BEST APPROXIMATIONS IN PREDUALS OF
VON NEUMANN ALGEBRAS

ALVARO ARIAS ano VANIA MASCIONI

ABSTRACT

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras. As an
application it generalises the theorem of Doob, that says that H} has unique best approximations in L,(T),
to a large class of preannihilators of natural non-selfadjoint operator algebras including the nest algebras.
Then it studies the semi-Chebychev subspaces of the trace class operators and shows that the only
Chebychev »-diagrams are ‘triangular’.

1. Introduction

This paper characterises the semi-Chebychev subspaces of preduals of von
Neumann algebras; in particular, those of the trace class operators.

As an application of this, we generalise the Theorem of Doob [3] that says that
H} has unique best approximations in L*(T), to a large class of preannihilators of
natural ‘triangular’ algebras; for example, nest algebras.

In the final section we characterise the finite codimensional weak*-closed
subspaces of the trace class operators and clarify the situation for the special case of
*-diagrams.

The authors want to thank Professor D. Larson and Professor J. Ward for useful
discussions.

2. Preliminaries

In this paper H denotes a Hilbert space, and c,(H) the trace class operators; that
is, those Te B(H) for which ||T||, = tr (IT]) < co. We identify B(H) with ¢} under the
trace duality; that is, for Tec, and Se B(H), (T, S) = tr (TS). We also use the fact
that every compact operator has a Schauder decomposition T = ) ,a(T) ¢, ® v,
where ¢ ® y is the rank-1 operator sending A to (¢, h) w and the a,(T) are the singular
numbers of T. Moreover, if Tec, then |T|, = Y., a,(T) (see [9]).

Let M be a von Neumann algebra, and M, the unique isometric predual (see [11]).

If fe M, and be M then bfe M,,, fbe M, and f* e M, where these are defined by

bfix) =flxb),  fb(x) =fbx),  f*(x)=/flx*).
Now fe M* is positive if for every xe M, f{ix*x) = 0. We shall use the fact that /> 0
if and only if 1) = || f||. We say that fe M,, is hermitian if f* = f. There is also a
polar decomposition in M,,. If fe M, we can find ue M, a partial isometry, such that
uf = | f|. For more information on von Neumann algebras see [11].
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Let X be a Banach space and G = X a closed subspace. Then G is proximinal in
X if every xe X has a best approximant from G; that is, there exists yeG such that
|lx—yll = d(x,G). Now G is semi-Chebychev if every xe X has at most one best
approximant; and G is Chebychev if every xe X has a unique one. A fundamental
reference concerning best approximations is Singer’s book [10].

3. The main result

In this section we characterise the semi-Chebychev subspaces of the preduals of
von Neumann algebras; in particular, those of the trace class operators, c,.
If G M, we let

G* = {be M: b(h) = 0 for every he G}
and G*G = {bh:be G* and heG}. Notice that G*G < M,,.

THEOREM 1. Let M be a unital von Neumann algebra and G < M,,. Then G is not
semi-Chebychev if and only if there exist he G, h # 0 and be G*, ||b|| = 1 satisfying

(i) bh is hermitian,

(i1) b*bh = h.

RemMARK. Notice thatif M = B(H), condition (ii) is equivalent to b is an isometry
on the range of A.

As an immediate application of Theorem 1 we obtain the following.

COROLLARY 2. Let G< M, such that G*G contains no non-zero hermitian
element; then G is semi-Chebychev.

Corollary 2 was proved in [1] for ¢, and was used to show that the non-
commutative H'-spaces in ¢, (for example, the set of upper triangular elements of c,)
are Chebychev, just as in the commutative case [6]. (See Section 4 for further
discussion).

The proof of Theorem 1 depends on a generalisation of the following easy and
well-known lemma to the von Neumann algebra setting.

LemMma 3. If Tec,, BeB(H) are such that |B|| =1 and tr(BT) = ||T|, then
BT =|T| and B¥T| =T.

