω_N separately and cover them by appropriate intervals, which we denote generically by $[\beta_1, \beta_2]$. The main idea is to imbed $\{i^{\alpha,\beta}(x) : \beta \in [\beta_1, \beta_2]\}$ in a shift space $\Sigma^* := \Sigma_{\underline{u}^*, \underline{v}^*}$ with \underline{u}^* and \underline{v}^* suitably chosen. Writing $D^* \subset \Sigma^*$ for the range of the imbedding, we estimate the Hausdorff dimension of the subset of D^* corresponding to points $i^{\alpha,\beta}(x)$ which are not $\hat{\mu}_{\alpha,\beta}$ -normal. Then we estimate the coefficient of Hölder continuity of the map ρ_* defined as the inverse of the imbedding. This gives us an estimate of the Hausdorff dimension of the non- $\hat{\mu}_{\alpha,\beta}$ -normal points in the interval $[\beta_1, \beta_2]$.

To obtain uniform estimates, we restrict our proof to the interval $[\underline{\beta}, \beta]$ with $1 < \underline{\beta} < \overline{\beta} < \infty$. All shift spaces below will be subshifts of Σ_k with $k = \lceil \alpha + \overline{\beta} \rceil$. Let $\Omega := \{\beta \in [\underline{\beta}, \overline{\beta}] \mid \underline{i}^{\alpha,\beta}(x) \text{ is not } \hat{\mu}_{\alpha,\beta}\text{-normal}\}$. For $\beta \in \Omega$, we have $V_{\sigma}(\underline{i}^{\alpha,\beta}(x)) \neq \{\hat{\mu}_{\alpha,\beta}\}$. Since $\hat{\mu}_{\alpha,\beta}$ is the unique $T_{\alpha,\beta}\text{-invariant measure of maximal entropy log }\beta$, there exist $N \in \mathbb{N}$ and $\nu \in V_{\sigma}(\underline{i}^{\alpha,\beta}(x))$ such that $h(\nu) < (1 - 1/N) \log \beta$. Setting

$$\Omega_N := \{\beta \in [\beta, \overline{\beta}] \mid \exists \nu \in V_{\sigma}(\mathbf{i}^{\alpha, \beta}(x)) \text{ s.t. } h(\nu) < (1 - 1/N) \log \beta \},\$$

we have $\Omega = \bigcup_{N \ge 1} \Omega_N$. We will prove that $\dim_H \Omega_N < 1$, so that $\lambda(\Omega_N) = 0$ for all $N \ge 1$.

For $N \in \mathbb{N}$ fixed, define $\varepsilon := \frac{\beta}{\beta} \log \frac{\beta}{2N-1} > 0$ and $\delta := \log(1 + \varepsilon/\overline{\beta})$. Let $\beta \in [\underline{\beta}, \overline{\beta}]$ and define $L_{\beta} = L(\delta/2, \underline{u}^{\alpha, \beta}, \underline{v}^{\alpha, \beta})$ as in Proposition 1. Choose q_{β} in \mathbb{Q} such that $\log \beta - \delta/2 \le \log q_{\beta} \le \log \beta$. Let

$$J(\beta, L_{\beta}, q_{\beta}) := \{\beta' \in [q_{\beta}, \overline{\beta}] \mid \underline{u}_{[0, L_{\beta})}^{\alpha, \beta'} = \underline{u}_{[0, L_{\beta})}^{\alpha, \beta}, \underline{v}_{[0, L_{\beta})}^{\alpha, \beta'} = \underline{v}_{[0, L_{\beta})}^{\alpha, \beta}\}.$$

This set is an interval: if $\beta' \in J(\beta, L_{\beta}, q_{\beta})$ and $\beta' < \beta'' \in J(\beta, L_{\beta}, q_{\beta})$, then $[\beta', \beta''] \subset J(\beta, L_{\beta}, q_{\beta})$ since the maps $\beta' \mapsto \underline{u}^{\alpha,\beta'}$ and $\beta' \mapsto \underline{v}^{\alpha,\beta'}$ are both monotone increasing. Moreover, $\beta \in J(\beta, L_{\beta}, q_{\beta})$. Notice also that the family $\{J(\beta, L_{\beta}, q_{\beta}) \mid \beta \in [\underline{\beta}, \overline{\beta}]\}$ is countable. Indeed, the interval $J(\beta, L_{\beta}, q_{\beta})$ is entirely characterized by $\underline{u}_{[0,L_{\beta})}^{\alpha,\beta}, \underline{v}_{[0,L_{\beta})}^{\alpha,\beta}$ and q_{β} . But there are only countably many triples in $\mathbb{A}^* \times \mathbb{A}^* \times \mathbb{Q}$. Thus $\{J(\beta, L_{\beta}, q_{\beta}) \mid \beta \in [\underline{\beta}, \overline{\beta}]\}$ is a countable cover of $[\underline{\beta}, \overline{\beta}]$. To prove that $\lambda(\Omega_N) = 0$, it is sufficient to prove that $\lambda(\Omega_N \cap J(\beta, L_{\beta}, q_{\beta})) = 0$ for all $\beta \in [\underline{\beta}, \overline{\beta}]$. The interval $J(\beta, L_{\beta}, q_{\beta})$ may be open, closed, or neither open nor closed. We need to work on a closed interval, thus we prove an equivalent result, namely that for any closed interval $[\beta_1, \beta_2] \subset J(\beta, L_{\beta}, q_{\beta})$ we have $\lambda(\Omega_N \cap [\beta_1, \beta_2]) = 0$.

