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Abstract.  We consider the map T, g(x) :=fBx +amod 1, which admits a unique
probability measure 11y, g 0of maximal entropy. For x € [0, 1], we show that the orbit of x is
M, g-normal for almost all (e, B) € [0, 1) x (1, co) (with respect to Lebesgue measure).
Nevertheless, we construct analytic curves in [0, 1) x (1, co) along which the orbit of
x =0 is ug g-normal at no more than one point. These curves are disjoint and fill the
set [0, 1) x (1, co0). We also study the generalized f-transformations (in particular, the
tent map). We show that the critical orbit x = 1 is normal with respect to the measure of
maximal entropy for almost all 8.

1. Introduction

In this paper, we consider a dynamical system (X, d, T')) where (X, d) is a compact metric
space endowed with its Borel o-algebra B and T : X — X is a measurable map. Let
C(X) denote the set of all continuous functions from X into R. The set M (X) of all
Borel probability measures is equipped with the weak*-topology. M (X, T) C M(X) is
the subset of all T-invariant probability measures. For u € M (X, T), let h(u) denote the
measure-theoretic entropy of . For all x € X and n > 1, the empirical measure of order n

at x is
n—1

Ep(x) = % > 80T e M(X), (1)
i=0

where 8, is the Dirac mass at x. Let Vr(x) C M (X, T) denote the set of all cluster points
of {&,(x)}n>1 in the weak™*-topology.

Definition 1. Let u € M(X, T) be an ergodic measure and take x € X. The orbit of x
under T is u-normal if Vr(x) = {u}, i.e. for all continuous f € C(X) we have

n—1

1 .
ngrgo;;f<rlx>=/fdu.
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1530 B. Faller and C.-E. Pfister

By the Birkhoff ergodic theorem, p-almost all points are p-normal; however, it is
difficult to identify a w-normal point. This paper is devoted to the study of the normality
of orbits for piecewise monotone continuous maps of the interval. We consider a family
{T,}cex of piecewise monotone continuous maps, parameterized by a parameter k € K,
such that for all k € K there is a unique measure p, of maximal entropy. In our case, K is
a subset of R or R2. For a given x € X, we estimate the Lebesgue measure of the subset of
K for which the orbit of x under 7} is w,-normal.

For example, let Ty g : [0, 1] — [0, 1] be the piecewise monotone continuous map
defined by Ty g(x) = Bx +a mod 1; here k = (a, B) € [0, 1) x (1, 00). In [13], Parry
constructed a T, g-invariant probability measure 1y, g, absolutely continuous with respect
to Lebesgue measure, which is the unique measure of maximal entropy. The main result
of §3 is Theorem 3, which shows that for all x € [0, 1], the set

N () :={(a, B) €[0, 1) x (1, c0) | the orbit of x under Ta, 1 JLq,g-normal}

has full two-dimensional Lebesgue measure. This is a generalization of a theorem of
Schmeling in [17], where the case with « = 0 and x = 1 is studied. For -transformations,
the orbit of 1 plays a particular role, so the restriction to x = 1 considered by Schmeling
is natural. Similarly, for T, g, the orbits of 0 and 1 are very important. In Theorem 4,
we show that there exist curves in the («, 8)-plane, defined by « = «(8), along which the
orbits of 0 or 1 are never (14, g-normal. The curve o = 0 is a trivial example of such a curve
for the fixed point x = 0. In §4, we study the generalized B-transformations introduced by
Gora [7]. A generalized B-transformation is similar to a B-transformation, but each lap is
replaced by an increasing or decreasing lap of constant slope 8 according to a sequence of
signs. For a given class of generalized S-transformations, there exists By such that for all
B > Bo there is a unique measure wg of maximal entropy, and the set

{B > Bo | the orbit of 1 under T is ug-normal}

has full Lebesgue measure, denoted below by A. Since the tent maps are generalized
B-transformations, we obtain an alternative proof of Bruin’s results in [3].

2. Preliminaries

Let us define properly the coding for a piecewise monotone continuous map of the interval.
The classical papers on this subject are [15], [13] and [10]. We consider piecewise
monotone continuous maps of the following type. Let k>2 and 0 =qp <a; <--- <
ar =1 WesetA:={0,...,k— 1}, Ip=[ap, a1),Ij =(aj,ajy)forjef{l, ..., k—2},
Ii—1=(ak—1,ar] and So={a;|j=1,...,k—1}. Forall jeAa,let f;:1; = [0, 1]
be a strictly monotone continuous map. A piecewise monotone continuous map 7 :
[0, 1]1\Sp — [0, 1] is defined by

T(x)=fi(x) ifxel;.

Later we will state, in each specific case, how to define T on Sp. We set Xo = [0, 1] and,
forn > 1,
Xp=Xn-1\Sp—1 and S, ={xeX,|T"(x) e S}, 2
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A point is normal for almost all maps fx + o mod 1 1531

so that 7" is well defined on X,. Finally, welet S = J,,., Sx so that 7" (x) is well defined
for all x € [0, 1]\S and all n > 0. -

Let A be endowed with the discrete topology and let X = AZ+ be the product space.
The elements of X are denoted by x = xox; - - -. A finite string w = wy - - - w,—1 with
w; € A is called a word. The length of w is [w| =n. There is a single word of length 0,
the empty word . The set of all words is A*. For two words w and z, we write w z for

the concatenation of the two words. For x € ¥, let x, i) =Xi - Xj-1 denote the word
formed by the coordinates i to j — 1 of x. For a word w € A* of length n, the cylinder [w]
is the set

[w]:={x € T | xp,,) = w}

The family { [w] | w € A*} is a base for the topology and a semi-algebra generating the
Borel o-algebra. For all 8 > 1, there exists a metric dg compatible with the topology
which is defined by

, 0 if x =x/,
dg(x, x) = . , -
- g min{n=0: x,#x.} - otherwise.
The left shift map o : ¥ — X is defined by
o(x)=x1x2 - .

