BEST APPROXIMATIONS IN PREDUALS OF VON NEUMANN ALGEBRAS

ALVARO ARIAS AND VANIA MASCIONI

Abstract

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras. As an application it generalises the theorem of Doob, that says that H_0^1 has unique best approximations in $L_1(T)$, to a large class of preannihilators of natural non-selfadjoint operator algebras including the nest algebras. Then it studies the semi-Chebychev subspaces of the trace class operators and shows that the only Chebychev *-diagrams are 'triangular'.

1. Introduction

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras; in particular, those of the trace class operators.

As an application of this, we generalise the Theorem of Doob [3] that says that H_0^1 has unique best approximations in $L^1(T)$, to a large class of preannihilators of natural 'triangular' algebras; for example, nest algebras.

In the final section we characterise the finite codimensional weak*-closed subspaces of the trace class operators and clarify the situation for the special case of *-diagrams.

The authors want to thank Professor D. Larson and Professor J. Ward for useful discussions.

2. Preliminaries

In this paper H denotes a Hilbert space, and $c_1(H)$ the trace class operators; that is, those $T \in B(H)$ for which $||T||_1 = tr(|T|) < \infty$. We identify B(H) with c_1^* under the trace duality; that is, for $T \in c_1$ and $S \in B(H)$, $\langle T, S \rangle = tr(TS)$. We also use the fact that every compact operator has a Schauder decomposition $T = \sum_i a_i(T) \phi_i \otimes \psi_i$, where $\phi \otimes \psi$ is the rank-1 operator sending h to $(\phi, h) \psi$ and the $a_i(T)$ are the singular numbers of T. Moreover, if $T \in c_1$ then $||T||_1 = \sum_i a_i(T)$ (see [9]).

Let M be a von Neumann algebra, and M_* the unique isometric predual (see [11]). If $f \in M_*$ and $b \in M$ then $bf \in M_*$, $fb \in M_*$ and $f^* \in M_*$, where these are defined by

$$bf(x) = f(xb),$$
 $fb(x) = f(bx),$ $f^*(x) = \overline{f(x^*)}.$

Now $f \in M^*$ is positive if for every $x \in M$, $f(x^*x) \ge 0$. We shall use the fact that $f \ge 0$ if and only if f(1) = ||f||. We say that $f \in M_*$ is hermitian if $f^* = f$. There is also a polar decomposition in M_* . If $f \in M_*$ we can find $u \in M$, a partial isometry, such that uf = |f|. For more information on von Neumann algebras see [11].

Received 18 July 1990.

1991 Mathematics Subject Classification 41A52.

The first author was supported in part by NSF DMS-87 03815; the second author was supported by the Swiss National Research Foundation.

J. London Math. Soc. (2) 46 (1992) 491-498

Let X be a Banach space and $G \subset X$ a closed subspace. Then G is proximinal in X if every $x \in X$ has a best approximant from G; that is, there exists $y \in G$ such that ||x-y|| = d(x, G). Now G is semi-Chebychev if every $x \in X$ has at most one best approximant; and G is Chebychev if every $x \in X$ has a unique one. A fundamental reference concerning best approximations is Singer's book [10].

3. The main result

In this section we characterise the semi-Chebychev subspaces of the preduals of von Neumann algebras; in particular, those of the trace class operators, c_1 .

If $G \subset M_*$ we let

 $G^{\perp} = \{ b \in M : b(h) = 0 \text{ for every } h \in G \}$

and $G^{\perp}G = \{bh: b \in G^{\perp} \text{ and } h \in G\}$. Notice that $G^{\perp}G \subset M_{*}$.

THEOREM 1. Let M be a unital von Neumann algebra and $G \subset M_*$. Then G is not semi-Chebychev if and only if there exist $h \in G$, $h \neq 0$ and $b \in G^{\perp}$, ||b|| = 1 satisfying

(i) bh is hermitian,

(ii) $b^*bh = h$.

REMARK. Notice that if M = B(H), condition (ii) is equivalent to b is an isometry on the range of h.

As an immediate application of Theorem 1 we obtain the following.

COROLLARY 2. Let $G \subset M_*$ such that $G^{\perp}G$ contains no non-zero hermitian element; then G is semi-Chebychev.

Corollary 2 was proved in [1] for c_1 and was used to show that the noncommutative H^1 -spaces in c_1 (for example, the set of upper triangular elements of c_1) are Chebychev, just as in the commutative case [6]. (See Section 4 for further discussion).