For the next lemma we assume that M < B(H) for some Hilbert space H.

LEMMA 4. Let M be a von Neumann algebra and let fe M, be M, ||b|| = 1 be such
that bf = 0 and ||\bf || = || f|l. Then we have that bf = \|f| and f = b*|f].

Proof. 1t follows from [2, Theorem 12.2.5] that bf = |f].

Find Tec, such that for every xe M, fix) =tr(Tx) and |T|, = |fIl. Since
tr(bT) = | T|,and ||b]] =1, Lemma 3 gives us that T =|T| and b*|T| =T, or
b*bT = T. Clearly, b*bf = f.

We are now ready for the proof of Theorem 1.
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Proof of Theorem 1. Assume that G is not semi-Chebychev. Then we can find
feM,, heG, h#0 and beG*, ||b] = 1 such that

I/ =d(£,G) = I/ +hl,

and f1b) = |/l = I f+hll = (f+R) ().

Since [|bf1l < || £l = f(6) = bf(1) < ||bf | we have that bf >0 and [bf] = [f].
By Lemma 4, this implies that bf = |f| and b*|f| = f. Similarly, b(f+ ) = | f+ A} and
b¥|f+h =f+h.

Hence,

bh = b(f+h)—bf = |f+h |/
is clearly hermitian and
b*bh = b¥|f+hl—b*|fl =f+h—f=h.

Conversely, let us assume that heG, h#0, beG*, ||b| = 1 are such that bA is
hermitian and b*bh = h.

Find ueM, |u]l =1 such that |bh| = u(bh). Since bh is hermitian, we have
|bh) = (bh)u*. Let f = b*|bh|.

Claim: | f|| = d(f,G) = [l f+Al.

Since h # 0 this clearly implies that G is not semi-Chebychev. We will now check
the first equality of the claim.

Clearly | f] < ||bA|; on the other hand

[b) = b(1) = bb*|bh| (1) = bb*bhu*(1) = bhu*(1) = |bh| (1) = |\ bA|.
Since be G* and ||b|| = 1, we have that | f|| = d(f, G).
For the other equality notice that
f+h = b*|bh|+b*bh = b*[|bh| + bh).
Since bh is hermitian, we have that
|bh| +bh = 0

and
| |bh| + bh|| = (|bh| +bh) (1) = |bh| (1) = ||bh]|.

Hence, || f+h| < ||bA|. On the other hand,

(f+h) () = fB)+h(b) = fb) = || fIl = |IbA]|.
Therefore, || f+ Al = || f]-

REMARK. According to [8], a subspace Y of a Banach space X has property (%)
if any y* € Y* has a unique Hahn—Banach extension in X'*. Phelps proved that Y has
() if and only if Y* is semi-Chebychev in X *. It follows that Theorem 1 can be used
to study this property when M, is a dual space. It is also clear that the result can be
used to find unique weak* Hahn—Banach extensions of weak*-continuous functionals
on M whenever they exist. This happens when the preannihilator is proximinal.

4. PREANNIHILATORS OF SUBALGEBRAS

Doob [3] proved that H} is a semi-Chebychev subspace of L}(T). In this section
we shall show that this property is shared by a large class of preannihilators of natural
non-selfadjoint subalgebras of M, including the analytic algebras (see [7]), in
particular, nest algebras and nest subalgebras of von Neumann algebras.
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For & = M let &/* = {x*: xe o/}, where * means the adjoint operation in M; and
let o7, ={feM,:f,, = 0} be the preannihilator.

PROPOSITION 5. Let M be a von Neumann algebra and of = M a weak*-closed
unital subalgebra of M. Then the following are equivalent:
(1) , is semi-Chebychev;
(ii) &, contains no non-zero hermitian element;
(i) &+ L* is w*-dense in M.

Proof. (i)<>(ii) Itiseasy to check that since & is a unital algebra it follows that
A, = ;. Hence, the equivalence of (i) and (ii) follows directly from Theorem 1.