It is a continuous map. We define a total order on X, denoted by <. We set

. +1 if f; is increasing,
3(j)= i ) .
—1 if f; is decreasing,

and, for word w,

5(w) 1 ifw=e,
w) =
- 8(wo) - - - §(wyp—1) if w has length n.
Let x # x" € ¥ and define n = min{j > 0| x; ;éx}}; then
< Xn <x,} %fé(l[o,n))=+1,
xp > x, i 8(xp ) =—1

When all maps f; are increasing, this is the lexicographic order.
We define the coding map 1 : [0, 1]\S — Zi by

i) :=1o()i1(x) -+ withi,(x) =)< T"(x) € I;.

The coding map i is left undefined on S. Henceforth we suppose that T is such that i is
injective. A sufficient condition for the injectivity of the coding is the existence of ¢ > 1
such that |fjf(x)| >c forall x € I; and all j € A; see [13]. This condition is satisfied in
all the cases considered in this paper. The coding map is order-preserving, i.e. for all
x, x" €[0, 1\S,

x<x'=i(x)<i®kx").
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1532 B. Faller and C.-E. Pfister

Define X7 := 1([0, 1]\S). We now introduce the ¢-expansion as defined by Parry. For
all jen, let <pj :[j, j+11—laj, aj4+1] be the unique monotone extension of fj_1 :
(c,d) — (aj, aji1), where (c, d) := fj((aj, aj1+1)). The map ¢ : X — [0, 1] is defined
by

p(x) = lim ¢ (xo+ ¢ (x1 + - -+ @™ (x))).
n—oo

Parry proved that this limit exists if i is injective. The map ¢ is order-preserving; moreover,
oliqo.1ps) = 17! and, for all n > 0 and all x € [0, 1]\S,

T"(x) = ¢ oo" 0 i(x). 3)

If the coding map is injective, one can show that the map ¢ is continuous (see [6, Theorem
2.3]). Using the continuity and monotonicity of ¢, we have ¢(X7) = [0, 1]. We remark
that there is, in general, no extension of i on [0, 1] such that equation (3) would be valid
on [0, 1]. For all j € A, define

w/:=1lim i(x) and v/:= lim i(x) withx [0, I]\S.
xla; xPajy1

The strings gj and yj are called critical orbits and (see, for instance, [10])
Tr={xe T |u" <o"x <" Vn >0}, @)

Moreover, the critical orbits u/ and v/ satisfy, for all j € A,

l/l“"{ < o_nuj < vu',’;
-, —. 7~ foralln=>0. 5)

Zvn < O'nyj < y”n
Let us recall the construction of the Hausdorff dimension. Let (X, d) be a metric space
and consider £ C X. Let D, (E) be the set of all finite or countable covers of E with sets

of diameter smaller than ¢. For all s > 0, define

H,(E,s):= inf{ > (diam B)*

Ce 'DS(E)}
BeC

and H(E,s):=lim,_o H.(E, s), the s-Hausdorff measure of E. The Hausdorff
dimension of E is
dimyg E :=inf{s > 0| H(E, s) =0}.

In [1], Bowen introduced a definition of the topological entropy of non-compact sets for a
continuous dynamical system on a metric space. We now recall this definition. Let (X, d)
be a metric space and 7 : X — X a continuous map. Forn > 1, & > 0 and x € X, let

By(x,e)={ye X |d(T/(x), T'(y)) <eVj=0,...,n—1}.

For E C X suchthat T(E) C E, let G,(E, ¢) be the set of all finite or countable covers of
E with Bowen’s balls B, (x, ) for m > n. For all s > 0, define

C,.(E, ¢, s):=inf Z e s
B, (x,e)eC

cEgn(x,g)}
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and C(E, &, 5) :=1lim,, . C,(E, &, s). Now, let
hop(E, &) :=inf{s > 0| C(E, ¢, 5) =0}

and, finally, take hop(E) = limg 0 hiop(E, €) (this last quantity increases to the limit
hiop(E)). There is an evident similarity between this definition and that of the Hausdorff
dimension; this similarity is the key to the next lemma.

LEMMA 1. For B > 1, consider the dynamical system (X, dg, 0). Let E C X be such
that o (E) C E; then

Proof. Let £ €(0,1),5>0,n>0 and C € G,(E, ¢). Since diam B, (x, &) < g~ *!
<ep =+l forall By, (x, €) € C, C is a cover of E with sets of diameter smaller than 8;3‘”“ .
Moreover,

S diam (Bu(x, )8 < @p)eh 3 e,

By (x,8)eC B (x,6)eC

Thus, Hs(E, s/log B) < (¢B)*/1°2BC,(E, ¢, s) with § = ¢f~"*1. Taking the limit n —
00, we obtain

H(E, s/log B) < (eB)*/ ¢ PC(E, ¢, s).

If s > hiop(E, &), then H(E, s/log ) =0 and s/ log B > dimy E. This is true for all

s > hop(E, €); thus

htop(Ea €) < htop(E)
logB ~ logB
The next lemma is a classical result about the Hausdorff dimension; it is

[4, Proposition 2.3].

d

dimyg E <

LEMMA 2. Let (X, d), (X', d") be two metric spaces and let p : X — X' be an a-Holder
continuous map with o € (0, 1]. Let E € X; then

di E
dimy p(E) < 22
o

Finally, we restate [14, Theorem 4.1]. This theorem will be used to estimate the
topological entropy of the sets we are interested in.