Let $\underline{u}^{j} = \underline{u}^{\alpha,\beta_{j}}$ and $\underline{v}^{j} = \underline{v}^{\alpha,\beta_{j}}$. Using (8) and the monotonicity of $\beta \mapsto \underline{u}^{\alpha,\beta}$ and $\beta \mapsto \underline{v}^{\alpha,\beta}$, we have

$$\frac{\underline{u}^{1} \leq \sigma^{n} \underline{u}^{1} \leq \underline{v}^{1} \leq \underline{v}^{2}}{\underline{u}^{1} \leq \underline{u}^{2} \leq \sigma^{n} \underline{v}^{2} \leq \underline{v}^{2}} \quad \text{for all } n \geq 0.$$

Hence the pair $(\underline{u}^1, \underline{v}^2)$ satisfies (9), and we set $\Sigma^* = \Sigma_{\underline{u}^1, \underline{v}^2}$ and

$$D^* := \{ \underline{z} \in \Sigma^* \mid \exists \beta \in [\beta_1, \beta_2] \text{ s.t. } \underline{z} = i^{\alpha, \beta}(x) \}.$$

We define an map $\rho_*: D^* \to [\beta_1, \beta_2]$ by $\rho_*(\underline{z}) = \beta \Leftrightarrow i^{\alpha,\beta}(x) = \underline{z}$. This map is well defined: by definition of D^* , for all $\underline{z} \in D^*$ there exists a β such that $\underline{z} = i^{\alpha,\beta}(x)$; moreover, this β is unique, since by Lemma 3 $\beta \mapsto i^{\alpha,\beta}(x)$ is strictly increasing. On the other hand, for all $\beta \in [\beta_1, \beta_2]$, we have, from (7),

$$\underline{u}^{1} \leq \underline{u}^{\alpha,\beta} \leq \sigma^{n} \mathbf{i}^{\alpha,\beta}(x) \leq \underline{v}^{\alpha,\beta} \leq \underline{v}^{2} \quad \text{for all } n \geq 0$$

whence $i^{\alpha,\beta}(x) \in \Sigma^*$ and $\rho_* : D^* \to [\beta_1, \beta_2]$ is surjective. Let $\log \beta_* := h_{top}(\Sigma^*)$; then, by Proposition 1,

$$\log \beta^* = h_{\rm top}(\Sigma^*) \le h_{\rm top}(\Sigma_{\alpha,\beta}) + \delta/2 = \log \beta + \delta/2.$$

By definition of q_{β} , we have $\log \beta - \delta/2 \le \log q_{\beta} \le \log \beta_1$; thus $\log \beta^* \le \log \beta_1 + \delta$ and

$$\beta_* - \beta_1 \le \beta_1 (e^{\delta} - 1) \le \varepsilon.$$
⁽¹¹⁾

Let us compute the coefficient of Hölder continuity of $\rho_* : (D^*, d_{\beta_*}) \to [\beta_1, \beta_2]$. Take $\underline{z} \neq \underline{z}' \in D^*$ and $n = \min\{l \ge 0 \mid z_l \neq z'_l\}$; then $d_{\beta_*}(\underline{z}, \underline{z}') = \beta_*^{-n}$. By Lemma 3, there exists C such that

$$|\rho_*(\underline{z}) - \rho_*(\underline{z}')| \le C\rho_*(\underline{z})^{-n} \le C\beta_1^{-n} = C(d_{\beta_*}(\underline{z}, \underline{z}'))^{\log \beta_1/\log \beta_*},$$

where

$$C = \max\left\{\frac{\overline{\beta}}{x}, \frac{\overline{\beta}^2}{\alpha}\right\}.$$

By equation (11) and the choice of ε , we have

$$\begin{split} \beta_* - \beta_1 &\leq \frac{\underline{\beta} \log \underline{\beta}}{2N - 1} \Rightarrow \beta_* - \beta_1 \leq \frac{\beta_1 \log \beta_1}{2N - 1} \\ &\Leftrightarrow 1 + \frac{\beta_* - \beta_1}{\beta_1 \log \beta_1} \leq 1 + \frac{1}{2N - 1} \\ &\Leftrightarrow \frac{\log \beta_1 + (\beta_* - \beta_1)/\beta_1}{\log \beta_1} \leq \frac{2N}{2N - 1} \\ &\Rightarrow \frac{\log \beta_1}{\log \beta_*} \geq \frac{\log \beta_1}{\log \beta_1 + (\beta_* - \beta_1)/\beta_1} \geq 1 - \frac{1}{2N}. \end{split}$$

In the last line, we have used the concavity of the logarithm, so the first-order Taylor development is an upper estimate. Thus ρ_* has Hölder-exponent 1 - 1/(2N).

Define

$$G_N^* := \{ \underline{z} \in \Sigma^* \mid \exists \nu \in V_\sigma(\underline{z}) \text{ s.t. } h(\nu) < (1 - 1/N) \log \beta_* \}.$$

Let $\beta \in \Omega_N \cap [\beta_1, \beta_2]$. Then there exists $\nu \in V_{\sigma}(i^{\alpha,\beta}(x))$ such that

$$h(\nu) < (1 - 1/N) \log \beta \le (1 - 1/N) \log \beta_*$$

Since $i^{\alpha,\beta}(x) \in D^* \subset \Sigma^*$, we have $i^{\alpha,\beta}(x) \in G_N^*$. Using the surjectivity of ρ_* , we obtain $\Omega_N \cap [\beta_1, \beta_2] \subset \rho_*(G_N^* \cap D^*)$. We claim that $h_{\text{top}}(G_N^*) \leq (1 - 1/N) \log \beta_*$. This implies, using Lemmas 2 and 1, that

$$\dim_{H}(\Omega_{N} \cap [\beta_{1}, \beta_{2}]) \leq \dim_{H} \rho_{*}(G_{N}^{*} \cap D^{*})$$
$$\leq \frac{\dim_{H} G_{N}^{*}}{1 - 1/2N} \leq \frac{h_{top}(G_{N}^{*})}{(1 - 1/2N) \log \beta_{*}} \leq \frac{1 - 1/N}{1 - 1/2N} < 1.$$

Thus $\lambda(\Omega_N \cap [\beta_1, \beta_2]) = 0.$

It remains to prove that $h_{top}(G_N^*) \le (1 - 1/N) \log \beta_*$. Recall that $h(v) = \lim_n H_n(v)/n$, where $H_n(v)$ is the entropy of v with respect to the algebra \mathcal{A}_n of cylinder sets of length n:

$$H_n(\nu) = -\sum_{[\underline{w}]\in\mathcal{A}_n} \nu([\underline{w}]) \log \nu([\underline{w}]).$$

Since the cylinders are both open and closed, $\nu \mapsto H_n(\nu)$ is continuous in the weak*-topology. Moreover, $H_n(\nu)/n$ is decreasing in *n*. For all $m \ge 1$, we set

$$F_N^*(m) := \left\{ v \in M(\Sigma^*, \sigma) \mid \frac{1}{m} H_m(v) \le (1 - 1/N) \log \beta_* \right\}$$
$$G_N^*(m) := \{ \underline{z} \in \Sigma^* \mid V_\sigma(\underline{z}) \cap F_N^*(m) \ne \emptyset \}.$$