(i1) = (ii1) If o/ + /* is not w*-dense then there exists a non-zero fe &/, n (&*),.
Clearly, f*e &/, n (&*), as well. Therefore, f+/* €2/, and one of them is non-zero.

(iii) = (ii) Let fe &/, be such that f= f*. It is clear that fe (&/*),. Since & + .&/*
is w*-dense, we have that /= 0.

REMARK. Notice that Proposition 5 is interesting only in the non-selfadjoint
case. If & = o/* then &/, is semi-Chebychev if and only if & = M.

There are many natural examples where Proposition 5 applies. For instance, since
H} = H? and H® + H® is w*-dense in the von Neumann algebra L®(T) we get the
following.

CoROLLARY 6 (Doob [3]). Hj is semi-Chebychev in LX(T).

Other important examples are the nest algebras. By a nest of projections in H we
mean any linearly ordered set 2 of orthogonal projections which is closed in the
strong operator topology and contains 0 and I. The nest algebra induced by 2 is the
set of all operators Te B(H) that leave invariant every element of 2; that is,

Alg? = {TeB(H):(I—P) TP = 0 for every Pe #}.

It is well known that Alg% + (Alg 2)* is w*-dense in B(H). Hence, we recover the
result from [1].

COROLLARY 7 [1]. (Alg%P), is semi-Chebychev in c,.

This result is true for a more general type of nest algebras. If 2 — M one defines
& = Alg2 | M. Nest subalgebras of von Neumann algebras have been studied by
Gilfeather and Larson [4] and it is known that o/ + «/* is w*-dense in M (see [7] or
[S]). Hence, the proposition applies.

And finally, if Se B(H) let M = {S}” be the von Neumann algebra generated by
S. Let

Ly ={p(S):pisa polynomial}w..
It is easy to see that 2/ satisfies property (iii).

Since &7, is semi-Chebychev in M, one could believe that 27+, the annihilator of
& in M*, is semi-Chebychev in M*. This would imply that any continuous linear
functional on &/ has a unique Hahn—Banach extension to M. Unfortunately this is
not the case for our natural candidates.
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PROPOSITION 8. Let & be a unital C*-algebra and of = M a unital subalgebra.
Then the following are equivalent :

(i) &+ is Chebychev,

(1) o +* is norm dense in 8.

Proof. Since &+ is w*-closed and #* is a dual space, it follows that of* is
proximinal. Notice that #* is the predual of the von Neumann algebra #**. We are
going to use Theorem 1 for &7+ and &/*+. Notice also that & is w*-dense in &7**.

(i) = (ii) If o/ +2* is not norm dense in & we can find fe #*\{0} such that
fedt n (£*)*. Since f*est n (L*) we can assume that f=f*. The proof
follows from Theorem 1 by noticing that 1e.s/*+, 1f is hermitian and 1*1f = f.

(ii))= (i) If o/* is not semi-Chebychev in #* we can find he &/ *\{0} and be £+,
6]l = 1 such that bh is hermitian and b*bh = h. It is easy to see that bhe o+, Since
bh is hermitian it follows that bhe .o/* n (o7*)*.

REMARK. Itis well known that nest algebras in B(H) do not satisfy condition (ii).
This implies that biduals of nest algebras are not nest subalgebras of the von
Neumann algebra B(H)** and also provides an example of a Chebychev subspace
X < Y such that X** is not Chebychev in Y**.

In contrast, if # is an AF-algebra and o/ is a strongly maximal triangular
subalgebra of &, then &/ satisfies (ii) (see [12]). Hence, &/* is Chebychev in #*. As
an immediate corollary we obtain the following.

COROLLARY 9. Let &/ be a strongly maximal triangular subalgebra of the
AF-algebra . Then the Hahn—-Banach extensions on &/ to & are unique.

Proposition 8 and the analogue of Corollary 9 apply also for # = C(T'), the space
of continuous functions and on the unit circle, and &/ = A, the disk algebra.

