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1. Introduction. In this paper we consider @-groups; that is, @ is a group and we
consider groups N endowed with a @-action, meaning a homomorphism of ¢ into the
group of automorphisms of N. In (4) a lower central @-series was defined for such a
@-group, N, generalizing the lower central series of a group, and results were obtained
relating to the localization of such a series. Since the ideas in that paper were inspired
by the homotopical localization theory of nilpotent spaces (see (6)), the main body of
results in (4) was concerned with the case in which & is nilpotent, and perhaps also the
group ¢ and the action of @ on IV (in the sense that the lower central @-series terminates
after a finite number of steps with the trivial group {1}). We now adopt a broader view-
point and only restrict ourselves to the nilpotent case when our results appear to
require us to do so; thus the spirit of this paper is much more that of general group
theory as presented in [(8), especially ch. VI]. Thus, while there is some overlap of
results, the methods used are not the same and many results (for example, Theorem
3-1) are far more general than any obtained in (4). Moreover, the methods also appear
to us to be more appropriate in that essential appeal was made in (4) to a sophisticated
theorem of Norman Blackburn on nilpotent groups, whereas here we merely use
homological methods, the construction of the semidirect produet and, in section 4,
some very classical facts of the commutator calculus.

In section 2 we introduce the lower central @-series and the upper central @-series
of a Q-group N (this latter notion was not presented in (4)) and characterize them by
means of the semidirect product G' = N]@. We prove a proposition relating them
which generalizes the familiar relation between the terms of the lower central series
and upper central series of a nilpotent group and which allows us to define the concept
of a @-nilpotent @-group.

In section 3 we consider the behaviour of the lower and upper central @-series under
P-localization, where P is a set of primes. Here we understand, following (8), by the
P-localization of N the process of P-localizing theintegral homology groups H;NV,j > 1,
which coincides with P-localization in the sense of (2) in the category of nilpotent
groups. However, in the generality in which we work in this paper we prefer to adopt
the terminology of (8), so that a group of N is said to be HPL (homologically P-local)
if H; N is P-local, j > 1; and N is said to be UP'R (unique P’-roots, where P’ is the
complement of P) if the function z +» 2™, x € N, is a bijection of N for all P’-numbers m.
Thus a UP’R-group is P-local, in the sense of (6); and if NV is nilpotent then the concepts
of HPL and UP’'R coincide (together with the concept of P-local as defined in (2));
in that case we will also say that N is P-local. Further we follow (8) in declaring a
homomorphism N-—>M to P-localize if the induced homology homomorphisms
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44 PrTER HILTON AND URS STAMMBACH

H;N—->H,M,j > 1, all P-localize. Here again it is known that this definition agrees
with that of (2) in the case in which ¥, M are nilpotent. We close section 3 by proving a
theorem about the upper central @-series of N, in the case in which @ is nilpotent and
acts nilpotently on &N, which complements a basic result of (4) relating to the lower
central @-series.

In section 4 we introduce the concept of @-trivializing normal series of a @-group N
and, in section 5, we prove results about the P-localization of the terms of such
(descending and ascending) normal series of N. For these results we require that N be
nilpotent but, except in Theorem 5-7, put no restriction on ¢ nor on the @-action. In a
brief appendix it is indicated where a generalization from a hypothesis of nilpotency
to a hypothesis of local nilpotency is available, exploiting the observations of (3).

Except insofar as our terminology and notation are based on the dependence of our
general formulations on those of chapter VI of (8), the most important departure we
make from the conventions of (4) is that we revert to that indexing of the terms of the
lower central @-series which is consistent with the standard indexing of the terms of a
lower central series. We achieve the corresponding consistency in indexing the terms
of the upper central @-series, and the terms of the descending and ascending normal
series of section 4.