Let $\underline{z} \in G_N^*$; then there exists $v \in V_\sigma(\underline{z})$ such that $h(v) < (1 - 1/N) \log \beta_*$. Since $H_m(v)/m \downarrow h(v)$, there exists $m \ge 1$ such that $H_m(v)/m \le (1 - 1/N) \log \beta_*$, whence $v \in F_n^*(m)$ and $\underline{z} \in G_N^*(m)$. This implies that $G_N^* \subset \bigcup_{m\ge 1} G_N^*(m)$. Since $H_m(\cdot)$ is continuous, $F_N^*(m)$ is closed for all $m \ge 1$. Finally, by using Theorem 1 we obtain

$$\begin{aligned} h_{\text{top}}(G_N^*) &= \sup_m h_{\text{top}}(G_N^*(m)) \le \sup_m \sup_{\nu \in F_N^*(m)} h(\nu) \\ &\le \sup_m \sup_{\nu \in F_N^*(m)} \frac{1}{m} H_m(\nu) \le (1 - 1/N) \log \beta_*. \end{aligned}$$

Proof of Corollary 1. Let $\beta > 1$ be such that the orbit of $i^{\alpha,\beta}(x)$ under σ is $\hat{\mu}_{\alpha,\beta}$ -normal. Let $f \in C([0, 1])$; then $\hat{f} : \Sigma_{\alpha,\beta} \to \mathbb{R}$ defined by $\hat{f} := f \circ \varphi^{\alpha,\beta}$ is continuous, since $\varphi^{\alpha,\beta}$ is continuous. Using $\mu_{\alpha,\beta} := \hat{\mu}_{\alpha,\beta} \circ (\varphi^{\alpha,\beta})^{-1}$, we have

$$\int_{[0,1]} f \, d\mu_{\alpha,\beta} = \int_{\Sigma_{\alpha,\beta}} \hat{f} \, d\hat{\mu}_{\alpha,\beta} = \lim_{n \to \infty} \sum_{i=0}^{n-1} \hat{f}(\sigma^i \, \mathbf{i}^{\alpha,\beta}(x))$$
$$= \lim_{n \to \infty} \sum_{i=0}^{n-1} f(\varphi^{\alpha,\beta}(\sigma^i \, \mathbf{i}^{\alpha,\beta}(x))) = \lim_{n \to \infty} \sum_{i=0}^{n-1} f(T^i_{\alpha,\beta}(x)).$$

The second equality comes from the $\hat{\mu}_{\alpha,\beta}$ -normality of the orbit of $i^{\alpha,\beta}(x)$ under σ , while the last one follows from (3), which is true for all $x \in [0, 1)$ with our convention for the extension of $T_{\alpha,\beta}$ and $i^{\alpha,\beta}$ on [0, 1).

The next step is to consider the question of $\mu_{\alpha,\beta}$ -normality in the whole (α, β) -plane instead of working with α fixed. Define $\mathcal{R} := [0, 1) \times (1, \infty)$.

THEOREM 3. For all $x \in [0, 1)$, the set

$$\mathcal{N}(x) := \{(\alpha, \beta) \in \mathcal{R} \mid \text{the orbit of } x \text{ under } T_{\alpha, \beta} \text{ is } \mu_{\alpha, \beta} \text{-normal}\}$$

has full two-dimensional Lebesgue measure.

Proof. We need only prove that $\mathcal{N}(x)$ is measurable and apply Fubini's theorem and Corollary 1. The first step is to prove that for all $x \in [0, 1)$ and all $n \ge 0$, the maps $(\alpha, \beta) \mapsto i^{\alpha, \beta}(x)$ and $(\alpha, \beta) \mapsto T^n_{\alpha, \beta}(x)$ are measurable. First, observe that for all $n \ge 1$,

$$T^{n}_{\alpha,\beta}(x) = \beta^{n}x + \alpha \frac{\beta^{n} - 1}{\beta - 1} - \sum_{j=0}^{n-1} i_{j}^{\alpha,\beta}(x) \ \beta^{n-j-1}.$$
 (12)

The proof by induction is immediate. To prove that $(\alpha, \beta) \mapsto i^{\alpha,\beta}(x)$ is measurable, it is enough to prove that for all $n \ge 0$ and for all words $\underline{w} \in \mathbb{A}^*$ of length n,

$$\{(\alpha, \beta) \in \mathcal{R} \mid i_{[0,n)}^{\alpha,\beta}(x) = \underline{w}\}$$

is measurable, since the σ -algebra on Σ_k is generated by the cylinders. This set is the subset of \mathbb{R}^2 such that

$$\begin{cases} \beta > 1, \\ 0 \le \alpha < 1, \\ w_j < \beta T^j_{\alpha,\beta}(x) + \alpha \le w_j + 1 \quad \text{for } 0 \le j < n. \end{cases}$$

Using (12), this system of inequalities can be rewritten as

$$\begin{cases} \beta > 1, \\ 0 \le \alpha < 1, \\ \alpha > \frac{\beta - 1}{\beta^{j+1} - 1} \left(\sum_{i=0}^{j} w_i \beta^{j-i} - \beta^{j+1} x \right) & \text{for } 0 \le j < n, \\ \alpha \le \frac{\beta - 1}{\beta^{j+1} - 1} \left(1 + \sum_{i=0}^{j} w_i \beta^{j-i} - \beta^{j+1} x \right) & \text{for } 0 \le j < n. \end{cases}$$

From this, the measurability of $i^{\alpha,\beta}$ follows. If $(\alpha,\beta) \mapsto i^{\alpha,\beta}(x)$ is measurable, then by formula (12), $(\alpha,\beta) \mapsto T^n_{\alpha,\beta}(x)$ is clearly measurable for all $n \ge 0$. Then, for all $f \in C([0, 1])$ and all $n \ge 1$, the map $(\alpha, \beta) \mapsto S_n(f) := \sum_{i=0}^{n-1} f(T^i_{\alpha,\beta}(x))/n$ is measurable and, consequently,

$$\left\{ (\alpha, \beta) \ \Big| \ \lim_{n \to \infty} S_n(f) \text{ exists} \right\}$$

is a measurable set.