The proof of Theorem 1 depends on a generalisation of the following easy and well-known lemma to the von Neumann algebra setting.

LEMMA 3. If $T \in c_1$, $B \in B(H)$ are such that ||B|| = 1 and $\operatorname{tr}(BT) = ||T||_1$ then BT = |T| and $B^*|T| = T$.

For the next lemma we assume that $M \subset B(H)$ for some Hilbert space H.

LEMMA 4. Let M be a von Neumann algebra and let $f \in M_*$, $b \in M$, ||b|| = 1 be such that $bf \ge 0$ and ||bf|| = ||f||. Then we have that bf = |f| and $f = b^*|f|$.

Proof. It follows from [2, Theorem 12.2.5] that bf = |f|.

Find $T \in c_1$ such that for every $x \in M$, $f(x) = \operatorname{tr}(Tx)$ and $||T||_1 = ||f||$. Since $\operatorname{tr}(bT) = ||T||_1$ and ||b|| = 1, Lemma 3 gives us that bT = |T| and $b^*|T| = T$, or $b^*bT = T$. Clearly, $b^*bf = f$.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. Assume that G is not semi-Chebychev. Then we can find $f \in M_*$, $h \in G$, $h \neq 0$ and $b \in G^{\perp}$, ||b|| = 1 such that

$$||f|| = d(f,G) = ||f+h||,$$

and f(b) = ||f|| = ||f+h|| = (f+h)(b).

Since $||bf|| \le ||f|| = f(b) = bf(1) \le ||bf||$ we have that $bf \ge 0$ and ||bf|| = ||f||. By Lemma 4, this implies that bf = |f| and $b^*|f| = f$. Similarly, b(f+h) = |f+h| and $b^*|f+h| = f+h$.

Hence,

$$bh = b(f+h) - bf = |f+h| - |f|$$

is clearly hermitian and

$$b^*bh = b^*|f+h| - b^*|f| = f+h-f = h.$$

Conversely, let us assume that $h \in G$, $h \neq 0$, $b \in G^{\perp}$, ||b|| = 1 are such that bh is hermitian and $b^*bh = h$.

Find $u \in M$, ||u|| = 1 such that |bh| = u(bh). Since bh is hermitian, we have $|bh| = (bh)u^*$. Let $f = b^*|bh|$.

Claim: ||f|| = d(f, G) = ||f+h||.

Since $h \neq 0$ this clearly implies that G is not semi-Chebychev. We will now check the first equality of the claim.

Clearly $||f|| \leq ||bh||$; on the other hand

$$f(b) = bf(1) = bb^*|bh|(1) = bb^*bhu^*(1) = bhu^*(1) = |bh|(1) = ||bh||$$

Since $b \in G^{\perp}$ and ||b|| = 1, we have that ||f|| = d(f, G).

For the other equality notice that

$$f+h = b^*|bh| + b^*bh = b^*[|bh| + bh].$$

Since bh is hermitian, we have that

$$|bh| + bh \ge 0$$

and

$$|| |bh| + bh|| = (|bh| + bh)(1) = |bh|(1) = ||bh||.$$

Hence, $||f+h|| \leq ||bh||$. On the other hand,

$$(f+h)(b) = f(b) + h(b) = f(b) = ||f|| = ||bh||$$

Therefore, ||f+h|| = ||f||.

REMARK. According to [8], a subspace Y of a Banach space X has property (\mathcal{U}) if any $y^* \in Y^*$ has a unique Hahn-Banach extension in X^* . Phelps proved that Y has (\mathcal{U}) if and only if Y^{\perp} is semi-Chebychev in X^* . It follows that Theorem 1 can be used to study this property when M_* is a dual space. It is also clear that the result can be used to find unique weak* Hahn-Banach extensions of weak*-continuous functionals on M whenever they exist. This happens when the preannihilator is proximinal.

4. PREANNIHILATORS OF SUBALGEBRAS

Doob [3] proved that H_0^1 is a semi-Chebychev subspace of $L^1(T)$. In this section we shall show that this property is shared by a large class of preannihilators of natural non-selfadjoint subalgebras of M, including the analytic algebras (see [7]), in particular, nest algebras and nest subalgebras of von Neumann algebras.