5. Semi-Chebychev subspaces of the trace class operators

In this section we study some of the natural semi-Chebychev subspaces of the
trace class operators. We start with the weak*-closed n-codimensional subspaces.

PROPOSITION 10. Let G < ¢, be a weak*-closed, n-codimensional subspace. Let
G* =[R,,...,R,) = K(H).

Then the following are equivalent.
(i) G is Chebychev.
(i) Whenever ReG*, |R| =1, R= ) ,a(R) ¢, ® w, (with (¢,),(w,) orthonormal)
we have
(a) m =max{i:a(R) =1} <n,
(b) rank[(R¢,, R, Bi-n.... mi=1,...,n — M

Proof. (i)=(ii) Suppose that ReG*, |R|| =1, R =) ,a(R) $, ® y,, where (¢,),
(w,) are orthonormal, and let m = max {i: a,(R) = 1}. If R fails (a), that is, if m > n,
consider the system of linear equations

n+1

Zat(Rj¢t’W()=0’ j'_"‘la"'sn'

t=1



496 ALVARO ARIAS AND VANIA MASCIONI

Clearly, there is a non-trivial solution («,,...,,,,). Define

n+l

A= Z“{V/¢®¢c

i=1
and note that 4eG\{0}. Further, R is isometric on A(H) < [¢,,...,¢,.,] (since
m>n) and RA=) 0y, ®y, is selfadjoint. By Theorem 1, G is not semi-
Chebychev.
If R fails (b) but not (a), the system

Za((R¢(9R1¢‘)=O, j=1,...,n
{=1

has a non-trivial solution (a,,...,a,,). In this case 4 = Y, &, ¥, ® ¢, will do the trick
as above.

(ii) = (i) Since G is weak*-closed, if G is assumed to be not Chebycheyv, it is not
even semi-Chebychev, and so Theorem 1 states that there are 4 € G\{0}, Re G* such
that ||R|| = 1, R is isometric on the range of A and RA is selfadjoint. So, if rank
A > n,wemusthavem = max {i: a(R) = 1} > nand Rfails (a). Ifrank 4 =k <m < n,
let

k [
A=‘X;°%%®¢a R=‘Zlat(R)¢t®Wi

with some orthonormal sequences (¢,), (v,), and consider that since the system

k
th,(R¢,,Rj¢‘)=0, j=1,,..,n
i=1

has the non-trivial solution (a,, ..., ®,), R must fail (b).

REMARK. It is interesting to note the analogy between Proposition 10 and the
similar statement for I, (see [10, IIL.2.11]): let G =/, be weak*-closed and n-
codimensional; that is, G* = [B,,...,8,] and ;e c,. Then G is Chebychev if and only
if for any fe G* such that f(k) = ||| for some k we have

m = card {k: (k) = |Bl} <n
and, if {k,,...,k,} is the set of coordinates where £ attains its norm,

rank [B,(k))-,

We have also some results about the finite dimensional subspaces.

= m.

ProposiTiON 11.  If G < ¢, and G is not semi-Chebychev, then it contains a non-
zero operator A such that Y e,a(A) =0 for an appropriate choice of ¢,e{—1,1}.
Further, if G is one-dimensional, the converse holds, too.

Proof. If G is not semi-Chebychev we can find UeG*, |U| =1 and 4eG\{0}
such that UA is selfadjoint and U is an isometry on the range of 4. We see that, since

A= Z}‘t¢t®'//t
t

with (@,), (w,) orthonormal (we keep the same notation), then a,(4) = |4, for all i and
s0, defining ¢, = sign 4,, we get

Yea(d)=Y A =ttUA=0.
i i
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If G is one-dimensional, let (¢,) be such that e,e{—1,1} foralliand }_,¢,a,(4) =0
for some A€G. Let 4 = ), a,(4) ¢, ® v, for some orthonormal sequences (g,), (w,),
and define U by Uy, = ¢,¢,. We see that Ue G*, | U|| = 1, U is isometric on the range
of 4 and UA is selfadjoint. By Theorem 1, G is not semi-Chebychev.