On the other hand, if $f \in C([0, 1])$, then $(\alpha, \beta) \mapsto \int f d\mu_{\alpha,\beta}$ is measurable. Indeed,

$$\int f \, d\mu_{\alpha,\beta} = \int f h_{\alpha,\beta} \, d\lambda$$

and, in view of equation (6) and the measurability of $(\alpha, \beta) \mapsto T_{\alpha,\beta}(x)$, the map $(\alpha, \beta) \mapsto h_{\alpha,\beta}$ is clearly measurable. Therefore

$$\left\{ (\alpha, \beta) \, \middle| \, \lim_{n \to \infty} S_n(f) = \int f \, d\mu_{\alpha, \beta} \right\}$$

is measurable for all $f \in C([0, 1])$. Let $\{f_m\}_{m \in \mathbb{N}} \subset C([0, 1])$ be a countable subset which is dense with respect to uniform convergence. Then, setting

$$D_m := \left\{ (\alpha, \beta) \in \mathcal{R} \ \middle| \ \lim_{n \to \infty} S_n(f_m) = \int f_m \ d\mu_{\alpha, \beta} \right\},\$$

we have $\mathcal{N}(x) = \bigcap_{m \in \mathbb{N}} D_m$, whence it is a measurable set.

We have shown that for a given $x \in [0, 1)$, the orbit of x under $T_{\alpha,\beta}$ is $\mu_{\alpha,\beta}$ -normal for almost all (α, β) . The orbits of 0 and 1 are of particular interest; see equation (6). Now we show that through any point (α_0, β_0) , there passes a curve defined by $\alpha = \alpha(\beta)$ such that the orbit of 0 under $T_{\alpha(\beta),\beta}$ is $\mu_{\alpha(\beta),\beta}$ -normal for at most one β . A trivial example of such a curve is $\alpha = 0$, since x = 0 is a fixed point. The idea is to consider curves along which the coding of 0 is constant, i.e. to define $\alpha(\beta)$ such that $\underline{u}^{\alpha(\beta),\beta}$ is constant. The results below depend on reference [**6**], where we solve the following inverse problem: given \underline{u} and \underline{v} satisfying (9), can we find α, β such that $\underline{u} = \underline{u}^{\alpha,\beta}$ and $\underline{v} = \underline{v}^{\alpha,\beta}$?

Let

$$\mathcal{U} := \{ \underline{u} \mid \exists \ (\alpha, \beta) \in \mathcal{R} \text{ s.t. } \underline{u} = \underline{u}^{\alpha, \beta} \}.$$

We define an equivalence relation in \mathcal{R} by

$$(\alpha, \beta) \sim (\alpha', \beta') \iff \underline{u}^{\alpha, \beta} = \underline{u}^{\alpha', \beta'}.$$

An equivalence class is denoted by [u]. The next lemma describes [u].

LEMMA 4. Let $\underline{u} \in \mathcal{U}$ and set

$$\alpha(\beta) = (\beta - 1) \sum_{j \ge 0} \frac{u_j}{\beta^{j+1}}.$$

Then there exists $\beta_u \ge 1$ such that

$$[\underline{u}] = \{ (\alpha(\beta), \beta) \mid \beta \in I_{\underline{u}} \}$$

with $I_{\underline{u}} = (\beta_{\underline{u}}, \infty)$ or $I_{\underline{u}} = [\beta_{\underline{u}}, \infty)$.

Proof. If $\underline{u} = 000 \dots$, then the statement is trivially true with $\alpha(\beta) \equiv 0$ and $\beta_{\underline{u}} = 1$. So suppose $\underline{u} \neq 000 \dots$ First, we prove that

$$(\alpha, \beta) \sim (\alpha', \beta) \implies \alpha = \alpha',$$

and then that

$$(\alpha, \beta) \in [\underline{u}] \implies (\alpha(\beta'), \beta') \in [\underline{u}] \text{ for all } \beta' \ge \beta.$$

Let $(\alpha, \beta) \in [\underline{u}]$. Using (3), we have $\varphi^{\alpha,\beta}(\sigma \underline{u}) = T_{\alpha,\beta}(0) = \alpha$. Since the map $\alpha \mapsto \varphi^{\alpha,\beta}(\sigma \underline{u}) - \alpha$ is continuous and strictly decreasing [6, Lemmas 3.5 and 3.6], the first

statement is true. Let $\beta' > \beta$. By [6, Corollary 3.1], we have that $\varphi^{\alpha,\beta}(\sigma \underline{u}) > \varphi^{\alpha,\beta'}(\sigma \underline{u})$. Therefore there exists a unique $\alpha' < \alpha$ such that $\varphi^{\alpha',\beta'}(\sigma \underline{u}) = \alpha'$. We claim that $\underline{u}^{\alpha',\beta'} = \underline{u}$. By [6, Proposition 2.5(1)], we have $\underline{u} \leq \underline{u}^{\alpha',\beta'}$. By [6, Proposition 3.3], we have

$$h_{\rm top}(\Sigma_{u,v^{\alpha',\beta'}}) = h_{\rm top}(\Sigma_{\alpha',\beta'}) = \log \beta'.$$

Since $\Sigma_{\alpha,\beta} = \Sigma_{\underline{u},\underline{v}^{\alpha,\beta}}$ and $\beta' > \beta$, we must have $\underline{v}^{\alpha,\beta} \prec \underline{v}^{\alpha',\beta'}$. Therefore

$$\begin{cases} \underline{u} \leq \sigma^{n} \underline{u} < \underline{v}^{\alpha,\beta} < \underline{v}^{\alpha',\beta'} \\ \underline{u} \leq \underline{u}^{\alpha',\beta'} < \sigma^{n} \underline{v}^{\alpha',\beta'} \leq \underline{v}^{\alpha',\beta'} \end{cases} \text{ for all } n \geq 0$$

are the inequalities [6, (4.1)] for the pair $(\underline{u}, \underline{v}^{\alpha',\beta'})$. We can then apply [6, Proposition 3.2 and Theorem 4.1] to this pair and get $\underline{u} = \underline{u}^{\alpha',\beta'}$. It remains to show that $\alpha' = \alpha(\beta')$. Following the definition of the φ -expansion of Rényi, we have, for all $x \in [0, 1)$ and all $n \ge 0$,

$$x = \sum_{j=0}^{n-1} \frac{\mathrm{i}_j^{\alpha,\beta}(x) - \alpha}{\beta^{j+1}} + \frac{T_{\alpha,\beta}^n(x)}{\beta^n}.$$

Since $T^n_{\alpha,\beta}(x) \in [0, 1)$, for all $\beta > 1$ we find an explicit expression for $\varphi^{\alpha,\beta}$ on $\Sigma_{\alpha,\beta}$:

$$x = \sum_{j \ge 0} \frac{i_j^{\alpha, \beta}(x) - \alpha}{\beta^{j+1}}.$$

In particular, by applying this equation to x = 0 we obtain, for all $(\alpha, \beta) \in \mathcal{R}$,

$$\alpha = (\beta - 1) \sum_{j \ge 0} \frac{u_j^{\alpha, \beta}}{\beta^{j+1}}.$$

Since for all $\beta > \beta_{\underline{u}}$ we have $\underline{u} \in \Sigma_{\alpha,\beta}$, this completes the proof.