2. Central @-series. Let NV be a Q-group, that is, a group &V on which the group @
acts as a group of automorphisms. We denote the action by
u—u®, uelN,ze@.
Define the lower central Q-series (4) of N as follows:
o N = N, T5WV = gp{uru~vYueN,velyN,2€Q}, i> 1. (2-1)
If @ acts trivially on N, the lower central @-series of N is just the usual lower
central series of N. If NV is commutative, this definition agrees with that given in
(6). In general, the lower central -series of N is the fastest descending central
series of N whose successive quotients are trivial @-modules. Thus, since [N, ') N]
is a @-subgroup of the @-group ' N such that TLHN/[N, THN] is a Q-module,
it follows that

THN/TEN = Hy(Q, TyN[[N, TyN) = Z @ TH N/[N,TH Nl (2:2)

An alternative description of the lower central @-series of IV employs the semidirect
product G = N1Q (see Proposition 2-6 of (4)). Embedding & in G'in the canonical
way (as a normal subgroup with quotient @), we define a descending series {&V;} of N
by the rule: )

Ny= N,y =[GN), i>1. (2:3)

It is then easy to see that

N,=TjiN, i>1. (2-4)

To simplify notation we shall sometimes write I'*V or even I'? for 'y N.

We now define the upper central Q-series of N as follows:

VN ={1},v4 N = {ueZN|u* = ufor all 2e @}, V5 N[vh) N = v} (N[vy N),
i1 (25)
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On group actions on groups and associated series 45

If @ acts trivially on &V, the upper central Q-series of &V is just the usual upper central
series of V. In general, the upper central @-series of NV is the fastest ascending central
series of N whose successive quotients are trivial @-modules. Since Z(N[vhH N) is a
Q-module containing v§ 1N [vh N, it follows that

VEFIN vy N = HYQ, Z(N[vy N)) = Homy, (Z, Z(N[vy N)). (2-6)

Again, we have an alternative description of the upper central @-series of &V in terms
of the semidirect product G = N ] Q. We define an ascending series {N%} of N by the
rule

N° = {1}, N = ZG n N, N*+Nt = Z(GIN) n N[N?, i> 1. (2-7)

It is then easy to see that . i .
_N7'=VbN, v = 0. (2'8)
To simplify notation we shall sometimes write viN or even v for v N.
The following proposition linking the lower and upper central @-series of IV general-
izes the familiar relationship in the case of trivial @-action.

ProrosITION 2-1. Let N be a Q-group. Then the following statements are equivalent :

(i) »* = N; (ii) I = {1}.

Proof. We will prove that (i) implies (ii). Assuming (i), the series v, v*1, ..., is a
descending central series whose successive quotients are trivial @-modules. Moreover,
we may assume inductively that , )
Dé  prtl—, (2+9)
which is true if ¢ = 1, and, since the lower central @-series is the fastest descending
central series whose successive quotients are trivial @-modules, it follows that

Fi+l [ Vn—i_

Thus (2-9) is established for all ¢ and we obtain (ii} by setting ¢ = n+ 1. The converse
(which also proceeds via (2-9)) may be left to the reader.

Definition 2-2. If the Q-group N satisfies (i) or (ii) of Proposition 2-1 it is said to be
Q-nilpotent of class < n and we write nily N < =.

Note that if nily N < n, then &V is a nilpotent group of class < »; note also that (2-9)
holds if nily N < n.

3. Q-groups and localization of central series. Let P be a set of primes and let P’ be
the complement of P. In accordance with [(8), p. 151] we shall call a group N an
HPL-group if its integral homology groups H; N are P-local for j > 1. Also, we shall
say that NV isa UP’R-group (P-local, in the terminology of (6)) if it has unique mth roots
for all P'-numbers m. It is known (see, e.g. Theorem v1-3-3 of (8)) that a nilpotent
group N is HPL if and only if it is UP'R; we will then say that N is P-local. The
following result generalizes Proposition vi-2-4 of (8).

THEOREM 3-1. Let the Q-group N be an HPL-group. Then, for i > 1, TH N[T5 AN
8 P-local and N|T'y N is HPL (and hence UP'R).

