BEST APPROXIMATIONS IN PREDUALS OF VON NEUMANN ALGEBRAS

ALVARO ARIAS AND VANIA MASCIONI

ABSTRACT

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras. As an application it generalises the theorem of Doob, that says that H_0^1 has unique best approximations in $L_1(T)$, to a large class of preannihilators of natural non-selfadjoint operator algebras including the nest algebras. Then it studies the semi-Chebychev subspaces of the trace class operators and shows that the only Chebychev *-diagrams are 'triangular'.

1. *Introduction*

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras; in particular, those of the trace class operators.

As an application of this, we generalise the Theorem of Doob [3] that says that H_0^1 has unique best approximations in $L^1(T)$, to a large class of preannihilators of natural 'triangular' algebras; for example, nest algebras.

In the final section we characterise the finite codimensional weak*-closed subspaces of the trace class operators and clarify the situation for the special case of •-diagrams.

The authors want to thank Professor D. Larson and Professor J. Ward for useful discussions.

2. Preliminaries

In this paper *H* denotes a Hilbert space, and $c₁(H)$ the trace class operators; that is, those $T \in B(H)$ for which $||T||_1 = \text{tr}(|T|) < \infty$. We identify $B(H)$ with c^* under the trace duality; that is, for $T \in c_1$ and $S \in B(H)$, $\langle T, S \rangle = \text{tr}(TS)$. We also use the fact that every compact operator has a Schauder decomposition $T = \sum_i a_i(T) \phi_i \otimes \psi_i$ where $\phi \otimes \psi$ is the rank-1 operator sending *h* to $(\phi, h)\psi$ and the $a_t(T)$ are the singular numbers of *T*. Moreover, if $T \in c_1$ then $\|T\|_1 = \sum_i a_i(T)$ (see [9]).

Let *M* be a von Neumann algebra, and M_* the unique isometric predual (see [11]). If $f \in M_*$ and $b \in M$ then $bf \in M_*$, $fb \in M_*$ and $f^* \in M_*$, where these are defined by

$$
bf(x) = f(xb),
$$
 $fb(x) = f(bx),$ $f^*(x) = f(x^*).$

Now $f \in M^*$ is positive if for every $x \in M$, $f(x^*x) \ge 0$. We shall use the fact that $f \ge 0$ if and only if $f(1) = ||f||$. We say that $f \in M_*$, is hermitian if $f^* = f$. There is also a polar decomposition in M_{\star} . If $f \in M_{\star}$ we can find $u \in M$, a partial isometry, such that $uf = |f|$. For more information on von Neumann algebras see [11].

Received 18 July 1990.

1991 *Mathematics Subject Classification* 41A52.

The first author was supported in part by NSF DMS-87 03815; the second author was supported by the Swiss National Research Foundation.

J. London Math. Soc. (2) 46 (1992) 491-^98

Let X be a Banach space and $G \subset X$ a closed subspace. Then G is proximinal in X if every $x \in X$ has a best approximant from G; that is, there exists $y \in G$ such that $||x-y|| = d(x, G)$. Now G is semi-Chebychev if every $x \in X$ has at most one best approximant; and G is Chebychev if every $x \in X$ has a unique one. A fundamental reference concerning best approximations is Singer's book [10].

3. *The main result*

In this section we characterise the semi-Chebychev subspaces of the preduals of von Neumann algebras; in particular, those of the trace class operators, c_1 .

If $G \subset M_*$ we let

 $G^{\perp} = \{b \in M : b(h) = 0 \text{ for every } h \in G\}$

and $G^{\perp}G = \{bh : b \in G^{\perp} \text{ and } h \in G\}$. Notice that $G^{\perp}G \subset M_*$.

THEOREM 1. Let M be a unital von Neumann algebra and $G \subset M_*$. Then G is not *semi-Chebychev if and only if there exist* $h \in G$ *,* $h \neq 0$ *and* $b \in G^{\perp}$ *,* $||b|| = 1$ *satisfying*

(i) *bh is hermitian,*

(ii) $b^*bh = h$.

REMARK. Notice that if $M = B(H)$, condition (ii) is equivalent to *b* is an isometry on the range of *h.*

As an immediate application of Theorem 1 we obtain the following.