For each $\underline{u} \in \mathcal{U}$, the equivalence class $[\underline{u}]$ defines an analytic curve in \mathcal{R} which is strictly monotone decreasing (except for $\underline{u} = 000 \cdots$):

$$[\underline{u}] = \left\{ (\alpha, \beta) \mid \alpha = (\beta - 1) \sum_{j \ge 0} \frac{u_j}{\beta^{j+1}}, \ \beta \in I_{\underline{u}} \right\}.$$

These curves are pairwise disjoint and their union is \mathcal{R} .

THEOREM 4. Let $(\alpha, \beta) \in \mathcal{R}$, $\underline{u} = \underline{u}^{\alpha,\beta}$, and define $\alpha(\beta)$ and $\beta_{\underline{u}}$ as in Lemma 4. Then, for all $\beta > \beta_{\underline{u}}$, the orbit of x = 0 under $T_{\alpha(\beta),\beta}$ is not $\mu_{\alpha(\beta),\beta}$ -normal.

Proof. Let $\hat{\nu} \in M(\Sigma_k, \sigma)$ (with *k* large enough) be a cluster point of $\{\mathcal{E}_n(\underline{u})\}_{n\geq 1}$ (see (1)). By Lemma 4, $\underline{u}^{\alpha(\beta),\beta} = \underline{u}$ for any $\beta > \beta_{\underline{u}}$. Therefore

$$h(\hat{\nu}) \le h_{\text{top}}(\Sigma_{\alpha(\beta),\beta}) = \log \beta \quad \text{for all } \beta > \beta_{\underline{u}}$$

and $\hat{\nu}$, as well as $\nu_{\beta} := \hat{\nu} \circ (\varphi^{\alpha(\beta),\beta})^{-1}$ for all $\beta > \beta_{\underline{u}}$, is not a measure of maximal entropy (see [10]).

Recall that

 $\mathcal{N}(0) = \{(\alpha, \beta) \in \mathcal{R} \mid \text{the orbit of } 0 \text{ under } T_{\alpha, \beta} \text{ is } \mu_{\alpha, \beta} \text{-normal}\}.$

By Theorem 3, $\mathcal{N}(0)$ has full Lebesgue measure. On the other hand, by Theorem 4, we can decompose \mathcal{R} into a family of disjoint analytic curves such that each curve meets $\mathcal{N}(0)$ in at most one point. This situation is very similar to the one presented in [12] by Milnor, following an idea of Katok.

4. Normality in generalized β -transformations

In this section, we consider another class of piecewise monotone continuous maps, the generalized β -transformations. Introduced by Góra in [7], these maps have only one critical orbit like β -transformations, but they admit increasing and decreasing laps. A family $\{T_{\beta}\}_{\beta>1}$ of generalized β -transformations is defined by $k \ge 2$ and a sequence $s = (s_n)_{0 \le n < k}$ with $s_i \in \{-1, 1\}$. For any $\beta \in (k - 1, k]$, let $a_j = j/\beta$ for $j = 0, \ldots, k - 1$ and $a_k = 1$. Then, for all $j = 0, \ldots, k - 1$, the map $f_j = I_j \rightarrow [0, 1]$ is defined by

$$f_j(x) := \begin{cases} \beta x \mod 1 & \text{if } s_j = +1, \\ 1 - (\beta x \mod 1) & \text{if } s_j = -1. \end{cases}$$

In particular, when s = (1, -1), then T_{β} is a tent map. Here we leave the map undefined on a_j for j = 1, ..., k - 1.

Góra constructed the unique measure μ_{β} that is absolutely continuous with respect to Lebesgue measure [7, Theorem 6 and Proposition 8]. Using the same argument that Hofbauer employed in [9], we deduce that a measure of maximal entropy is always absolutely continuous with respect to Lebesgue measure, and hence that the measure μ_{β} is the unique measure of maximal entropy. Let $k = \lceil \beta \rceil$ and write i^{β} for the coding map under T_{β} , $\varphi^{\beta} := (i^{\beta})^{-1}$ for the inverse of the coding map, $\Sigma_{\beta} := \Sigma_{T_{\beta}}$ and $\underline{\eta}^{\beta} := \lim_{x\uparrow 1} i^{\beta}(x)$. Now it is easy to check that formula (4) becomes

$$\Sigma_{\beta} = \{ \underline{x} \in \Sigma_k \mid \sigma^n \underline{x} \leq \underline{\eta}^{\beta} \; \forall n \ge 0 \}$$
(13)

and that inequalities (5) become

$$\sigma^n \eta^\beta \preceq \eta^\beta \quad \text{for all } n \ge 0. \tag{14}$$

It is known, in all of the cases treated below, that the dynamical system (Σ_{β}, σ) has topological entropy log β and, by the general theory of Hofbauer in [12], a unique measure of maximal entropy $\hat{\mu}_{\beta}$ such that $\mu_{\beta} = \hat{\mu}_{\beta} \circ (\varphi^{\beta})^{-1}$ (see [5]).

As in the previous section, we state two lemmas which we shall need for the proof of the main theorem of this section. We study the normality of x = 1 only, so these lemmas are formulated specifically for x = 1. Let $S_n(\beta) \equiv S_n$ and $S(\beta) \equiv S$ be defined by (2).

LEMMA 5. For any family of generalized β -transformations defined by $(s_n)_{0 \le n < k}$, the set $\{\beta \in (k - 1, k] \mid 1 \in S(\beta)\}$ is countable.