Proof. We argue by induction on 1. If ¢ = 1, then
Y2 = Hy(Q, N ),
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46 PeTER HivrroN AND URS STAMMBACH
and N, is P-local. Now, for any @-module 4, it is easy to see that

of A is P-local then Z @y A is P-local. (31)

Thus I'"/I'2 is P-local. Of course N/T'! is trivial and hence HPL.
We now assume that, for a giveni > 2, I""1/I"* is P-local and N/T%'is HPL, and we
consider the extension
[T —> N[T% —>> N[T1, (3-2)

By Proposition VI-2-1 of (8) N/T% is HPL. Now consider the extension
[>— N —>> NI (3:3)
The 5-term sequence in homology yields
H, N > Hy (N[T%) > T[N, T4 > N> (N[T) 3y 0, (3-4)

and we know all terms in (3-4) except I'!/[N, I'] to be P-local. Thus I'}/[V, I"] is also
P-local. Since (2-2) I'Y/T"+! = Z ® ,I"'/[N, '] a second application of (3-1) yields the
inductive step.

We call a homomorphism I: N — M a P-localization map if it P-localizes in homology
(see (8)). Then we know that a homomorphism I: N — M of nilpotent groups is a
P-localization map if and only if it P-localizes in the category of nilpotent groups ((2),
(6), (8)). We now prove

ProposiTioN 3-2. Let I: N — M be a P-localization map which is a homomorphism of
Q-groups. Then, for © > 1, the induced maps
I N[THN > MTH M,
k;:TH N[THHN »>TH MT5 M
are P-localization maps.

Proof. We argue by induction on ¢. If 7 = 1, then I, P-localizes trivially and k,
P-localizes since N,; — M, P-localizes and, for any map 4 — B of Q-modules, it is easy
to see that

if A B P-localizes, so does Z @ A ~7Z ®4 B. (3-5)

Now assume inductively that, for a given ¢ > 2,[;_; and k;_, both P-localize. The
diagram
1N [N y—> N[I“N —> N|I'*-1N

[ i s (36)
DL} TS M>—> M/TM —s> MJT10

then shows that I, P-localizes. Next the diagram
INy)—> N —> N[TN

"k -

TiMy—> M —>> M|TiM

Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 11:46:08, subject to the Cambridge Core terms of use, available
at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0305004100052646


https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0305004100052646
https:/www.cambridge.org/core

On group actions on groups and associated series 47

shows, when we apply the 5-term sequence in homology, that
IN|[N,I"N]-T"M|[M, " M]
P-localizes; and, finally, we invoke again (2-2) and (3-5) to infer that
| k,: TSN [N — T T M

P-localizes, completing the inductive step.

Now suppose that N is a @-group and that it is nilpotent qua group. If I: N — N is
the P-localization map (in the category of nilpotent groups) then Np admits a unique
structure of @-group such that ! is a homomorphism of @-groups; we suppose Np
endowed with this structure. Then we prove (see Theorem 2-8 of (4)).

COROLLARY 3:3. Let N be a Q-group which is nilpotent qua group, and let I: N - Ny,
P-localize. Then the induced maps

li:N/FgNeNP/F"QNP,
kT, N|TGIN - Ty NpT5 A Np,
h;: F"bN»I‘}'ZNP

P-localzze.

Proof. It is only necessary to prove the statement about ;. However, from the
exactness of localization in the category of nilpotent groups (2), (8) and the diagram

4N >—>N —>N[THN

R

it follows that A, P-localizes.

Remark. Unless we assume N nilpotent (or locally nilpotent (3)) we have no proof
that b, is a P-localization map, nor even that I'y N is HPLif N is HPL. This contrasts
with the situation in Theorem 3-4 and Proposition 3-5 below.

We now turn to the upper central @-series of N; now we need to assume N a UP’'R-
group. The following result generalizes Proposition vi-3-2 of (8).