COROLLARY 2. Let $G \subset M_*$ such that $G^{\perp}G$ contains no non-zero hermitian *element; then G is semi-Chebychev.*

Corollary 2 was proved in $[1]$ for c_1 and was used to show that the noncommutative H^1 -spaces in c_1 (for example, the set of upper triangular elements of c_1) are Chebychev, just as in the commutative case [6]. (See Section 4 for further discussion).

The proof of Theorem 1 depends on a generalisation of the following easy and well-known lemma to the von Neumann algebra setting.

LEMMA 3. If $T \in c_1$, $B \in B(H)$ are such that $\|B\| = 1$ and $tr(BT) = \|T\|$, then $BT=|T|$ and $B^*|T|=T$.

For the next lemma we assume that $M \subset B(H)$ for some Hilbert space *H*.

LEMMA 4. Let M be a von Neumann algebra and let $f \in M_*$, $b \in M$, $\|b\| = 1$ be such *that bf* ≥ 0 *and* $\|bf\| = \|f\|$. *Then we have that bf* = $|f|$ *and* $f = b^*|f|$.

Proof. It follows from [2, Theorem 12.2.5] that $bf = |f|$.

Find $T \in c_1$ such that for every $x \in M$, $f(x) = \text{tr}(Tx)$ and $||T||_1 = ||f||$. Since $tr(bT) = \|T\|_1$ and $||b|| = 1$, Lemma 3 gives us that $bT = |T|$ and $b^*|T| = T$, or $b^*bT = T$. Clearly, $b^*bf = f$.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Assume that *G* is not semi-Chebychev. Then we can find *, h* \in *G*, *h* \neq 0 and *b* \in *G*^{\perp}, $\|b\|$ = 1 such that

$$
||f|| = d(f, G) = ||f + h||,
$$

and $f(b) = ||f|| = ||f+h|| = (f+h)(b).$

Since $||bf|| \le ||f|| = f(b) = bf(1) \le ||bf||$ we have that $bf \ge 0$ and $||bf|| = ||f||$. By Lemma 4, this implies that $bf = |f|$ and $b^*|f| = f$. Similarly, $b(f+h) = |f+h|$ and b^* $f+h$ = $f+h$.

Hence,

$$
bh = b(f+h) - bf = |f+h| - |f|
$$

is clearly hermitian and

$$
b^*bh = b^*|f+h| - b^*|f| = f + h - f = h.
$$

Conversely, let us assume that $h \in G$, $h \neq 0$, $b \in G^{\perp}$, $\|b\| = 1$ are such that *bh* is hermitian and $b^*bh = h$.

Find $u \in M$, $\|u\| = 1$ such that $|bh| = u(bh)$. Since *bh* is hermitian, we have $|bh| = (bh)u^*$. Let $f = b^*|bh|$.

Claim: $|| f || = d(f, G) = || f + h||.$

Since $h \neq 0$ this clearly implies that G is not semi-Chebychev. We will now check the first equality of the claim.

Clearly $||f|| \le ||bh||$; on the other hand

$$
f(b) = bf(1) = bb^*|bh|(1) = bb^*bhu^*(1) = bhu^*(1) = |bh|(1) = ||bh||.
$$

Since $b \in G^{\perp}$ and $||b|| = 1$, we have that $||f|| = d(f, G)$.

For the other equality notice that

$$
f + h = b^*|bh| + b^*bh = b^*[|bh| + bh].
$$

Since *bh* is hermitian, we have that

$$
|bh| + bh \geq 0
$$

and

$$
||\,|bh| + bh|| = (|bh| + bh)(1) = |bh|(1) = ||bh||.
$$

Hence, $\|f+h\| \leq \|bh\|$. On the other hand,

$$
(f+h)(b) = f(b) + h(b) = f(b) = ||f|| = ||bh||
$$

Therefore, $||f+h|| = ||f||$.

REMARK. According to [8], a subspace *Y* of a Banach space *X* has property if any $y^* \in Y^*$ has a unique Hahn-Banach extension in X^* . Phelps proved that *Y* has (*W*) if and only if Y^{\perp} is semi-Chebychev in X^* . It follows that Theorem 1 can be used to study this property when M_{\star} is a dual space. It is also clear that the result can be used to find unique weak* Hahn-Banach extensions of weak*-continuous functionals on *M* whenever they exist. This happens when the preannihilator is proximinal.