THEOREM 1. Let (X, d, T) be a continuous dynamical system and let F C M(X, T) be
a closed subset. Define

G=xeX|Vr(x)NF #0}.
Then

hiop(G) =< sup h(v).

veF
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3. Normality for the maps fx 4+ o mod1

In this section, we study the piecewise monotone continuous maps Ty g defined by
Ty p(x) =Bx +amod1, with 8> 1 and « € [0, 1). These maps were studied by Parry
in [13] as a generalization of the B-transformations. In his paper Parry constructed a
Ty, p-invariant probability measure 1 g which is absolutely continuous with respect to
Lebesgue measure. Its density is

1 2nz0 Loty = Xozo Le<1y,0

_ , 6
i Nag g+l ©)

with N, g being the normalization factor. In [8], Halfin proved that 41, g(x) is non-negative
for all x € [0, 1]. Let 1%# denote the coding map under Ty, g, and ¢*P the corresponding
g-expansion. Also define £, g := £, , C T with k := [a + B, u®F :=1lim, o 1P (x),
and v*f = limy 4 1%P(x). We specify how Ty, p is defined at the discontinuity points.
We choose to define Ty, g by right-continuity at a; € So. By doing this, we can also extend
the definition of the coding map i%# using the disjoint intervals [a j»ajy1) for j €A, so
that 1%# is now defined for all x € [0, 1)F. We can show that u*# = 1%#(0) and

(10, 1) ={x € Tt | u* < 0" x < v*F ¥n = 0}

and that equation (3) is true for all x € [0, 1). It is easy to check that formula (4) becomes
Tap={x €Tk |u"’ <0"x <0*F Vn >0} (7

and that the inequalities (5) become
u®p
u®b
It is known that the dynamical system (X4, g, o) has topological entropy log 8. Moreover,
Hofbauer showed in [11] that it has a unique measure [is g of maximal entropy, that

Hap = fap o @*P)~! and e is the unique measure of maximal entropy for T, g.
In view of (7) and (8), for a pair (u, v) € £7 satisfying

IA
IA
<

O,nuoz,ﬁ o,
-y wp for all n > 0. ®)

IA
IA
<

u<o'"u<v
- —~ = foralln >0, ®
u=zo'v=v
we define the shift space
Tupi={xe€Xxlu=xo"x<vVn=>0} (10)

We now give a lemma and a proposition which will be the keys to the main theorem of
this section. The lemma says that for given x and «, there is exponential separation between
the orbits of x under the two different dynamical systems 7, g, and Ty, g,. The proposition
asserts that the topological entropy of X, , is upper semi-continuous with respect to the
critical orbits « and v.

+ This convention differs from that made in the previous section; it is, however, the most convenient choice when
all the f; are increasing.
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LEMMA 3. Let x€[0,1), v €[0,1) and 1 < By < B2. Define | =min{n >0 | i;i(x)
# 12(x)} with 17 (x) = 1%Pi for j =1, 2. If x #0, then
B _
Pr—Br=—h L

If x =0and o #£ 0, then
B _
Pr—Pr=2p;"

Proof. Let 6:= > — 1 =0. We prove by induction that for all m > 1, igo’m)(x)
= ifo,m)(x) implies
Ty () = T{"(x) = B3 o,
where T; = Ty g;. Form =1,
T(x) = T1(x) = fox + & — 1§(x) — (Bix + & — 15(x)) = éx.
Now suppose that the statement is true for a certain m; then i[lo‘ mil) = i[zo’ mt1) implies
T @) = TP () = BT (0 + @ — i, (1) = (BT (0) + @ — 1,,(x)
= Po(Ty" (x) — T{" (x)) + 8T" (x) > By'8x.

On the other hand, 1 > 7, (x) — T{" (x) > ;‘3’2"_18x. Thus § < /32_m+1/x for all m such that
illo,m) = ilzo,m)' If x =0, then T} (x) = T>(x) = « and we can apply the first statement to
y=a>0. O

PROPOSITION 1. Let the pair (u, v) € Z,% satisfy (9). For all § > 0, there exists L(S, u, v)
such that for all L > L (8, u, v) the following claim is true: let the pair (u’, v') € Z,% satisfy
(9), and suppose further that u, u’' have a common prefix of length L and that v, v’ have a
common prefix of length L, then

htop(zy,g/) = htop(zﬂ,g) + 4.

To prove Proposition 1, one associates to the subshift ¥, , a graph G(u, v), called the
Markov diagram [11]. One then proves a property equivalent to Proposition 1 for these
graphs; see Appendix A.

We now state our first theorem and a corollary about the normality of orbits under 7y, g.
The proof of the theorem is inspired by the proof of [17, Theorem C], where the case of
x =1 and a = 0 is considered.

THEOREM 2. Take any x € [0, 1) and a € [0, 1) except for (x, ) = (0, 0). Then the set
(B > 1| the orbit of 1%P (x) under o is fia, g-normal}
has full A-measure.

COROLLARY 1. Take any x € [0, 1) and « € [0, 1) except for (x, a) = (0, 0). Then the
set

{B > 1| the orbit of x under Ty g is g g-normal}

has full A-measure.
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We remark that the theorem and its corollary may also be formulated for x € (0, 1]
by using a left-continuous extension of T, g on (0, 1] and a coding i%# defined using
intervals (a;, a;j11] for j € A.