THEOREM 3-4. Let the Q-group N be a UP'R-group. Then, for ¢ > 1, Vi N[VgIN
is P-local and the groups vy N, N[vl N are UP’R-groups.

Proof. Tt is sufficient to prove that v* and N/v! are UP’R-groups, since the general
result follows, in the light of (2-5), by an easy induction, using the fact that, given a
central extension of groups G’ >— G —>>G", then @" is UP'R if ', G are UP'R.
Indeed, this same fact allows us merely to show that v'is UP'R.

Now since N is UP'R, so is ZN. Suppose uev! and let m be a P’-number. Then
u = v™, veZN, and we must show that vep!. Butif z€ @ then

(@)™ = (V) = uT = u = o™,

so that, m® roots being unique, »* = v, and v € vL. This completes the proof.
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We remark that v}, N, being nilpotent, is also HPL.
To obtain an analogue of Corollary 3-3 we need to impose some extra condition on N
beyond nilpotency (see Theorem 5-9 of (2)). In fact, we have

THEOREM 3-5. Let N be a Q-group which is nilpotent qua group, and let I: N — N,
P-localize. Then the induced maps

I&: N[y N — Np[vh Np,
kvl Nfvs 1 N — vl Np[v 1 Np,
hi:vy N->vh Np

P-localize, provided that Q is finitely generated and that N has bounded P’-torsion (that is,
the P’-torsion of N has bounded exponent).

Proof. We proceed in several steps, which we present as separate propositions.

ProrosiTiON 3-6. If N has bounded P’-torsion, then so has N|ZN.

Proof. Consider the upper central series {Z,} of N and suppose that N/ZN does not
have bounded P’-torsion. Then there exists a smallest 7 > 1 with the property that
Z;.1]/Z; does not have bounded P’-torsion. Choose this ¢. Further choose a fixed but
arbitrary element a € N. Then the map

bZ;—(b,a)Z; 1€Z,Z; 1,b€Zyy,

is & homomorphism Z,,,/Z;—>Z,[Z,_,. Hence, if bZ, is P’-torsion, then so is [b,a]Z;_,
for all e N. By the minimality of 7 there exists a P’-number %, independent of b and
a, such that Z, |, = [b,a]”Z,_; = [b* a]Z,_,. Hence b e Z, for all P’-torsion elements
bZ,in Z,,,|Z,;. Hence the P’'-torsion in Z,,,/Z, is bounded; but this contradicts the
choice of 4.

PrOPOSITION 3-7. Let 4 be a commutative Q-group. If A has bounded P’-torsion then
so has Afvy A.

Proof. Let avy 4 be a P’-torsion element in 4 /vy 4. Then there exists a P’-number n
with {(a™)* = @™ for all z€ Q. Thus (¢®¢™1)* = 1 and a®a~! is a P’-torsion element of 4.
Hence there exists a P’-number » independent of a such that a™ e v} 4. It follows that
A[vy A has bounded P’-torsion.

Combining Propositions 3-6 and 37 and applying an obvious induction with respect
to ¢, we obtain the following generalization of Proposition 3-7.

PrOPOSITION 3-8. Let N be a Q-group which is nilpotent qua group. If N has bounded
P’-torsion, then so has N[V N.

We return now to the proof of Theorem 3-5. We know from (4) that, if M is a @-group
which is nilpotent qua group and if M is the fixpoint set for the @-action, then
I: M —>Mp induces M9 —>(Mp)? which also P-localizes, provided that @ is finitely
generated. Thus the conclusion of the theorem follows, by an evident induction, from
the following theorem, which is an improved version of Theorem 5-9 of (2).
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THEOREM 3-9. Let M be a nilpotent group. Then the P-localizing map 1: M —~ Mp,
tnduces l;: Z, M - Z,(Mp) by restriction; and I, P-localizes provided that the P’'-torsion of
M has bounded exponent.