For $\mathscr{A} \subset M$ let $\mathscr{A}^* = \{x^* : x \in \mathscr{A}\}$, where * means the adjoint operation in M; and let $\mathscr{A}_{\perp} = \{f \in M_* : f_{|\mathscr{A}|} = 0\}$ be the preannihilator.

PROPOSITION 5. Let M be a von Neumann algebra and $\mathscr{A} \subset M$ a weak*-closed unital subalgebra of M. Then the following are equivalent:

- (i) \mathscr{A}_{\perp} is semi-Chebychev;
- (ii) \mathscr{A}_{\perp} contains no non-zero hermitian element;
- (iii) $\mathscr{A} + \mathscr{A}^*$ is w*-dense in M.

Proof. (i) \Leftrightarrow (ii) It is easy to check that since \mathscr{A} is a unital algebra it follows that $\mathscr{A}_{\bot} = \mathscr{A}_{\bot}$. Hence, the equivalence of (i) and (ii) follows directly from Theorem 1.

(ii) \Rightarrow (iii) If $\mathscr{A} + \mathscr{A}^*$ is not w^* -dense then there exists a non-zero $f \in \mathscr{A}_{\perp} \cap (\mathscr{A}^*)_{\perp}$. Clearly, $f^* \in \mathscr{A}_{\perp} \cap (\mathscr{A}^*)_{\perp}$ as well. Therefore, $f \pm f^* \in \mathscr{A}_{\perp}$ and one of them is non-zero.

(iii) \Rightarrow (ii) Let $f \in \mathscr{A}_{\perp}$ be such that $f = f^*$. It is clear that $f \in (\mathscr{A}^*)_{\perp}$. Since $\mathscr{A} + \mathscr{A}^*$ is w^* -dense, we have that f = 0.

REMARK. Notice that Proposition 5 is interesting only in the non-selfadjoint case. If $\mathscr{A} = \mathscr{A}^*$ then \mathscr{A}_{\perp} is semi-Chebychev if and only if $\mathscr{A} = M$.

There are many natural examples where Proposition 5 applies. For instance, since $H_0^1 = H_{\perp}^{\infty}$ and $H^{\infty} + \overline{H^{\infty}}$ is w*-dense in the von Neumann algebra $L^{\infty}(T)$ we get the following.

COROLLARY 6 (Doob [3]). H_0^1 is semi-Chebychev in $L^1(T)$.

Other important examples are the nest algebras. By a nest of projections in H we mean any linearly ordered set \mathcal{P} of orthogonal projections which is closed in the strong operator topology and contains 0 and I. The nest algebra induced by \mathcal{P} is the set of all operators $T \in B(H)$ that leave invariant every element of \mathcal{P} ; that is,

Alg
$$\mathscr{P} = \{T \in B(H) : (I - P) TP = 0 \text{ for every } P \in \mathscr{P}\}.$$

It is well known that $\operatorname{Alg} \mathscr{P} + (\operatorname{Alg} \mathscr{P})^*$ is w*-dense in B(H). Hence, we recover the result from [1].

COROLLARY 7 [1]. $(Alg \mathcal{P})_{\perp}$ is semi-Chebychev in c_1 .

This result is true for a more general type of nest algebras. If $\mathscr{P} \subset M$ one defines $\mathscr{A} = \operatorname{Alg} \mathscr{P} \bigcap M$. Nest subalgebras of von Neumann algebras have been studied by Gilfeather and Larson [4] and it is known that $\mathscr{A} + \mathscr{A}^*$ is w*-dense in M (see [7] or [5]). Hence, the proposition applies.

And finally, if $S \in B(H)$ let $M = \{S\}^n$ be the von Neumann algebra generated by S. Let

$$\mathscr{A}_{S} = \overline{\{p(S): p \text{ is a polynomial}\}}^{n}$$

It is easy to see that \mathcal{A}_s satisfies property (iii).

Since \mathscr{A}_{\perp} is semi-Chebychev in M_* one could believe that \mathscr{A}^{\perp} , the annihilator of \mathscr{A} in M^* , is semi-Chebychev in M^* . This would imply that any continuous linear functional on \mathscr{A} has a unique Hahn-Banach extension to M. Unfortunately this is not the case for our natural candidates.

PROPOSITION 8. Let \mathscr{B} be a unital C*-algebra and $\mathscr{A} \subseteq M$ a unital subalgebra. Then the following are equivalent:

(i) \mathscr{A}^{\perp} is Chebychev;

(ii) $\mathscr{A} + \mathscr{A}^*$ is norm dense in \mathscr{B} .