Proof of Theorem 2. We briefly sketch the proof. It is sufficient to consider a finite interval
[B, B]. We use the uniqueness of the measure fla,p of maximal entropy: for a x € Xy g
which is not [La,ﬂ-normal, there exists v € V, (x) such that h(v) < h(,&a,lg) =log 8. We
therefore cover the set of abnormal S in [ﬁ , B] by sets Qn, N € N, given by

Qn:={BlB, Bl {En(i"‘”g(x))},, clusters on v with 2(v) < (1 — 1/N) log B}.

We consider each Q2 separately and cover them by appropriate intervals, which we denote
generically by [B1, B2]. The main idea is to imbed {i%# (x) : B € [B1, B2]} in a shift space
¥* 1= X+ with #* and v* suitably chosen. Writing D* C X* for the range of the
imbedding, we estimate the Hausdorff dimension of the subset of D* corresponding to
points i%B(x) which are not flg,g-normal. Then we estimate the coefficient of Holder
continuity of the map p, defined as the inverse of the imbedding. This gives us an estimate
of the Hausdorff dimension of the non-{i,, g-normal points in the interval [8, B>].

To obtain uniform estimates, we restrict our proof to the interval [é , E] with 1 < é
< B <oo. All shift spaces below will be subshifts of ¥; with k= [a + B]. Let
Q:=({BelB, Bl| i*P(x)isnot iy p-normal}.  For B e, we have V,(i%P(x))
# {fla,p}- Since fia,p is the unique Tj g-invariant measure of maximal entropy log 8,
there exist N € Nand v € V, (1%#(x)) such that h(v) < (1 — 1/N) log B. Setting

Qn:={BelB, Bl13v e Vy(i%P(x)) s.t. h(v) < (1 —1/N) log B},
we have Q@ =Jy-; Qn. We will prove that dimy Qy < 1, so that A(Qy) =0 for all
N> 1. -

For N € N fixed, define ¢ := g log B/(2N — 1) > 0 and é :=log(l + e/B). Let B e
[B, B] and define Lg=L(5/2, u®P, v*#) as in Proposition 1. Choose qp in Q such that
log B — 8/2 <log qp < log B. Let

J(B. Lp, ap) =B € lap. BI1 ui5',,) =167 )+ vich,) = Vi)

This set is an interval: if 8’ € J(B, Lg, qp) and B’ < p” € J(B, Lg, qp), then [B’, B”]
C J(B, Lg, qp) since the maps g’ — g""ﬂ, and B/ — y""ﬂ, are both monotone increasing.
Moreover, g € J(B, Lg, qp). Notice also that the family {J(B, Lg. qp) | B € [B, B} is
countable. Indeed, the interval J(B, Lg, gg) is entirely characterized by g([)loﬂ Lg)’ y([x(;f; Lg)
and gg. But there are only countably many triples in A* x A* x Q. Thus {J (8, Lg, gp) |
B € [B. Bl} is a countable cover of [, B]. To prove that A(Qy) =0, it is sufficient to
prove that A(Qy N J(B, Lg, qp)) =0 for all g € [B, B1. The interval J (B, Lg, gg) may
be open, closed, or neither open nor closed. We need to work on a closed interval, thus we
prove an equivalent result, namely that for any closed interval [B1, 2] C J(B, Lg, qp)
we have A(Qy N [B1, B2]) =0.

Let u/ = u®Pi and v/ =v®Pi. Using (8) and the monotonicity of B+ u®# and
B v*P, we have

v! <
= , foralln >0.
v =
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Hence the pair (gl, yz) satisfies (9), and we set * = Eﬂl 22 and
D*:={ze X*|3B B, ol s.t. z=1%P(x)}.

We define an map p, : D* — [B1, B2] by p«(z) =8 & i%B(x) =z. This map is well
defined: by definition of D*, for all z € D* there exists a B such that z = i%#(x);
moreover, this B is unique, since by Lemma 3 g +— i%B(x) is strictly increasing. On
the other hand, for all 8 € [B81, B2], we have, from (7),

u' <u®P <o"i%P(x) <v*f <v? foralln=>0,

whence i“’ﬁ(x) € X" and ps : D* — [B1, B2] is surjective. Let log By := hiop(E¥); then,
by Proposition 1,

log p* = htop(z*) < hiop(Za,p) +38/2=10og B + 3/2.
By definition of g, we have log 8 — §/2 <log gg < log B1; thus log 8* < log f1 + & and
B —BL<pi(e® —1) <& (11)

Let us compute the coefficient of Holder continuity of p, : (D*, dg,) — [B1, B2]. Take
z#z € D*andn =min{l > 0| z; # z;}; thendp, (z, ') = B;". By Lemma 3, there exists
C such that

1px(2) — px(Z)| < Cou(2) ™" < CB;" = C(dp, (z, 7)) 08 P1/108 Br

where )
C= max{ E, '8— }
X o«
By equation (11) and the choice of €, we have
po-p=o Bl g g < OlEh
o 14 B —B1 _

<1+
i1 log B 2N -1
N log f1 + (B« — B1)/B1 _ 2N
log B4 2N -1
log i _ log Bi - 1

> >1—-—.
log B ~ log B1 + (B« — B1)/Bi 2N
In the last line, we have used the concavity of the logarithm, so the first-order Taylor

development is an upper estimate. Thus p, has Holder-exponent 1 — 1/(2N).
Define

N ={zeXT" e V,(2) st h(v) < (1 —1/N)log B}
Let B € Qy N [B1, B2]. Then there exists v € V, (1%#(x)) such that

h(v) < (1 —1/N)log B < (1 —1/N)log Bs.