Proof. Anobviousinduction together with Proposition 3-6 shows thatitis enough to
prove Theorem 3-9 for i = 1. From arguments in (2) we know that we have only to show
that I, is P-surjective. Thus let xe€Z(Mp); since ! is P-surjective, there exists a
P’'-number m with 2™ = ly, ye M. Then, for any a e M,

aye~! = yu,

with uekerl. Since ! is P-injective, u € P’-torsion subgroup of M. Since the P’-torsion
of M has bounded exponent, there exists a P'-number 7, independent of @, such that
u® = 1. It then follows from (2) that

aynca-l = (aya—l)n" — ync’
where M is nilpotent of class < ¢. Thus y**e€Z(M) and I, (y™) = 2™, with mn’ a
P’-number. We have proved that [, is P-surjective, so that Theorem 3-9 is proved.

Remark. Theorem 3-6 is plainly more general than Theorem 5-9 of (2). For there
we required that the nilpotent group M be finitely generated. Of course, if M is finitely
generated, so is its P’-torsion subgroup, which is therefore, in fact, finite.

If N is @-nilpotent then it follows from Corollary 3-3 that N is @-nilpotent and

From (3-8) we may deduce that, when N is @-nilpotent,
nily N = maxnily N,,. (3-9)
p

For, first, it is plain thatif M, N are both @-nilpotentand N < M, thennily N < nily M.
Second, if N(i) is a family of @-nilpotent groups with nily N(¢) < ¢, then [JN(3) is
Q-nilpotent with '
nily [IN(Z) = maxnily N(2) < c.
i i
Now, by (3:8) N,,, for any prime p, is @-nilpotent with nily N, < nily N. Thus
nil, ];[Np = m:,x nily N, < nily N. (3-10)

On the other hand, for each p, I: N —> N, has a kernel consisting of the elements of V
of finite order prime to p (2). Thus N embeds as a @-subgroup of [[ NV, so that
)

nily ¥ < nily [14,. (311)
»

From (3-10) and (3-11) we immediately deduce (3-9).
If, now, @ is also nilpotent then (Theorem 3-3 of (4)) the P-localizing map I: Q@ - @p
sets up a bijection
I*:A(Qp, Np) = A(Q, Np) (3-12)
between nilpotent actions of @p on Np and nilpotent actions of @ on Np, such that
(Theorem 3-2 of (4)) C
IgNp=T% Np (3-13)

4 psp 80
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for any pair of nilpotent actions related by (3:12). We now prove the analogue of
(3-13) for the upper central @-series of Np.

THEOREM 3-10. Let @ be nilpotent and let Ny be Q-nilpotent and P-local. Then Ny is
@Q p-nilpotent through (3-12) and . '
vy Np = vh_Np. (3-14)
Proof. 1t is sufficient to prove this for 7 = 1, since an evident induction then estab-
lishes the general case. Let G = Np ] @ be the semidirect product and consider the
extension
Np>— G —>> Q. (3-15)
Then G is nilpotent and we may P-localize (3-15) to obtain the split extension
Np>—Gp—>>Qp. (3-16)

Moreover the canonical splitting of (3-15) induces a splitting of (3-16) and hence a
(nilpotent) action of @, on Np. It was shown in (4) that this is the action paired to the
given action of ¢ on Np by I* (3-12).

Now it is obvious from the definition of p! that vy Np < vy Np. Thus we must
establish the opposite inequality. We apply (2:7) which asserts that vy Np = ZG n Np,
v, Np = ZGp n Np. Now localization respects finite intersections and sends the centre
to the centre. Since P-localization is the identity on Ny it therefore follows that

ZG N Np < ZGpn Np,
or voNp < v, Np,
establishing the theorem.
4. Q-trivializing series. Let N be a @-group. We say that a descending normal series
of N consisting of @-subgroups N (z),
.AN2)]N(1)=N
Q-trivializes N if the quotients N(¢)/N (i + 1) are trivial Q-groups for all 7+ > 1. Notice
that the series {I'y N} @-trivializes N; indeed, it even N ] @-trivializes N.