4. PREANNIHILATORS OF SUBALGEBRAS

Doob [3] proved that H_0^1 is a semi-Chebychev subspace of $L^1(T)$. In this section we shall show that this property is shared by a large class of preannihilators of natural non-selfadjoint subalgebras of *M,* including the analytic algebras (see [7]), in particular, nest algebras and nest subalgebras of von Neumann algebras.

For $\mathscr{A} \subset M$ let $\mathscr{A}^* = \{x^* : x \in \mathscr{A}\}\)$, where * means the adjoint operation in *M*; and let $\mathscr{A}_{\perp} = \{f \in M_{\star} : f_{\perp \mathscr{A}} = 0\}$ be the preannihilator.

PROPOSITION 5. Let M be a von Neumann algebra and $\mathscr{A} \subset M$ a weak*-closed *unital subalgebra of M. Then the following are equivalent:*

- (i) \mathcal{A}_1 is semi-Chebychev;
- (ii) \mathcal{A}_1 contains no non-zero hermitian element;
- (iii) $\mathscr{A} + \mathscr{A}^*$ is w^{*}-dense in M.

Proof. (i) \Leftrightarrow (ii) It is easy to check that since $\mathscr A$ is a unital algebra it follows that $\mathscr{A}A_{\perp} = \mathscr{A}_{\perp}$. Hence, the equivalence of (i) and (ii) follows directly from Theorem 1.

(ii) \Rightarrow (iii) If $\mathscr{A} + \mathscr{A}^*$ is not w^{*}-dense then there exists a non-zero $f \in \mathscr{A}_1 \cap (\mathscr{A}^*)_1$. Clearly, $f^* \in \mathscr{A}_\perp \cap (\mathscr{A}^*)_x$ as well. Therefore, $f \pm f^* \in \mathscr{A}_\perp$ and one of them is non-zero.

(iii) \Rightarrow (ii) Let $f \in \mathscr{A}$, be such that $f = f^*$. It is clear that $f \in (\mathscr{A}^*)$. Since $\mathscr{A} + \mathscr{A}^*$ is w^* -dense, we have that $f = 0$.

REMARK. Notice that Proposition 5 is interesting only in the non-selfadjoint case. If $\mathcal{A} = \mathcal{A}^*$ then \mathcal{A}_1 is semi-Chebychev if and only if $\mathcal{A} = M$.

There are many natural examples where Proposition 5 applies. For instance, since $H_0^1 = H_1^{\infty}$ and $H^{\infty} + \overline{H^{\infty}}$ is w*-dense in the von Neumann algebra $L^{\infty}(T)$ we get the following.

COROLLARY 6 (Doob [3]). H_0^1 is semi-Chebychev in $L^1(T)$.

Other important examples are the nest algebras. By a nest of projections in *H* we mean any linearly ordered set *&* of orthogonal projections which is closed in the strong operator topology and contains 0 and *I*. The nest algebra induced by $\mathscr P$ is the set of all operators $T \in B(H)$ that leave invariant every element of \mathcal{P} ; that is,

$$
Alg \mathscr{P} = \{T \in B(H) : (I - P) T P = 0 \text{ for every } P \in \mathscr{P}\}.
$$

It is well known that $\text{Alg}\mathscr{P} + (\text{Alg}\mathscr{P})^*$ is w^* -dense in $B(H)$. Hence, we recover the result from [1].

COROLLARY 7 [1]. $(Alg \mathscr{P})_1$ is semi-Chebychev in c_1 .

This result is true for a more general type of nest algebras. If $\mathcal{P} \subset M$ one defines $\mathcal{A} = \text{Alg}\mathcal{P}\bigcap M$. Nest subalgebras of von Neumann algebras have been studied by Gilfeather and Larson [4] and it is known that $\mathscr{A} + \mathscr{A}^*$ is w^* -dense in *M* (see [7] or [5]). Hence, the proposition applies.