Proof. For a fixed $n \ge 1$, we study the map $\beta \mapsto T_{\beta}^{n}(1)$. This map is well defined everywhere in (k - 1, k] except at finitely many points, and it is continuous on each

interval where it is well defined. Indeed, this is clearly true for n = 1. Suppose it is true for some *n*; then $T_{\beta}^{n+1}(1)$ is well defined and continuous wherever $T_{\beta}^{n}(1)$ is well defined and continuous, except for $T_{\beta}^{n}(1) \in S_{0}(\beta)$. By the induction hypothesis, there exists a finite family of disjoint open intervals J_{i} and continuous functions $g_{i} : J_{i} \to [0, 1]$ such that $(k - 1, k] \setminus (\bigcup_{i} J_{i})$ is finite and

$$T^n_{\beta}(x) = g_i(\beta) \quad \text{if } \beta \in J_i.$$

Then

$$\{\beta \in (k-1,k] \mid T_{\beta}^{n}(1) \text{ is well-defined and } T_{\beta}^{n}(1) \in S_{0}(\beta)\} = \bigcup_{i,j} \left\{\beta \in J_{i} \mid g_{i}(\beta) = \frac{j}{\beta}\right\}.$$

We claim that $\{\beta \in J_i \mid g_i(\beta) = j/\beta\}$ has finitely many points. From the form of the map T_β , it follows immediately that each $g_i(\beta)$ is a polynomial of degree *n*. Since $\beta > 1$,

$$g_i(\beta) = \frac{j}{\beta} \quad \Longleftrightarrow \quad \beta g_i(\beta) - j = 0.$$

This polynomial equation has at most n + 1 roots. In fact, using the monotonicity of the map $\beta \mapsto \underline{\eta}^{\beta}$, we can prove that this set has at most one point. The lemma then follows, since $S(\beta) = \bigcup_{n \ge 0} S_n(\beta)$.

LEMMA 6. Consider a family $\{T_{\beta}\}_{\beta>1}$ of generalized β -transformations defined by a sequence $s = (s_n)_{0 \le n < k}$. Let $1 < \beta_1 \le \beta_2$ and $\underline{\eta}^j := \underline{\eta}^{\beta_j}$ for j = 1, 2; define $l := \min\{n \ge 0 \mid \underline{\eta}_n^1 \neq \underline{\eta}_n^2\}$. If $k \ge 3$, then for all $\beta_0 > 2$ there exists K such that $\beta_1 \ge \beta_0$ implies

$$\beta_2 - \beta_1 \le K \beta_2^{-l}.$$

If s = (+1, +1)*, then*

$$\beta_2 - \beta_1 \le \beta_2^{-l+1}.$$

If s = (+1, -1) or (-1, +1), then for all $\beta_0 > 1$ there exists K such that $\beta_1 \ge \beta_0$ implies

$$\beta_2 - \beta_1 \le K \beta_2^{-l}.$$

If s = (-1, -1), then there exists $\beta_0 > 1$ and K such that $\beta_1 \ge \beta_0$ implies

$$\beta_2 - \beta_1 \le K \beta_2^{-l}$$

The proof is very similar to the proof of Brucks and Misiurewicz for [2, Proposition 1]; see also Sands [16, Lemma 23].

Proof. Let $\delta := \beta_2 - \beta_1 \ge 0$ and write $T_j = T_{\beta_j}$ and $i^j = i^{\beta_j}$ for j = 1, 2. Let $a_1, a_2 \in [0, 1]$ such that $r := i_0^1(a_1) = i_0^2(a_2)$. Considering four cases according to the signs of $a_2 - a_1$ and s_r , we have

$$|T_2(a_2) - T_1(a_1)| \ge \beta_2 |a_2 - a_1| - \delta.$$

Applying this formula *n* times, we find that $i_{[0,n]}^1(a_1) = i_{[0,n]}^2(a_2)$ implies

$$|T_2^n(a_2) - T_1^n(a_1)| \ge \beta_2^n \bigg(|a_2 - a_1| - \frac{\delta}{\beta_2 - 1} \bigg).$$

Consider the case $k \ge 3$. Then $a_i = T_i(1)$ for i = 1, 2 are such that

$$|a_2 - a_1| = \delta > \frac{\delta}{\beta_0 - 1} \ge \frac{\delta}{\beta_2 - 1}.$$

Using $|T_2^n(a_2) - T_1^n(a_1)| \le 1$, we conclude that for all $\beta_0 \le \beta_1 \le \beta_2$, if $\underline{\eta}_{[0,n)}^1 = \underline{\eta}_{[0,n)}^2$, then

$$\delta \le \frac{\beta_0 - 1}{\beta_0 - 2} \beta_2^{-n+1}$$

For the case s = (+1, +1), we can apply Lemma 3 with $\alpha = 0$ and x = 1.

The case where s = (+1, -1) or (-1, +1) is considered in [16, Lemma 23].

Now consider the case s = (-1, -1): for a fixed *n*, we want to find β_0 such that for all $\beta_0 \le \beta_1 \le \beta_2$ we have

$$|T_2^n(1) - T_1^n(1)| > \frac{\delta}{\beta_2 - 1}.$$
(15)

Then we can conclude as in the $k \ge 3$ case. Formula (15) holds if $|dT_{\beta}^{n}(1)/d\beta| > 1/(\beta - 1)$ for all $\beta \ge \beta_{0}$. When *n* increases, β_{0} decreases. With n = 3, we have $\beta_{0} \approx 1.53$.

In the tent map case, the separation of orbits is proved for $\beta \in (\sqrt{2}, 2]$ and then extended arbitrarily near $\beta_0 = 1$ by using the renormalization. In the s = (-1, -1) case there is no such argument, and we are forced to increase *n* to obtain a lower bound β_0 . With the help of a computer, we obtain $\beta_0 \approx 1.27$ for n = 12. For more details, see [5].

Now we turn to the question of normality for generalized β -transformations. The structure of the proof is very similar to that of Theorem 2 and Corollary 1.

THEOREM 5. Consider a family $\{T_{\beta}\}_{k-1 < \beta \leq k}$ of generalized β -transformations defined by a sequence $s = (s_n)_{0 \leq n < k}$. Let β_0 be defined as in Lemma 6. Then the set

 $\{\beta > \beta_0 \mid \text{the orbit of } \eta^\beta \text{ under } \sigma \text{ is } \hat{\mu}_\beta \text{-normal}\}$

has full λ -measure.

COROLLARY 2. Consider a family $\{T_{\beta}\}_{\beta>1}$ of generalized β -transformations defined by a sequence $s = (s_n)_{n>0}$. Let β_0 be defined as in Lemma 6. Then the set

 $\{\beta > \beta_0 \mid \text{the orbit of } 1 \text{ under } T_\beta \text{ is } \mu_\beta\text{-normal}\}$

has full λ -measure.