We define the series {A% N} to be the fastest descending normal series of N which
@-trivializes N. Thus, explicitly,

ALN = N, ALY N = gp{vio-lve A5 N,zeQ}, > 1. (4-1)

One may prove directly that {A% N} is a normal series of N. However, the following
alternative description of {A% N} also achieves this objective. We form the semidirect
product G = N ] @ and embed N, @ in G in the canonical way. We then define the series

{0°N} by the rule
0N = N8N =[Q,8°N], 1> 1, (4-2)
and it is easy to show that §*N is a Q-subgroup of N, that
0N =A)N, i>1, (4-3)
and that :
OHIN 8N, i3> 1. (4-4)
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Of course it is obvious, in either description, that A} N/AGN is a trivial Q-group.
Where convenient we abbreviate A) N to AN or even A,
Now we say that an ascending normal series of NV consisting of @-subgroups N(:),

{1} = NO) AN <INE@) < ...

Q-trivializes N if the quotients N(7)/N (i — 1) are trivial Q-groups for all 7 > 1. Notice
that the series {v‘éN} @-trivializes V; indeed it even NV ] @-trivializes V.

The following lemma will be needed to define a special ascending @-trivializing
normal series.

LeMMA 41, Let M be a Q-subgroup of the @-group N and let N(M) = Ny(M) be the
normalizer of M in N. Then N(M) is a @-subgroup of N.

Proof. Let acM, beN(M), xze@Q. Then b%a(b*)™! = (ba*'b~1)*e M, so that
b*e N(M) and N(M) is closed under the @-action.
We may now define an ascending normal series {o%, N} by the rule

oy N = {1},04 N = NO, a5 \N[c, N = (N(g5 N)[oyN)@, > 1. (4-5)

Asbefore, M¥ is the subgroup of the Q-group M consisting of the @-invariant elements.
Plainly, {o% N} is Q-trivializing.

An alternative description of the series {oy N} employs the semidirect product
G = N ] Q,with NV, Q embedded in the canonical way. We define the series {r*N} by the

rule
7N = {1},7IN = N n C(Q), " IN[T*N = 1YN(7:N)/T*N), 1 > 1, (4-6)

where C(Q) is the centralizer of @ in @; and it is easily verified that 7'N = ¢}, N, > 0.

We remark that the series {o%, N} is the ‘fastest ascending’ normal series of N which
Q-trivializes NV in the sense that we start with o N = {1}, and, given ¢4 N, then
o5 1N is the maximal @-subgroup M of N such that o) N < M and @ operates trivially
on M[oy N. However, it turns out that the term ‘fastest ascending’ is misleading,
sincet it may happen that o) N # N is self-normalizing, so that the series {o}) N}
stabilizes at a proper subgroup of NV, whereas N possesses an ascending @-trivializing
normal series N(¢) with N(n) = N for some n > 1.

5. Q-groups and localization of normal series. Let N be a @-group. We will discuss
the behaviour of the series {A} N} and {¢% N} with respect to localization at a family of
primes P, in the case when N is a nilpotent group.

THEOREM 5-1. Let N be a Q-group which is nilpotent qua group. If N is P-local, so
w8 AHN,i > 1.

Proof. It plainly suffices to consider the case ¢ = 2, since the general case then follows
by an obvious induction. Thus (see (4-2), (4-3)) we are reduced to showing that [@Q, N]
i8 P-local. This was proved in [(3); Theorem 2-2] under the weaker hypothesis

1 We are grateful to the referee for pointing out to us that this phenomenon may ocecur, and

also for drawing our attention to the paper (1) in which the authors study the stability groups
of descending and ascending normal series of groups.

4-2
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that N is locally nilpotent. However, we give a different proof here, since the ideas
involved will also be useful in proving Theorem 5-2.
We consider the series

/1‘1N = [Q’N]u”'i+1N>= [:u’iNrN]’ 1> 1L (5-1)

Then g, ., N = {1}, for some n, since N is nilpotent, and we argue by induction on =.
If n = 0, then [@, N] = {1}, and so is certainly P-local.