And finally, if $S \in B(H)$ let $M = \{S\}^n$ be the von Neumann algebra generated by S. Let w^*

$$
\mathscr{A}_S = \overline{\{p(S) : p \text{ is a polynomial}\}}^{\omega}.
$$

It is easy to see that \mathcal{A}_s satisfies property (iii).

Since \mathscr{A}_\perp is semi-Chebychev in M_* one could believe that \mathscr{A}^\perp , the annihilator of *si* in *M*,* is semi-Chebychev in *M*.* This would imply that any continuous linear functional on *si* has a unique Hahn-Banach extension to *M.* Unfortunately this is not the case for our natural candidates.

PROPOSITION 8. Let \mathcal{B} be a unital C^{*}-algebra and $\mathcal{A} \subseteq M$ a unital subalgebra. *Then the following are equivalent:*

(i) \mathscr{A}^{\perp} is Chebychev;

(ii) $\mathscr{A} + \mathscr{A}^*$ is norm dense in \mathscr{B} .

Proof. Since \mathscr{A}^{\perp} is w*-closed and \mathscr{B}^{*} is a dual space, it follows that \mathscr{A}^{\perp} is proximinal. Notice that \mathscr{B}^* is the predual of the von Neumann algebra \mathscr{B}^{**} . We are going to use Theorem 1 for \mathscr{A}^{\perp} and $\mathscr{A}^{\perp\perp}$. Notice also that \mathscr{A} is w^* -dense in $\mathscr{A}^{\perp\perp}$.

(i) \Rightarrow (ii) If $\mathscr{A} + \mathscr{A}^*$ is not norm dense in \mathscr{B} we can find $f \in \mathscr{B}^*\setminus\{0\}$ such that $f \in \mathscr{A}^\perp \cap (\mathscr{A}^*)^\perp$. Since $f^* \in \mathscr{A}^\perp \cap (\mathscr{A}^*)^\perp$ we can assume that $f = f^*$. The proof follows from Theorem 1 by noticing that $1 \in \mathcal{A}^{\perp\perp}$, 1*f* is hermitian and $1^*1f = f$.

(ii) \Rightarrow (i) If \mathscr{A}^{\perp} is not semi-Chebychev in \mathscr{B}^* we can find $h \in \mathscr{A}^{\perp} \setminus \{0\}$ and $b \in \mathscr{A}^{\perp \perp}$, $\|b\| = 1$ such that *bh* is hermitian and $b^*bh = h$. It is easy to see that $bh \in \mathcal{A}^{\perp}$. Since *bh* is hermitian it follows that $bh \in \mathcal{A}^{\perp} \cap (\mathcal{A}^*)^{\perp}$.

REMARK. It is well known that nest algebras in *B(H)* do not satisfy condition (ii). This implies that biduals of nest algebras are not nest subalgebras of the von Neumann algebra *B{H)*** and also provides an example of a Chebychev subspace $X \subset Y$ such that X^{**} is not Chebychev in Y^{**} .

In contrast, if $\mathscr B$ is an AF-algebra and $\mathscr A$ is a strongly maximal triangular subalgebra of \mathscr{B} , then \mathscr{A} satisfies (ii) (see [12]). Hence, \mathscr{A}^{\perp} is Chebychev in \mathscr{B}^* . As an immediate corollary we obtain the following.

COROLLARY 9. Let $\mathcal A$ be a strongly maximal triangular subalgebra of the *AF-algebra 3b. Then the Hahn-Banach extensions on s\$ to 3b are unique.*

Proposition 8 and the analogue of Corollary 9 apply also for $\mathcal{B} = C(T)$, the space of continuous functions and on the unit circle, and $\mathcal{A} = A$, the disk algebra.

5. *Semi-Chebychev subspaces of the trace class operators*

In this section we study some of the natural semi-Chebychev subspaces of the trace class operators. We start with the weak*-closed n -codimensional subspaces.

PROPOSITION 10. Let $G \subset c_1$ be a weak*-closed, n-codimensional subspace. Let

$$
G^{\perp} = [R_1, \ldots, R_n] \subset K(H).
$$

Then the following are equivalent.