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 19:05:51, subject to the Cambridge Core terms of use, available
at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/50143385708000874


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0143385708000874
https:/www.cambridge.org/core

1538 B. Faller and C.-E. Pfister

Since i%P(x) € D* C £*, we have 1% (x) e G- Using the surjectivity of p., we
obtain Qxy N [B1, B2] C p«(Gy N D*). We claim that hiop(GR) < (1 — 1/N) log B. This
implies, using Lemmas 2 and 1, that

dimy (Qy N [B1, B2]) < dimy p(Gy N D¥)
_dimi Gy hep(Gy) 1= UN
=T1_1/2N = (1 —1/2N)log B — 1—1/2N

Thus A(Qy N [B1, B2]) =0.

It remains to prove that hwp(Gy) < (1 —1/N)log Bs. Recall that h(v) =
lim,, H,(v)/n, where H, (v) is the entropy of v with respect to the algebra A, of cylinder
sets of length n:

Hy(v)=— " v(lw)) log v([w]).
[wleA,

Since the cylinders are both open and closed, v+ H,(v) is continuous in the weak*-
topology. Moreover, H, (v)/n is decreasing in n. For all m > 1, we set

1
Fy(m) = {v e M(Z*, o) | —Hu(v) < (1= 1/N) logﬂ*}
m
N(m) = {z€ X" | Vo(2) N Fy(m) # 0}
Let z € G%; then there exists v € V,(z) such that 2(v) < (1 —1/N)log B,. Since
H, (v)/m | h(v), there exists m > 1 such that H,(v)/m < (1 —1/N) log B«, whence

v € Fy(m) and z € G, (m). This implies that G}, C J,,>; Gy (m). Since Hy(-) is
continuous, F ;(, (m) is closed for all m > 1. Finally, by using Theorem 1 we obtain

hiop(Gy) = sup hiop(Gy (m)) < sup sup h(v)
m

m.veFy (m)

IA

1
sup sup —H,(v)<(—1/N)logpB.. O

m yeFjm) M

Proof of Corollary 1. Let 8 > 1 be such that the orbit of i*# (x) under o is fle, g-normal.
Let f € C([0, 1]); then f : ¥y g — R defined by f := f o ¢*P is continuous, since p*#
is continuous. Using e, g = fla.p 0 (9*#)~!, we have

n—1
fduap = fdiiap= lim Y fo'i*F(x))
[0,1] “f Sap “F T no ;

n—1 n—1
= lim Y f*Pe'iP () = lim Y f(Ty5(x).
i=0 i=0

The second equality comes from the [l g-normality of the orbit of 1%#(x) under o, while
the last one follows from (3), which is true for all x € [0, 1) with our convention for the
extension of T, g and i%f on [0, 1). O

The next step is to consider the question of jiy, g-normality in the whole («, B)-plane
instead of working with « fixed. Define R := [0, 1) x (1, 00).
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THEOREM 3. Forall x € [0, 1), the set
N (x) :={(a, B) € R | the orbit of x under Ty g is iy, g-normal}
has full two-dimensional Lebesgue measure.

Proof. We need only prove that A/(x) is measurable and apply Fubini’s theorem and
Corollary 1. The first step is to prove that for all x € [0, 1) and all n > 0, the maps
(o, B) = i%P(x) and (o, B) — T) ﬂ(x) are measurable. First, observe that for all n > 1,

n_1 n—1 N L
o’Zﬂ(x)=,3nx+0‘i}_l - i g (12)
j=0

The proof by induction is immediate. To prove that (¢, ) 1%B(x) is measurable, it is
enough to prove that for all n > 0 and for all words w € A* of length n,

{(@. p)eR|ifh () =w}

is measurable, since the o-algebra on Xj is generated by the cylinders. This set is the
subset of R? such that

B>1,
O<a<l,

</3T ﬂ(x)+a<w]+1 forO0 < j <n.

Using (12), this system of inequalities can be rewritten as

p>1,
O<a<l,
p—1 ({ jmi _ aj+l -
>m Zwiﬁ — B/ x for0<j <n,
i=0
:8 1 j—i j+1 .
_/3+1 l—l—Zw,,B - B forO0<j <n.

From this, the measurability of 1%# follows. If (&, B) — i®#(x) is measurable, then
by formula (12), (o, B8) — T”ﬁ(x) is clearly measurable for all » > 0. Then, for all

fe€C(0,1]) and all n>1, the map («, B)r— S,(f):= Zi:O f(TO’[’ﬁ(x))/n is
measurable and, consequently,

{(a, 8) ‘ Tim_ S, (/) exists}

is a measurable set.
On the other hand, if f € C([0, 1]), then (¢, B) f f dug, p is measurable. Indeed,

/fdua’ﬁszha,ﬁdk
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and, in view of equation (6) and the measurability of (ct, 8) — T, g(x), the map
(a, B) = hq g is clearly measurable. Therefore

{(O[, ,3)' nlinc}o Sn(f):/ fdﬂa,ﬁ}

is measurable for all f € C([0, 1]). Let { f;}men C C ([0, 1]) be a countable subset which
is dense with respect to uniform convergence. Then, setting

D,, .= {(Ol, B) GR’ n]LrI;o Sn(fm) Z/ fm dﬂﬂt»ﬁ}’

we have N (x) = M <N Dm, whence it is a measurable set. O

We have shown that for a given x € [0, 1), the orbit of x under 7Ty, g is 1, g-normal for
almost all (o, B). The orbits of 0 and 1 are of particular interest; see equation (6). Now we
show that through any point (g, Bo), there passes a curve defined by o = «(8) such that
the orbit of 0 under Ty (g), g 1S (a(g),g-normal for at most one 8. A trivial example of such
a curve is o = 0, since x = 0 is a fixed point. The idea is to consider curves along which
the coding of 0 is constant, i.e. to define a(B) such that u®*#-# is constant. The results
below depend on reference [6], where we solve the following inverse problem: given u
and v satisfying (9), can we find «, 8 such that u = u®# and v = v*# ?