Now let n > 1. We claim that x, N is P-local; of course, y, N is central in N. We
must show that g, N has mth roots where m is a P'-number, and it plainly suffices to
consider a generator [, %] of 4, N,acpu, N,ueN.Thenu =v™, veN, and

[a7 u] = [a’s vm] = [as v]m’
by the centrality of x, N.

It is obvious that u, N < N; consider M = N[u, N. Then M is P-local, moreover M
is a @-group which is nilpotent qua group and u, M = {1}. Thus our inductive hypo-
thesis permits us to infer that [@Q, M] is P-local. However, [Q, M] = [Q, N]/x, N, so
that finally [@, V] is P-local.

THEOREM 5-2. Let N be a Q-group which is nilpotent qua group, and let 1: N — Np
P-localize. Then the induced map

P-localizes. L0 N A Np

Proof. Again it suffices to consider the case ¢ = 2. We use the series {s; N}, {; Np}
from the proof of Theorem 5-1 and we suppose that g, N = {1}, #, ., Np = {1}. We
argue by induction on n, the case n = 0 being trivial. We assume » > 1 and show that

! induces
Ly:ptn N > pon Np
which P-localizes. :
Now p, Np is commutative and is generated by iterated commutators
c(x, Uy, g, ..., %) = [... [[2, %y), %o,y ... %, ], 2€Q, u; € Np. (52)
Moreover the map (u,, %y, ..., u%,) ¢ (T, %y, U, ... ,U,) is linear in each argument.

We use these remarks to show that l, is P-surjective; since I, is plainly P-injective
and p, Np has already been proved to be P-local, it will follow (see (2), (8)) that e
P-localizes.

It will suffice to show that, for the element ¢ in (5-2), there is a P’-number m with
cmeiml,. Now, foreachj, 1 < j < n, there exists a P'-number m; with 4} = lv;, v;e N.
Then

l*c(x, Uy, Vs, --. , U,) = (&, U, ule, ..., uln) = (@, Uy, Ug, -.. , Up)™,

with m = m;m,...m,. Then m is a P'-number and we have shown that I, P-localizes.

It follows immediately that if ! induces k: Nu, N - Np[u, Np, then k P- localizes.
Writing M, as in the proof of Theorem 4-1, for N[u, N, we may write My for Np/u, Np
and we have u, M = {1}, u, M, = {1}, so our inductive hypothesis allows us to infer
that k induces

ky:[Q, M]—[Q, Mp]
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which P-localizes. Thus we conclude with the diagram

ll. 1, sz
:u"nNP>_—) [Qr NP] —> [Q: MP]

in which I, and k, P-localize; this implies that I, P-localizes and the argument is
complete.

COROLLARY 5-3. Let N be a Q-group which is nilpotent qua group and let N, be obtained
from N by killing the action of Q. Then the P-localizing map l:N->Np induces
lo: Ny — (Np)q which also P-localizes.

Proof. Tt is only necessary to observe that N, = N/A? and exploit the exactness of
localization.

We now turn to the series {o% N}. We recall from (4) that if N is P-local, so is N€.
We now prove

LEMMA 5-4. Let M be a Q-subgroup of the Q-group N. Further, let N be nilpotent with
both N, M P-local. Then N(M) is P-local.

Proof. In fact, we will prove a more general result. Thus initially we do not suppose
N, M P-local. Then the diagram M <I N(M) < N gives rise to

M <INM)c N
ll ll ll (5-3)
My, <N(M)p< Np :
so that
N(M)p = N(Mp). (5-4)

Notice that, in (5-4), the normalizer on the left is taken in &V, on the right in Np.
However, this distinction disappears if & is P-local. Thus if we assume both ¥, M
P-local, we obtain N(M), = N(HM). But, of course, in this case N(M) = N(IM)p, so that
N(HM) = N(M)p and so N(M) is P-local as claimed.