- (i) *G is Chebychev.*
- (ii) Whenever $R \in G^{\perp}$, $\|R\| = 1$, $R = \sum_{i} a_{i}(R)\phi_{i} \otimes \psi_{i}$ (with (ϕ_{i}) *,* (ψ_{i} *) orthonormal*) *we have*
	- (a) $m = \max\{i : a_i(R) = 1\} \le n$,
	- (b) rank $[(R\phi_i, R, \phi_i)]_{i=1,...,m,j=1,...,n} = m$.

Proof. (i) \Rightarrow (ii) Suppose that $R \in G^{\perp}$, $\|R\| = 1$, $R = \sum_i a_i(R) \phi_i \otimes \psi_i$, where (ϕ_i) , (ψ_i) are orthonormal, and let $m = \max\{i: a_i(R) = 1\}$. If R fails (a), that is, if $m > n$, consider the system of linear equations

$$
\sum_{i=1}^{n+1} \alpha_i (R_j \phi_i, \psi_i) = 0, \qquad j = 1, \ldots, n.
$$

Clearly, there is a non-trivial solution $(\alpha_1, \ldots, \alpha_{n+1})$. Define

$$
A \equiv \sum_{i=1}^{n+1} \alpha_i \psi_i \otimes \phi_i
$$

and note that $A \in G \setminus \{0\}$. Further, R is isometric on $A(H) \subset [\phi_1, \ldots, \phi_{n+1}]$ (since $m > n$) and $RA = \sum_i \alpha_i \psi_i \otimes \psi_i$ is selfadjoint. By Theorem 1, G is not semi-Chebychev.

If *R* fails (b) but not (a), the system

$$
\sum_{i=1}^{m} \alpha_i (R\phi_i, R_j\phi_i) = 0, \qquad j = 1, \ldots, n
$$

has a non-trivial solution $(\alpha_1,\ldots,\alpha_m)$. In this case $A = \sum_i \alpha_i \psi_i \otimes \phi_i$ will do the trick as above.

 $(ii) \Rightarrow (i)$ Since *G* is weak*-closed, if *G* is assumed to be not Chebychev, it is not even semi-Chebychev, and so Theorem 1 states that there are $A \in G \setminus \{0\}$, $R \in G^{\perp}$ such that $\|R\| = 1$, R is isometric on the range of A and RA is selfadjoint. So, if rank $A > n$, we must have $m \equiv \max\{i : a_i(R) = 1\} > n$ and R fails (a). If rank $A = k \le m \le n$, let

$$
A = \sum_{i=1}^{k} \alpha_i \psi_i \otimes \phi_i, \qquad R = \sum_{i=1}^{\infty} a_i(R) \phi_i \otimes \psi_i
$$

with some orthonormal sequences $(\phi_i), (\psi_i)$, and consider that since the system

$$
\sum_{i=1}^k \alpha_i (R\phi_i, R_j\phi_i) = 0, \qquad j = 1, \dots, n
$$

has the non-trivial solution $(\alpha_1, \ldots, \alpha_k)$, *R* must fail (b).

REMARK. It is interesting to note the analogy between Proposition 10 and the similar statement for l_1 (see [10, III.2.11]): let $G \subset l_1$ be weak*-closed and *n*codimensional; that is, $G^{\perp} = [\beta_1, ..., \beta_n]$ and $\beta_i \in c_0$. Then *G* is Chebychev if and only if for any $\beta \in G^{\perp}$ such that $\beta(k) = ||\beta||$ for some k we have

$$
m \equiv \text{card}\left\{k : |\beta(k)| = \|\beta\|\right\} \leq n
$$

and, if $\{k_1, \ldots, k_m\}$ is the set of coordinates where β attains its norm,

$$
\operatorname{rank} \left[\beta_j(k_i)\right]_{i=1,\ldots,m} = m.
$$

We have also some results about the finite dimensional subspaces.