Let

U:={u|3(a, B) e Rst.u=u"P}.
We define an equivalence relation in R by
(@ B)~ (@, B) = uF =u"F.
An equivalence class is denoted by [«]. The next lemma describes [u].

LEMMA 4. Let u € U and set
uj
Igj+1'

aB)y=B-1)

j=0
Then there exists B, > 1 such that
[ul ={(x(B), B) | B € L}
with I, = (By, 00) or I, =By, 00).

Proof. If u =000 .., then the statement is trivially true with «(8) =0 and B, =1. So
suppose u # 000 . . . . First, we prove that

(0, p)~ (@, ) = a=d,
and then that
(, B) € [u] = (a(B), ') €[u] forall B’ > B.

Let (o, B) € [u]. Using (3), we have (p""ﬁ(ag) =T4,p(0) =a. Since the map o >
¢*P(ou) — a is continuous and strictly decreasing [6, Lemmas 3.5 and 3.6], the first
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statement is true. Let 8/ > 8. By [6, Corollary 3.1], we have that *# (cu) > (p“’ﬁ, (ou).
Therefore there exists a unique o’ < « such that (p“/’ﬁ/ (ou) = o’. We claim that g"‘/’ﬁ/ =u.
By [6, Proposition 2.5(1)], we have u < g“/'ﬂ/. By [6, Proposition 3.3], we have

htop(Ez’ya’.ﬂ’) = htop(za’,ﬂ’) =log /3/'

Since X4 5 = X, yes and B’ > B, we must have v*# < y"‘/’ﬁ/. Therefore

Ol,,ﬂ/
o - foralln >0
u j uO{/,ﬁ/ < O—I‘lv()l/,ﬂ/ j vl)l/,ﬂ/ i

{gja”u<y°‘*ﬂ<v

are the inequalities [6, (4.1)] for the pair (u, y"‘/'ﬂ/). We can then apply [6, Proposition
3.2 and Theorem 4.1] to this pair and get u = g"‘/’ﬁ/. It remains to show that o’ = a(8).
Following the definition of the p-expansion of Rényi, we have, for all x € [0, 1) and all
n=>0,

-1 %Py
XZ"X: i ().C) a+Ta",5(X)
= IB]—H ﬂn

Since T(Zﬁ(x) € [0, 1), for all 8 > 1 we find an explicit expression for go""ﬂ on Xy g:

=y

j=0

i‘;’ﬁ(x) —o

13j+1

In particular, by applying this equation to x = 0 we obtain, for all («, 8) € R,

uof’ﬂ
_ J
==
Jjz0
Since for all 8 > B, we have u € ¥ g, this completes the proof. O

For each u € U, the equivalence class [¢] defines an analytic curve in R which is strictly
monotone decreasing (except for u =000 - - - ):

a:(ﬁ—l)Z%, ﬂe[u}.

Jj=0

[u] = {(a, B)

These curves are pairwise disjoint and their union is R.

THEOREM 4. Let (a, B) € R, u = u®P, and define a(B) and Bu as in Lemma 4. Then,
forall B > By, the orbit of x = 0 under Ty(g), g is not g (p), g-normal.

Proof. Let b € M (X, o) (with k large enough) be a cluster point of {&, (1)},>1 (see (1)).
By Lemma 4, u®#)-# = y for any g > Bu. Therefore

h(D) < hop(Za(p),p) =log B forall B > B,

and D, aswellasvg :=D o (e*®)-Ay=1 forall B > Bu, s not a measure of maximal entropy
(see [10]). O
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Recall that
N(0) = {(a, B) € R | the orbit of 0 under T, g is [y, g-normal}.

By Theorem 3, NV (0) has full Lebesgue measure. On the other hand, by Theorem 4, we can
decompose R into a family of disjoint analytic curves such that each curve meets N (0)
in at most one point. This situation is very similar to the one presented in [12] by Milnor,
following an idea of Katok.

4. Normality in generalized B-transformations

In this section, we consider another class of piecewise monotone continuous maps, the
generalized f-transformations. Introduced by Gora in [7], these maps have only one
critical orbit like S-transformations, but they admit increasing and decreasing laps. A
family {Tg}g~1 of generalized B-transformations is defined by k > 2 and a sequence s =
(Sn)o<n<k With s; € {—1,1}. Forany B e (k—1,k],leta; =j/B for j =0,...,k—1
and a; = 1. Then, forall j =0, ...,k — 1, the map f; =I; — [0, 1] is defined by

Bx mod 1 ifs; =+1,

fi@x)= !1 —(Bxmod 1) ifs;=—1.

In particular, when s = (1, —1), then Tg is a tent map. Here we leave the map undefined
onagjforj=1,...,k— 1L

Gora constructed the unique measure ug that is absolutely continuous with respect
to Lebesgue measure [7, Theorem 6 and Proposition 8]. Using the same argument that
Hofbauer employed in [9], we deduce that a measure of maximal entropy is always
absolutely continuous with respect to Lebesgue measure, and hence that the measure
g is the unique measure of maximal entropy. Let k= [f] and write i# for the
coding map under 7T, @P := (iP)~! for the inverse of the coding map, Ypg =X, and
Qﬁ = limy4q i (x). Now it is easy to check that formula (4) becomes

¥ ={x € ¢ | o"x < 0¥ ¥n >0} (13)
and that inequalities (5) become

o"nf < Qﬁ foralln > 0. (14)

It is known, in all of the cases treated below, that the dynamical system (Xg, o) has
topological entropy log 8 and, by the general theory of Hofbauer in [12], a unique measure
of maximal entropy fig such that g = fig o (@P)~1 (see [5)).