Proof of Theorem 5. Let

$$B_0 := \{ \beta \in (\beta_0, \infty) \mid 1 \notin S(\beta) \}.$$

From Lemma 5, this subset has full Lebesgue measure. To obtain uniform estimates, we restrict our proof to the interval $[\underline{\beta}, \overline{\beta}]$ with $\beta_0 < \underline{\beta} < \overline{\beta} < \infty$. Let $k := [\overline{\beta}]$ and $\Omega := \{\beta \in [\beta, \overline{\beta}] \cap B_0 \mid \eta^{\beta} \text{ is not } \hat{\mu}_{\beta} \text{-normal}\}$. As before, setting

$$\Omega_N := \{ \beta \in [\beta, \overline{\beta}] \cap B_0 \mid \exists \nu \in V_{\sigma}(\eta^{\beta}) \text{ s.t. } h(\nu) < (1 - 1/N) \log \beta \},\$$

1544

we have $\Omega = \bigcup_{N \ge 1} \Omega_N$. We prove that $\dim_H \Omega_N < 1$. For $N \in \mathbb{N}$ fixed, define $\varepsilon := (\underline{\beta} \log \underline{\beta})/(2N-1) > 0$ and *L* such that $\underline{\eta}_{[0,L)}^{\beta} = \underline{\eta}_{[0,L)}^{\beta'}$ implies $|\beta - \beta'| \le \varepsilon$ (see Lemma 6). Consider the family of subsets of $[\beta, \overline{\beta}]$ of the type

$$J(\underline{w}) = \{\beta \in [\underline{\beta}, \overline{\beta}] \mid \underline{\eta}_{[0,L)}^{\beta} = \underline{w}\},\$$

where \underline{w} is a word of length *L*. $J(\underline{w})$ is either empty or an interval. We cover the non-closed $J(\underline{w})$ with countably many closed intervals if necessary. We shall show that $\lambda(\Omega_N \cap [\beta_1, \beta_2]) = 0$ where $\beta_1 < \beta_2$ are such that $\underline{\eta}_{[0,L)}^{\beta_1} = \underline{\eta}_{[0,L)}^{\beta_2}$.

Let $\underline{\eta}^{j} = \underline{\eta}^{\beta_{j}}$, and let

$$D^* := \{ \underline{z} \in \Sigma_{\underline{\eta}^2} \mid \exists \beta \in [\beta_1, \beta_2] \cap B_0 \text{ s.t. } \underline{z} = \underline{\eta}^{\beta} \}.$$

Define $\rho_* : D^* \to [\beta_1, \beta_2] \cap B_0$ by $\rho_*(\underline{z}) = \beta \Leftrightarrow \underline{\eta}^\beta = \underline{z}$. As before, from formula (13) and the strict monotonicity of $\beta \mapsto \underline{\eta}^\beta$, we deduce that ρ_* is well defined and surjective. We compute the coefficient of Hölder continuity of $\rho_* : (D^*, d_{\beta_*}) \to [\beta_1, \beta_2]$. Take $\underline{z} \neq \underline{z}' \in D^*$ and $n = \min\{l \ge 0 : z_l \neq z_l'\}$; then $d_{\beta_*}(\underline{z}, \underline{z}') = \beta_*^{-n}$. By Lemma 6, there exists *C* such that

$$|\rho_*(\underline{z}) - \rho_*(\underline{z}')| \le C\rho_*(\underline{z})^{-n} \le C\beta_1^{-n} = C(d_{\beta_*}(\underline{z}, \underline{z}'))^{\log \beta_1/\log \beta_*}.$$

By the choice of L and ε , we have

$$\frac{\log \beta_1}{\log \beta_*} \ge 1 - \frac{1}{2N},$$

and thus ρ_* has Hölder exponent of continuity 1 - 1/(2N). Define

$$G_N^* := \{ \underline{z} \in \Sigma^* \mid \exists \nu \in V_\sigma(\underline{z}) \text{ s.t. } h(\nu) < (1 - 1/N) \log \beta_* \}.$$

As before, we have $\Omega_N \cap [\beta_1, \beta_2] \subset \rho_*(G_N^* \cap D^*)$ and $h_{top}(G_N^*) \leq (1 - 1/N) \log \beta_*$. Finally, $\dim_H(\Omega_N \cap [\beta_1, \beta_2]) < 1$ and $\lambda(\Omega_N \cap [\beta_1, \beta_2]) = 0$.

Proof of Corollary 2. The proof is similar to that of Corollary 1. Equation (3) holds since we work on B_0 .

When we consider the tent map (s = (1, -1)) in particular, we recover the main theorem of Bruin in [3]. We do not state this theorem for all $x \in [0, 1]$ as we did for the map $T_{\alpha,\beta}$, because we do not have an equivalent of Lemma 3 for all $x \in [0, 1]$. This is the one missing step of the proof.

Acknowledgement. We thank H. Bruin for correspondence relating to Proposition 1 and for communicating research results to us before publication.

A. Appendix

Let \mathcal{G} be an oriented labeled right-resolving graph, and denote by \vee the set of vertices of \mathcal{G} . We assume that \mathcal{G} has a root $\vee_0 \in \vee$. Let $\vee \in \vee$; the *level* of \vee is the length of the

shortest path on \mathcal{G} from v_0 to v. For $K \in \mathbb{N}$, the graph \mathcal{G}_K is the subgraph of \mathcal{G} whose set of vertices is

$$\nabla_K := \{ v \in V \mid \text{the level of } v \text{ is at most } K \}.$$

We set

$$\ell(n, \mathcal{G}) := \operatorname{card} \{ \operatorname{paths of length} n \text{ in } \mathcal{G} \text{ starting at } v_0 \}$$

Since the graph is right-resolving, a path in \mathcal{G} is uniquely prescribed by the initial vertex of the path and the (ordered) set of labels of its edges. The right-resolving rooted graph \mathcal{G} has the property \mathcal{P} if for any path starting at \vee there is a unique path starting at the root ∇_0 with the same set of labels. If \mathcal{G} has the property \mathcal{P} , then

$$\ell(n+m,\mathcal{G}) \leq \ell(n,\mathcal{G})\ell(m,\mathcal{G}).$$

It follows that

$$h(\mathcal{G}) := \lim_{n \to \infty} \frac{1}{n} \log \ell(n, \mathcal{G}) = \inf_{n} \frac{1}{n} \log \ell(n, \mathcal{G}).$$
(16)

The quantity $h(\mathcal{G})$ is the *entropy* of \mathcal{G} .