PROPOSITION 11. If $G \subset c_1$ and G is not semi-Chebychev, then it contains a non*zero operator A such that* $\sum_i \varepsilon_i a_i(A) = 0$ *for an appropriate choice of* $\varepsilon_i \in \{-1,1\}$. *Further, if G is one-dimensional, the converse holds, too.*

Proof. If *G* is not semi-Chebychev we can find $U \in G^{\perp}$, $||U|| = 1$ and $A \in G\setminus\{0\}$ such that UA is selfadjoint and U is an isometry on the range of A. We see that, since

$$
A=\sum_i\lambda_i\phi_i\otimes\psi_i
$$

with (ϕ_i) , (ψ_i) orthonormal (we keep the same notation), then $a_i(A) = |\lambda_i|$ for all *i* and so, defining $\varepsilon_i \equiv \text{sign} \lambda_i$, we get

$$
\sum_i \varepsilon_i a_i(A) = \sum_i \lambda_i = \text{tr } UA = 0.
$$

If G is one-dimensional, let (ε_i) be such that $\varepsilon_i \in \{-1,1\}$ for all i and $\sum_i \varepsilon_i a_i(A) = 0$ for some $A \in G$. Let $A = \sum_i a_i(A) \phi_i \otimes \psi_i$ for some orthonormal sequences $(\phi_i), (\psi_i),$ and define U by $U\psi_i \equiv \varepsilon_i \phi_i$. We see that $U \in G^{\perp}$, $\|U\|=1, U$ is isometric on the range of *A* and *UA* is selfadjoint. By Theorem 1, *G* is not semi-Chebychev.

In [6], Kahane studied the approximation properties of the following subspaces of $L^1(T)$. If $\Lambda \subseteq Z$ let $L^1_{\Lambda}(T) = {f \in L^1 : \hat{f}(n) = 0$ if $n \notin \Lambda}$. If $\Lambda = Z^+$ then $L^1_{\Lambda} = H^1_0$. He proved that L^1_Λ is semi-Chebychev if and only if $\Lambda = (2p-1)Z$ or $\Lambda = (2p-1)Z^+$, where *peZ.*

The analogue of these examples in c_1 are the \ast -diagrams.

Let $(e_{i})_{i \in I}$ be a fixed orthonormal basis of *H*, and let $\Lambda \subset I \times I$. By the *-diagram induced by Λ we mean the class of all operators T in c_1 which have no component outside Λ ; that is, such that $(i, \kappa) \notin \Lambda$ implies that $(e_i, Te_{\kappa}) = 0$. Since *-diagrams are clearly weak^{*}-closed subspaces of $c₁$, they are proximinal [10, I.2.5]. In [1] it has been shown that the converse of Corollary 2 holds for *-diagrams; that is, *a *-diagram G is Chebychev if and only if GL G does not contain non-zero self-adjoint elements.* Actually, it was asked whether this is true in arbitrary weak*-closed subspaces of c_1 . In this section we answer that question in the negative and show that the Chebychev •-diagrams are in some sense triangular. This explains why the result is true for them, keeping in mind the fact that T_1 (the subspaces of the operators having an upper triangular matrix) is Chebychev in c_1 (see [1]).

COUNTEREXAMPLE. Fix $i \neq k \in I$ and let

 $G \equiv \{Te_{c_1}: (e_n Te_n) + \frac{1}{2}(e_n Te_n) = 0\}.$

Then G is Chebychev and $G^{\perp}G$ contains a non-zero selfadjoint operator.

To see this note first that $G^{\perp} = [U]$ for $U = e_i \otimes e_i + \frac{1}{2}e_k \otimes e_k$. Since $a_2(U) = \frac{1}{2} < a_1(U) = 1$,

Proposition 10 easily implies that *G* is Chebychev. On the other hand, taking $A = e_i \otimes e_i - 2e_k \otimes e_k$, we have $A \in G \setminus \{0\}$ and UA is clearly selfadjoint.

We now prove that the Chebychev *-diagrams are 'triangular'.

THEOREM 12. Let H have the orthonormal basis $(e_i)_{i \in I}$ (I a totally ordered set) *and let* $\mathscr{G} \subset c_1(H)$ *be a Chebychev *-diagram. We can find D, D, totally ordered sets, having the same cardinality as I and unitaries* $U: I_2(D) \to H$, $V: H \to I_2(\tilde{D})$ such that $\mathscr{G} = V \mathscr{G} U \subset c_1(l_2(D), l_2(D))$ is a *-diagram which is 'triangular' with respect to the *natural bases of* $\overline{l}_2(D)$ and $l_2(\overline{D})$; that is, if we have a zero at (d, d) then we have a zero *at* (d', \tilde{d}) for all $d' < d$ and at (d, \tilde{d}') for all $\tilde{d}' > \tilde{d}$; and if we have a * at (d, \tilde{d}) , then *we have a* * at (d', \tilde{d}) for $d' > d$ *and at (d,* \tilde{d}' *) for* $\tilde{d}' < \tilde{d}$ *.*

The proof depends on the following lemma that appears in [1].