It follows that, in (5-4), N(Mp) is P-local. However, we do not know whether (5-4)
is, in general, a strict inequality.

From Lemma 5-4 we infer

THEOREM 5'5. Let N be a Q-group which is nilpotent qua group and let N be P-local.
Then the terms of the series {0 N} are P-local.
‘We may now prove the following.

ProrosiTiON 5-6. Let N be a Q-group which is nilpotent qua group. If Q is finitely-
generated and if (5-4) is an equality for all M, then

(0o N)p=0h(Np), i20.

1 In fact, (5-4) is an equality if N is finitely generated. See (7).
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Proof. We proceed by induction on 7, the assertion being trivial if ¢ = 0. Assuming
then that the assertion is true for i > 0 and using the hypothesis that (5-4) is an
equality for all @-subgroups M of N, we have !

N(e5 N)p = N((05N)p) = N(oh Np).
Now, for @ finitely generated, and G any nilpotent group,

(@9)p = (Gp)¥,
by (4). Thus
05 (Np)[o§ (Np) = (N(gg Np)[ol Np)?, by (4:5)
= (N(og N)p/(05N)p)@
= ((N(o, V) /ol N)p)?
= ((N(eGN)[oy, N)9)p
= (05" N[o,4 N)p
= (0" N)p[oly (Np).
Hence
05 (Np) = (651 N)p,
and the proposition is proved.
Finally, we consider the situation when @ is also nilpotent and prove

THEOREM 5-7. Let Q be nilpotent and let Np be Q-nilpotent and P-local. Adopting the
action of @ p on Ny given by (3-12) we have

A\

Proof. (i) Plainly we may confine attention to ¢ = 2 and so have to show that

[Q’NP] = [QP: NP] (5'5)

But [@, Np] is P-local by Theorem 5-1 and its P-localization is [, Np] by Theorem
1-2(iii) of (4). Thus (5-5) follows, since the identity on N, P-localizes.

(ii) It was proved in (4) that N$= N%r. Thus N(NE)/Ng = N(NE?)/Ng* and
hence, by the same result, 6%(Np) = 0%, (INp). Iteration of this simple argument yields
the desired result.

Remark. Let N be a nilpotent group, M < N, and let K(p) = [;'N(M ), where p is
a prime and l,,: N - N, p-localizes. Then

N() = QK(P)- (5-6)

For certainly N(M) < K(p) for each p, so that N(M) < N K(p). Conversely, let
p
yeNK(p) and let ae M. Then I, (yay—) e M, for each p, so that, by (5), yay~1e M,
p -
and ye N(M).

-~ 6. Appendiz: Locally nilpotent groups. Various results in this paper have assumed
the nilpotency of N or of @, where N is a @-group. Here we very briefly discuss which
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results can be immediately generalized to an assumption of local nilpotency. Corollary
3-3 remains valid if we merely require that NV be locally nilpotent instead of nilpotent.
In Theorem 3-10 we may allow @ to be locally nilpotent (this makes the semidirect
product locally nilpotent, and any hypothesis having this effect would lead to the
conclusion (3-11)). We have already remarked that Theorem 5-1 remains valid if V is
merely assumed locally nilpotent, although there is no immediately evident modifica-
tion of the argument given; on the other hand, we know of no proof of Theorem 5-2
strengthened by replacing the hypothesis on &V of nilpotency by one of local nilpotency.
Similarly we do not know how to strengthen Corollary 5-3, although we may infer that
if N is a P-local, locally nilpotent @-group, then Ny is P-local. In Lemma 5-4, Theorem
5-5 and Proposition 56 we may merely assume N locally nilpotent (as also in (5-4)).
Finally, Theorem 5-7 remains valid if @ is assumed locally nilpotent (see the comment
above on Theorem 3-10); and so, too, does the closing remark (5-6) if N is assumed
locally nilpotent.

We also remark that the conclusion of Theorem 3-6 remains true if M is locally
nilpotent and its P’-torsion is finite.
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