Proof. Since \mathscr{A}^{\perp} is w*-closed and \mathscr{B}^* is a dual space, it follows that \mathscr{A}^{\perp} is proximinal. Notice that \mathscr{B}^* is the predual of the von Neumann algebra \mathscr{B}^{**} . We are going to use Theorem 1 for \mathscr{A}^{\perp} and $\mathscr{A}^{\perp \perp}$. Notice also that \mathscr{A} is w*-dense in $\mathscr{A}^{\perp \perp}$.

(i) \Rightarrow (ii) If $\mathscr{A} + \mathscr{A}^*$ is not norm dense in \mathscr{B} we can find $f \in \mathscr{B}^* \setminus \{0\}$ such that $f \in \mathscr{A}^{\perp} \cap (\mathscr{A}^*)^{\perp}$. Since $f^* \in \mathscr{A}^{\perp} \cap (\mathscr{A}^*)^{\perp}$ we can assume that $f = f^*$. The proof follows from Theorem 1 by noticing that $1 \in \mathscr{A}^{\perp \perp}$, lf is hermitian and $1^* 1 f = f$.

(ii) \Rightarrow (i) If \mathscr{A}^{\perp} is not semi-Chebychev in \mathscr{B}^* we can find $h \in \mathscr{A}^{\perp} \setminus \{0\}$ and $b \in \mathscr{A}^{\perp \perp}$, ||b|| = 1 such that bh is hermitian and $b^*bh = h$. It is easy to see that $bh \in \mathscr{A}^{\perp}$. Since bh is hermitian it follows that $bh \in \mathscr{A}^{\perp} \cap (\mathscr{A}^*)^{\perp}$.

REMARK. It is well known that nest algebras in B(H) do not satisfy condition (ii). This implies that biduals of nest algebras are not nest subalgebras of the von Neumann algebra $B(H)^{**}$ and also provides an example of a Chebychev subspace $X \subset Y$ such that X^{**} is not Chebychev in Y^{**} .

In contrast, if \mathscr{B} is an AF-algebra and \mathscr{A} is a strongly maximal triangular subalgebra of \mathscr{B} , then \mathscr{A} satisfies (ii) (see [12]). Hence, \mathscr{A}^{\perp} is Chebychev in \mathscr{B}^* . As an immediate corollary we obtain the following.

COROLLARY 9. Let \mathcal{A} be a strongly maximal triangular subalgebra of the AF-algebra \mathcal{B} . Then the Hahn-Banach extensions on \mathcal{A} to \mathcal{B} are unique.

Proposition 8 and the analogue of Corollary 9 apply also for $\mathscr{B} = C(T)$, the space of continuous functions and on the unit circle, and $\mathscr{A} = A$, the disk algebra.

5. Semi-Chebychev subspaces of the trace class operators

In this section we study some of the natural semi-Chebychev subspaces of the trace class operators. We start with the weak*-closed n-codimensional subspaces.

PROPOSITION 10. Let $G \subset c_1$ be a weak*-closed, n-codimensional subspace. Let

$$G^{\perp} = [R_1, \ldots, R_n] \subset K(H).$$

Then the following are equivalent.

- (i) G is Chebychev.
- (ii) Whenever $R \in G^{\perp}$, ||R|| = 1, $R = \sum_{i} a_{i}(R) \phi_{i} \otimes \psi_{i}$ (with $(\phi_{i}), (\psi_{i})$ orthonormal) we have
 - (a) $m = \max\{i: a_i(R) = 1\} \leq n$,
 - (b) rank $[(R\phi_i, R_j\phi_i)]_{i=1,...,m,j=1,...,n} = m.$

Proof. (i) \Rightarrow (ii) Suppose that $R \in G^{\perp}$, ||R|| = 1, $R = \sum_{i} a_{i}(R) \phi_{i} \otimes \psi_{i}$, where (ϕ_{i}) , (ψ_{i}) are orthonormal, and let $m = \max\{i: a_{i}(R) = 1\}$. If R fails (a), that is, if m > n, consider the system of linear equations

$$\sum_{i=1}^{n+1} \alpha_i(R_j \phi_i, \psi_i) = 0, \qquad j = 1, \ldots, n.$$

Clearly, there is a non-trivial solution $(\alpha_1, \ldots, \alpha_{n+1})$. Define

$$A \equiv \sum_{i=1}^{n+1} \alpha_i \psi_i \otimes \phi_i$$

and note that $A \in G \setminus \{0\}$. Further, R is isometric on $A(H) \subset [\phi_1, \ldots, \phi_{n+1}]$ (since m > n) and $RA = \sum_i \alpha_i \psi_i \otimes \psi_i$ is selfadjoint. By Theorem 1, G is not semi-Chebychev.