LEMMA 13. The *-diagram
$$
\mathscr{G} = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}
$$
 is not Chebychev.

As remarked in [1], note that Lemma 13 can easily be generalised. If we have a general *-diagram such that, for some rows $i_1 \neq i_2$ and columns $\kappa_1 \neq \kappa_2$ we have a * both at (i_1, k_1) and at (i_2, k_2) , and a zero both at (i_1, k_2) and at (i_2, k_1) , then $\mathscr G$ is not Chebychev.

Proof of Theorem 12. Let $\mathcal G$ be a Chebychev *-diagram. Define new order relations $\leq r$, \leq , between the 'rows' and 'columns' of $\mathscr G$ in the following way:

$$
row \, i_1 \leq r \, row \, i_2
$$

if, whenever we have a zero at (t_1, κ) in \mathscr{G} , we have a zero at (t_2, κ) in \mathscr{G} . Proceed similarly with the columns to define \leq . It follows from the remark after Lemma 13 that any two rows or columns of $\mathscr G$ are comparable (otherwise we could reproduce the pattern of Lemma 13) and so $D = (I, \leqslant)$ and $\tilde{D} = (I, \leqslant)$ are totally ordered sets having the same cardinality as *I*. The isometries $U: I_2(D) \to H$ and $V: H \to I_2(\tilde{D})$ defined by the 'identities' $D \rightarrow I$ and $I \rightarrow D$ can be regarded as an operation of changing rows and columns in the 'matrix' of $\mathscr G$. It is now just a matter of time to verify that the 'matrix' of $V\mathscr{G}U \subset c_n(I_n(D), I_n(\tilde{D}))$ is triangular in the sense described above.

References

- 1. A. ARIAS, 'Some properties of non-commutative *H¹* spaces', *Proc. Amer. Math. Soc.* 112 (1991) $465 - 472$
- 2. J. DIXMIER, *Les C*-algebres et leurs representations* (Gauthier-Villars, Paris, 1969).
- 3. J. L. DOOB, 'A minimum problem in the theory of analytic functions', *Duke Math. J.* 8 (1941) 413-424.
- 4. F. GILFEATHER and D. LARSON, 'Nest-subalgebras of von Neumann algebras', *Adv. in Math.* 46 (1982) 171-199.
- 5. F. GILFEATHER and D. LARSON, 'Structure in reflexive subspace lattice', /. *London Math. Soc.* (2) 26 (1982) 117-131.
- 6. J. P. KAHANE, 'Best approximations in $L^1(T)$ ', *Bull. Amer. Math. Soc.* 80 (1974) 788-804.
- 7. R. I. LOEBL and P. S. MUHLY, 'Analycity and flows in von Neumann algebras', /. *Fund. Anal.* 31 (1979) 275-292.
- 8. R. R. PHELPS, 'Uniqueness of Hahn-Banach extensions and unique best approximation', *Trans. Amer. Math. Soc.* 95 (1960) 238-255.
- 9. A. PIETSCH, *Eigenvalues and s-numbers* (University Press, Cambridge, 1987).
- 10. I. SINGER, *Best approximation in normed linear spaces by elements of linear subspaces* (Springer, Berlin, 1970).
- 11. M. TAKESAKI, *Theory of operator algebras* I (Springer, New York, 1979).
- 12. B. VENTURA, 'A note on subdiagonality for triangular AF Algebras', *Proc. Amer. Math. Soc.* 110 (1990) 775-780.

Texas A&M University College Station Rämiistraße 74 Texas 77843 CH-9001 Zurich USA Switzerland

Current address:
 Current address: Current address:
 Current address: Current address: Cepartment of Mathematics Department of Mathematics,

Statistics and Computing Science

University of Texas at Austin Statistics and Computing Science University of Texas at San Antonio Austin TX San Antonio TX USA USA

Department of Mathematics

Texas A&M University

University of Zurich

University of Zurich