As in the previous section, we state two lemmas which we shall need for the proof of
the main theorem of this section. We study the normality of x = 1 only, so these lemmas
are formulated specifically for x = 1. Let S,,(8) = S,, and S(8) = S be defined by (2).

LEMMA 5. For any family of generalized B-transformations defined by (s,)o<n<k, the set
{Bek—1,k]|1e S(B)}is countable.

Proof. For a fixed n > 1, we study the map B> Tg(l). This map is well defined
everywhere in (k — 1, k] except at finitely many points, and it is continuous on each
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interval where it is well defined. Indeed, this is clearly true for n = 1. Suppose it is true
for some n; then Tg“ (1) is well defined and continuous wherever Té’(l) is well defined
and continuous, except for Té’(l) € So(B). By the induction hypothesis, there exists a
finite family of disjoint open intervals J; and continuous functions g; : J; — [0, 1] such
that (k — 1, k]\(\J; J;) is finite and

Tg(x)=gi(B) ifBe i
Then

{B € (k—1,k]| T§ (1) is well-defined and T} (1) € So(B)} = U{ﬂ eJi
i

Y
g&i(B) ﬁ}

We claim that {8 € J; | g;(8) = j/B} has finitely many points. From the form of the map
T, it follows immediately that each g; (8) is a polynomial of degree n. Since g > 1,

gi(ﬁ):% — Bgi(B)—j=0.

This polynomial equation has at most n + 1 roots. In fact, using the monotonicity of the
map B — 1P, we can prove that this set has at most one point. The lemma then follows,

since S(B) = Unso0 Sn(B). -

LEMMA 6. Consider a family {Tg}g=1 of generalized B-transformations defined by
a sequence s = (Sp)o<n<k- Let 1 <p1<pr and Qj = Qﬂf for j=1,2; define | :=
min{n >0 | Q;ﬁ #* Qi}. If k > 3, then for all By > 2 there exists K such that B1 > Bo implies
pr— p1 < KBy,
If s = (41, +1), then
Br— i< By
Ifs = (41, =1) or (—1, +1), then for all By > 1 there exists K such that B1 > Bo implies

B — B < KBy
If s = (—1, —1), then there exists By > 1 and K such that B1 > Bo implies
Br— B < KBy

The proof is very similar to the proof of Brucks and Misiurewicz for [2, Proposition 1];
see also Sands [16, Lemma 23].

Proof. Let 6 := B> — 1 > 0 and write T; = Tﬁj and i/ = i#i for j=1,2. Letay, az
€ [0, 1] such that r := i(l)(al) = i(z)(ag). Considering four cases according to the signs of
ar — ay and s,, we have

|T>(a2) — Ti(a1)| = Ba2laz — a1] — 8.

Applying this formula n times, we find that i[lo, n)(a]) = i[zo, n)(az) implies

8
T3 (a2) — T} (a1)] 2ﬁ§’<|a2 —al - By — 1)'
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Consider the case k > 3. Then a; = T; (1) fori = 1, 2 are such that

| =5 ) - )
a) —ail =48> > .
Bo—17 B—1
Using |T2” (ap) — Tl” (a1)| <1, we conclude that for all By < B < B, if ng’n) :Q?O,n)’
then
§< /30 —1 ﬂ*n+1.
“Bo—2"72

For the case s = (41, +1), we can apply Lemma 3 with =0 and x = 1.

The case where s = (+1, —1) or (—1, +1) is considered in [16, Lemma 23].

Now consider the case s = (—1, —1): for a fixed n, we want to find Sy such that for all
Bo < B1 < B2 we have

T3 (1) = T7'(1)] > (15)

B—1

Then we can conclude as in the k >3 case. Formula (15) holds if |dTé’(1)/dﬂ| >
1/(B —1) for all B> By. When n increases, By decreases. With n =3, we have
Bo ~ 1.53. O

In the tent map case, the separation of orbits is proved for g € (ﬁ , 2] and then extended
arbitrarily near Sy = 1 by using the renormalization. In the s = (—1, —1) case there is no
such argument, and we are forced to increase n to obtain a lower bound fBy. With the help
of a computer, we obtain Sy & 1.27 for n = 12. For more details, see [5].

Now we turn to the question of normality for generalized B-transformations. The
structure of the proof is very similar to that of Theorem 2 and Corollary 1.

THEOREM 5. Consider a family {Tg}i_1<g<k of generalized B-transformations defined
by a sequence s = (Sy)o<n<k- Let Bo be defined as in Lemma 6. Then the set

{B > Bo | the orbit ofﬁﬂ under o is fLg-normal}

has full A-measure.

COROLLARY 2. Consider a family {Tg}g>1 of generalized B-transformations defined by
a sequence s = (8,)n>0. Let Bo be defined as in Lemma 6. Then the set

{B > Bo | the orbit of 1 under Tg is j1g-normal}

has full A-measure.

Proof of Theorem 5. Let

By :={B € (Bo. 00) | 1 £ S(B)}.