If R fails (b) but not (a), the system

$$\sum_{i=1}^{m} \alpha_i (R\phi_i, R_j \phi_i) = 0, \qquad j = 1, \dots, n$$

has a non-trivial solution $(\alpha_1, ..., \alpha_m)$. In this case $A = \sum_i \alpha_i \psi_i \otimes \phi_i$ will do the trick as above.

(ii) \Rightarrow (i) Since G is weak*-closed, if G is assumed to be not Chebychev, it is not even semi-Chebychev, and so Theorem 1 states that there are $A \in G \setminus \{0\}$, $R \in G^{\perp}$ such that ||R|| = 1, R is isometric on the range of A and RA is selfadjoint. So, if rank A > n, we must have $m \equiv \max\{i: a_i(R) = 1\} > n$ and R fails (a). If rank $A = k \leq m \leq n$, let

$$A = \sum_{i=1}^{k} \alpha_{i} \psi_{i} \otimes \phi_{i}, \qquad R = \sum_{i=1}^{\infty} a_{i}(R) \phi_{i} \otimes \psi_{i}$$

with some orthonormal sequences $(\phi_i), (\psi_i)$, and consider that since the system

$$\sum_{i=1}^{k} \alpha_i(R\phi_i, R_j\phi_i) = 0, \qquad j = 1, \dots, n$$

has the non-trivial solution $(\alpha_1, \ldots, \alpha_k)$, R must fail (b).

REMARK. It is interesting to note the analogy between Proposition 10 and the similar statement for l_1 (see [10, III.2.11]): let $G \subset l_1$ be weak*-closed and *n*-codimensional; that is, $G^{\perp} = [\beta_1, \ldots, \beta_n]$ and $\beta_i \in c_0$. Then G is Chebychev if and only if for any $\beta \in G^{\perp}$ such that $\beta(k) = \|\beta\|$ for some k we have

$$m \equiv \operatorname{card} \left\{ k : |\beta(k)| = \|\beta\| \right\} \leq n$$

and, if $\{k_1, \ldots, k_m\}$ is the set of coordinates where β attains its norm,

$$\operatorname{rank}\left[\beta_{j}(k_{i})\right]_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}=m.$$

We have also some results about the finite dimensional subspaces.

PROPOSITION 11. If $G \subset c_1$ and G is not semi-Chebychev, then it contains a nonzero operator A such that $\sum_i \varepsilon_i a_i(A) = 0$ for an appropriate choice of $\varepsilon_i \in \{-1, 1\}$. Further, if G is one-dimensional, the converse holds, too.

Proof. If G is not semi-Chebychev we can find $U \in G^{\perp}$, ||U|| = 1 and $A \in G \setminus \{0\}$ such that UA is selfadjoint and U is an isometry on the range of A. We see that, since

$$A=\sum_{i}\lambda_{i}\phi_{i}\otimes\psi_{i}$$

with $(\phi_i), (\psi_i)$ orthonormal (we keep the same notation), then $a_i(A) = |\lambda_i|$ for all *i* and so, defining $\varepsilon_i \equiv \operatorname{sign} \lambda_i$, we get

$$\sum_{i} \varepsilon_{i} a_{i}(A) = \sum_{i} \lambda_{i} = \operatorname{tr} UA = 0.$$

496

If G is one-dimensional, let (ε_i) be such that $\varepsilon_i \in \{-1, 1\}$ for all *i* and $\sum_i \varepsilon_i a_i(A) = 0$ for some $A \in G$. Let $A = \sum_i a_i(A) \phi_i \otimes \psi_i$ for some orthonormal sequences $(\phi_i), (\psi_i)$, and define U by $U\psi_i \equiv \varepsilon_i \phi_i$. We see that $U \in G^{\perp}$, ||U|| = 1, U is isometric on the range of A and UA is selfadjoint. By Theorem 1, G is not semi-Chebychev.