LEMMA 7. Let \mathcal{G} be a right-resolving rooted graph which has the property \mathcal{P} . For all $\delta > 0$, there exists $L(\mathcal{G}, \delta)$ such that for all $L \ge L(\mathcal{G}, \delta)$ and all right-resolving rooted graphs \mathcal{G}' satisfying the property \mathcal{P} , we have that $\mathcal{G}_L = \mathcal{G}'_L$ implies

$$h(\mathcal{G}') \le h(\mathcal{G}) + \delta$$

Proof. Given \mathcal{G} and $\delta > 0$, choose $L(\mathcal{G}, \delta)$ such that for all $L \ge L(\mathcal{G}, \delta)$ we have

$$\frac{1}{L}\log\ell(L,\mathcal{G}) \le h(\mathcal{G}) + \delta.$$

Let \mathcal{G}' be a right-resolving rooted graph which has the property \mathcal{P} and is such that $\mathcal{G}'_L = \mathcal{G}_L$. Then, using (16) and the fact that a path of length L in \mathcal{G} (or in \mathcal{G}') remains in \mathcal{G}_L (or in \mathcal{G}'_L), we get

$$\begin{split} h(\mathcal{G}') &\leq \frac{1}{L} \log \ell(L, \mathcal{G}') = \frac{1}{L} \log \ell(L, \mathcal{G}'_L) \\ &= \frac{1}{L} \log \ell(L, \mathcal{G}_L) = \frac{1}{L} \log \ell(L, \mathcal{G}) \leq h(\mathcal{G}) + \delta. \end{split}$$

Let $(\underline{u}, \underline{v})$ satisfy (9); we define a labeled graph $\mathcal{G} = \mathcal{G}(\underline{u}, \underline{v})$. A vertex v of the graph is a pair $(p, q) \in \mathbb{Z}_+ \times \mathbb{Z}_+$. We define the out-going labeled edges from v = (p, q) to v' = (p', q'), the successors of v.

- (1) If $u_p = v_q$, then there is a unique out-going edge labeled by u_p from v to v' = (p+1, q+1).
- (2) If $u_p < v_q$, then there is an out-going edge labeled by u_p from v to v' = (p + 1, 0)and an out-going edge labeled by v_q from v to v' = (0, q + 1). Furthermore, if there exists *a* with $u_p < a < v_q$, then there is an out-going edge labeled by *a* from v to v' = (0, 0).

The graph \mathcal{G} is the minimal graph containing (0, 0), the root of \mathcal{G} , such that if \forall is a vertex of \mathcal{G} , then all successors of \forall are vertices of \mathcal{G} . All vertices of \mathcal{G} are of the form (p, q) with $p \neq q$, except for the root. Furthermore, (p, q) is a vertex of \mathcal{G} with p > q if and only if the longest suffix of $u_0 \cdots u_{p-1}$ which is a prefix of \underline{v} has length q. Using the map from the vertices of \mathcal{G} to the subsets of $\Sigma_{u,v}$,

$$(p, q) \mapsto [\sigma^{p}\underline{u}, \sigma^{q}\underline{v}] := \{ \underline{x} \in \Sigma_{\underline{u}, \underline{v}} \mid \sigma^{p}\underline{u} \leq \underline{x} \leq \sigma^{q}\underline{v} \},\$$

together with the results of [6, §3.1], one can check that \mathcal{G} has the property \mathcal{P} , $h(\mathcal{G}) = h_{\text{top}}(\Sigma_{\underline{u},\underline{v}})$, and the level of v = (p, q) is max $\{p, q\}$. This last result implies that for $(\underline{u}', \underline{v}')$ satisfying (9), if \underline{u} and \underline{u}' have a common prefix of length L and \underline{v} and \underline{v}' have a common prefix of length L, then $\mathcal{G}_L = \mathcal{G}'_L$. Therefore Lemma 7 implies Proposition 1.

REFERENCES

- [1] R. Bowen. Topological entropy for noncompact sets. Trans. Amer. Math. Soc. 184 (1973), 125–136.
- [2] K. Brucks and M. Misiurewicz. The trajectory of the turning point is dense for almost all tent maps. Ergod. Th. & Dynam. Sys. 16 (1996), 1173–1183.
- [3] H. Bruin. For almost every tent map, the turning point is typical. Fund. Math. 155 (1998), 215–235.
- [4] K. Falconer. Fractal Geometry. Wiley, Chichester, 2003.
- [5] B. Faller. Contribution to the ergodic theory of piecewise monotone continuous maps. *PhD Thesis*, EPF-L thesis 4232, 2008.
- [6] B. Faller and C.-E. Pfister. Computation of topological entropy via φ -expansion, an inverse problem for the dynamical systems $\beta x + \alpha \mod 1$. *Preprint*, 2008, arXiv:0806.0914v1[mathDS].
- [7] P. Góra. Invariant densities for generalized β -maps. *Ergod. Th. & Dynam. Sys.* 27 (2007), 1–16.
- [8] S. Halfin. Explicit construction of invariant measures for a class of continuous state Markov processes. Ann. Probab. 3 (1975), 859–864.
- [9] F. Hofbauer. Maximal measures for piecewise monotonically increasing transformations on [0, 1]. Ergodic Theory (Lecture Notes in Mathematics, 729). Springer, Berlin, 1979, pp. 66–77.
- [10] F. Hofbauer. On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. *Israel J. Math.* 34 (1979), 213–237.
- [11] F. Hofbauer. Maximal measures for simple piecewise monotonic transformations. Z. Wahrschein. Gebiete 52 (1980), 289–300.
- J. Milnor. Fubini foiled: Katok's paradoxical example in measure theory. *Math. Intelligencer* 19 (1997), 30–32.
- [13] W. Parry. Representations for real numbers. Acta Math. Acad. Sci. Hung. 15 (1964), 95–105.
- [14] C.-E. Pfister and W. Sullivan. On the topological entropy of saturated sets. *Ergod. Th. & Dynam. Sys.* 27 (2007), 929–956.
- [15] A. Rényi. Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hung. 8 (1957), 477–493.
- [16] D. Sands. Topological conditions for positive Lyapunov exponent in unimodal maps. *PhD Thesis*, University of Cambridge, St John's College, 1993.
- [17] J. Schmeling. Symbolic dynamics for β-shifts and self-normal numbers. Ergod. Th. & Dynam. Sys. 17 (1997), 675–694.