From Lemma 5, this subset has full Lebesgue measure. To obtain uniform estimates,
we restrict our proof to the interval [8, B] with Sy < < B <oc. Let k:=[pB] and
Q:={B €[B. BIN By | n” is not L g-normal}. As before, setting

Qy:={BelB. BINBy|3ve Vo) st. h(v) < (1 —1/N) log B},
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we have Q = UNzl Qpy. We prove that dimy Qn < 1. For N € N fixed, define ¢ :=
(Blogp)/@N —1)>0 and L such that nfy =Qfo' ., implies [B— /| <& (see
Lemma 6). Consider the family of subsets of [B, B] of the type

Jw)={B B Bl nfy = w.

where w is a word of length L. J(w) is either empty or an interval. We cover the
non-closed J(w) with countably many closed intervals if necessary. We shall show that
My N[B1, B2]) =0 where B; < B, are such that E/[SOI,L) = Qfoz,L)'

Letp/ = Qﬂ-/’, and let

D*:={ze %, 13 €[fr. f2] N Bost z= 1P},

Define p, : D* — [B1, B2]1 N By by p«(z) =B < r;ﬁ =z. As before, from formula (13)
and the strict monotonicity of 8 1, we deduce that P« 1s well defined and surjective.
We compute the coefficient of Holder continuity of p, : (D*, dg,) — [B1, p2]. Take
z#z € D*andn =min{l > 0: z; # z;}; thendp, (z, ') = B;"". By Lemma 6, there exists
C such that

1px(2) — px(Z)| < Cpou(2) ™" < CB;" = C(dp, (z, 2)) 08 P1/10e b

By the choice of L and ¢, we have

10g_,31>1_i
log By ~ 2N’

and thus p, has Holder exponent of continuity 1 — 1/(2N). Define
Gy ={zeZ* | e Vs(z)s.t. h(v) < (1 — 1/N) log B}

As before, we have Qy N [B1, B2] C p«(Gy N D*) and hyp(GY) < (1 — 1/N) log B.
Finally, dimg (2 N [B1, B2]) < 1 and A(Qn N [B1, B2]1) =0. O

Proof of Corollary 2. The proof is similar to that of Corollary 1. Equation (3) holds since
we work on By. O

When we consider the tent map (s = (1, —1)) in particular, we recover the main theorem
of Bruin in [3]. We do not state this theorem for all x € [0, 1] as we did for the map Ty g,
because we do not have an equivalent of Lemma 3 for all x € [0, 1]. This is the one missing
step of the proof.

Acknowledgement. We thank H. Bruin for correspondence relating to Proposition 1 and
for communicating research results to us before publication.

A. Appendix
Let G be an oriented labeled right-resolving graph, and denote by V the set of vertices of
G. We assume that G has a root vg € V. Let v € V; the level of v is the length of the
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shortest path on G from v to v. For K € N, the graph G is the subgraph of G whose set
of vertices is

Vg :={v € V| the level of v is at most K}.

We set
£(n, G) := card{paths of length n in G starting at vo}.

Since the graph is right-resolving, a path in G is uniquely prescribed by the initial vertex
of the path and the (ordered) set of labels of its edges. The right-resolving rooted graph G
has the property P if for any path starting at v there is a unique path starting at the root
v with the same set of labels. If G has the property P, then

Ln+m,G) <ln,G)tim,G).
It follows that
1 1
h(G) := lim —log{¢(n, G) =inf — log £(n, G). (16)
n—-oon n n
The quantity 4 (G) is the entropy of G.

LEMMA 7. Let G be a right-resolving rooted graph which has the property P. For all
8 > 0, there exists L(G, 8) such that for all L > L(G, §) and all right-resolving rooted
graphs G' satisfying the property P, we have that G, = G, implies

h(G") <h(G) + 6.
Proof. Given G and § > 0, choose L(G, §) such that for all L > L(G, §) we have
1
T log (L, G) < h(G) + 6.

Let G’ be a right-resolving rooted graph which has the property P and is such that G, = G.
Then, using (16) and the fact that a path of length L in G (or in G’) remains in G, (or in
G;), we get

h(@G)

IA

1 , 1 /
Z 10g L(L, g )= Z 10g (L, gL)
1 1
= zlogE(L,gL)zzlogE(L,Q)Sh(Q)jLS. O

Let (u, v) satisfy (9); we define a labeled graph G = G(u, v). A vertex v of the graph
is a pair (p, q) € Z4+ x Z4. We define the out-going labeled edges from v = (p, q) to
v = (p', q'), the successors of v.

() If up =v,, then there is a unique out-going edge labeled by u, from v to
vVi=(p+1l,q+1).

(2) Ifu, < vy, then there is an out-going edge labeled by u,, from v to v/ = (p + 1, 0)
and an out-going edge labeled by v, from v to v = (0, ¢ + 1). Furthermore, if there
exists a with u, < a < v, then there is an out-going edge labeled by a from v to
v/ = (0, 0).
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A point is normal for almost all maps fx + o mod 1 1547

The graph G is the minimal graph containing (0, 0), the root of G, such that if v is a vertex
of G, then all successors of v are vertices of G. All vertices of G are of the form (p, ¢g) with
p # q, except for the root. Furthermore, (p, q) is a vertex of G with p > ¢ if and only if
the longest suffix of ug - - - u,—1 which is a prefix of v has length g. Using the map from
the vertices of G to the subsets of X%, y,

(p.q@) = [0Pu, 0%v]:={x ey |0cPu <x <o},

together with the results of [6, §3.1], one can check that G has the property P, h(G) =
hiop(Zu,v), and the level of v = (p, ¢) is max{p, ¢}. This last result implies that for
(u’, V') satisfying (9), if u and u’ have a common prefix of length L and v and v’ have
a common prefix of length L, then G; = G; . Therefore Lemma 7 implies Proposition 1.
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