In [6], Kahane studied the approximation properties of the following subspaces of
LXT). f A< Zlet L\(T) ={feL':fin) =0 if n¢ A}. If A = Z* then L} = H. He
proved that L} is semi-Chebychev if and only if A= (2p—1)Z or A= (2p—-1)Z*,
where pe Z.

The analogue of these examples in ¢, are the »-diagrams.

Let (e),., be a fixed orthonormal basis of H, and let A < Ix I. By the *-diagram
induced by A we mean the class of all operators T in ¢, which have no component
outside A ; that is, such that (1, k) ¢ A implies that (e, Te,) = 0. Since »-diagrams are
clearly weak*-closed subspaces of ¢, they are proximinal [10, 1.2.5]. In [1] it has been
shown that the converse of Corollary 2 holds for *-diagrams; that is, a *-diagram G
is Chebychev if and only if G*G does not contain non-zero self-adjoint elements.
Actually, it was asked whether this is true in arbitrary weak*-closed subspaces of ¢,.
In this section we answer that question in the negative and show that the Chebychev
x-diagrams are in some sense triangular. This explains why the result is true for them,
keeping in mind the fact that 7} (the subspaces of the operators having an upper
triangular matrix) is Chebychev in ¢, (see [1]).

COUNTEREXAMPLE. Fix 1 # kel and let

G ={Tec,:(e,Te)+4e, Te,) = 0}.

Then G is Chebychev and GG contains a non-zero selfadjoint operator.

To see this note first that G* = [U] for U = ¢, ® e, + 3¢, ® e,. Since
a,(U) = % <a(U) =1,

Proposition 10 easily implies that G is Chebychev. On the other hand, taking
A=eR®e—2 ® e, we have 4€G\{0} and UA is clearly selfadjoint.

We now prove that the Chebychev *-diagrams are ‘triangular’.

THEOREM 12. Let H have the orthonormal basis (e),.; (I a totally ordered set)
and let % < ¢,(H) be a Chebychev x-diagram. We can find D, D, totally ordered sets,
having the same cardinality as I and unitaries U:1,(D) — H, V:H — I,(D) such that
G =V%Uc ¢,(l(D), 12(5)) is a =-diagram which is ‘triangular’ with respect to the
natural bases of (D) and 12(D~); that is, if we have a zero at (d,d) then we have a zero
at (d',d) for all d’ < d and at (d,d’) for all &’ > d; and if we have a * at (d,d), then
we have a * at (d’,d) for d’ > d and at (d,d") for d’ < d.

The proof depends on the following lemma that appears in [1].

*

LEMMA 13. The =-diagram 4 = (0

(:) is not Chebychev.
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As remarked in [1], note that Lemma 13 can easily be generalised. If we have a
general *-diagram such that, for some rows 1, # 1, and columns x, # k, we have a *
both at (1,,x,) and at (1,,x,), and a zero both at (i, k,) and at (z,,x,), then ¥ is not
Chebychev.

Proof of Theorem 12. Let ¥ be a Chebychev *-diagram. Define new order
relations <,, <, between the ‘rows’ and ‘columns’ of ¢ in the following way:

rowy <, rowi,

if, whenever we have a zero at (1,,x) in ¢, we have a zero at (1,,x) in 4. Proceed
similarly with the columns to define <,. It follows from the remark after Lemma 13
that any two rows or columns of ¢ are comparable (otherwise we could reproduce the
pattern of Lemma 13) and so D = (J, <,) and D = (I, <,) are totally ordered sets
having the same cardinality as I. The isometries U:/,(D)— H and V:H —»lg(ﬁ)
defined by the ‘identities’ D — 17 and /— D can be regarded as an operation of
changing rows and columns in the ‘matrix’ of 4. It is now just a matter of time to
verify that the ‘matrix’ of V€U c ¢,(I,(D), I,(D)) is triangular in the sense described
above.
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