In [6], Kahane studied the approximation properties of the following subspaces of $L^{1}(T)$. If $\Lambda \subseteq Z$ let $L^{1}_{\Lambda}(T) = \{f \in L^{1}: \hat{f}(n) = 0 \text{ if } n \notin \Lambda\}$. If $\Lambda = Z^{+}$ then $L^{1}_{\Lambda} = H^{1}_{0}$. He proved that L^{1}_{Λ} is semi-Chebychev if and only if $\Lambda = (2p-1)Z$ or $\Lambda = (2p-1)Z^{+}$, where $p \in Z$.

The analogue of these examples in c_1 are the *-diagrams.

Let $(e_i)_{i\in I}$ be a fixed orthonormal basis of H, and let $\Lambda \subset I \times I$. By the *-diagram induced by Λ we mean the class of all operators T in c_1 which have no component outside Λ ; that is, such that $(i, \kappa) \notin \Lambda$ implies that $(e_i, Te_{\kappa}) = 0$. Since *-diagrams are clearly weak*-closed subspaces of c_1 they are proximinal [10, I.2.5]. In [1] it has been shown that the converse of Corollary 2 holds for *-diagrams; that is, a *-diagram Gis Chebychev if and only if $G^{\perp}G$ does not contain non-zero self-adjoint elements. Actually, it was asked whether this is true in arbitrary weak*-closed subspaces of c_1 . In this section we answer that question in the negative and show that the Chebychev *-diagrams are in some sense triangular. This explains why the result is true for them, keeping in mind the fact that T_1 (the subspaces of the operators having an upper triangular matrix) is Chebychev in c_1 (see [1]).

COUNTEREXAMPLE. Fix $i \neq \kappa \in I$ and let

$$G \equiv \{T \in c_1 : (e_i, Te_i) + \frac{1}{2}(e_k, Te_k) = 0\}.$$

Then G is Chebychev and $G^{\perp}G$ contains a non-zero selfadjoint operator.

To see this note first that $G^{\perp} = [U]$ for $U = e_i \otimes e_i + \frac{1}{2}e_{\kappa} \otimes e_{\kappa}$. Since

$$a_2(U) = \frac{1}{2} < a_1(U) = 1,$$

Proposition 10 easily implies that G is Chebychev. On the other hand, taking $A = e_i \otimes e_i - 2e_k \otimes e_k$, we have $A \in G \setminus \{0\}$ and UA is clearly selfadjoint.

We now prove that the Chebychev *-diagrams are 'triangular'.

THEOREM 12. Let H have the orthonormal basis $(e_i)_{i\in I}$ (I a totally ordered set) and let $\mathscr{G} \subset c_1(H)$ be a Chebychev *-diagram. We can find D, D, totally ordered sets, having the same cardinality as I and unitaries $U: l_2(D) \to H$, $V: H \to l_2(D)$ such that $\mathscr{G} = V\mathscr{G}U \subset c_1(l_2(D), l_2(D))$ is a *-diagram which is 'triangular' with respect to the natural bases of $l_2(D)$ and $l_2(D)$; that is, if we have a zero at (d, \tilde{d}) then we have a zero at (d', \tilde{d}) for all d' < d and at (d, \tilde{d}') for all $\tilde{d}' > \tilde{d}$; and if we have a * at (d, \tilde{d}) , then we have a * at (d', \tilde{d}) for d' > d and at (d, \tilde{d}') for $\tilde{d}' < \tilde{d}$.

The proof depends on the following lemma that appears in [1].

LEMMA 13. The *-diagram
$$\mathscr{G} = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$
 is not Chebychev.

As remarked in [1], note that Lemma 13 can easily be generalised. If we have a general *-diagram such that, for some rows $\iota_1 \neq \iota_2$ and columns $\kappa_1 \neq \kappa_2$ we have a * both at (ι_1, κ_1) and at (ι_2, κ_2) , and a zero both at (ι_1, κ_2) and at (ι_2, κ_1) , then \mathscr{G} is not Chebychev.

Proof of Theorem 12. Let \mathscr{G} be a Chebychev *-diagram. Define new order relations \leq_r, \leq_c between the 'rows' and 'columns' of \mathscr{G} in the following way:

$$\operatorname{row} \iota_1 \leq \operatorname{row} \iota_2$$

if, whenever we have a zero at (ι_1, κ) in \mathscr{G} , we have a zero at (ι_2, κ) in \mathscr{G} . Proceed similarly with the columns to define \leq_c . It follows from the remark after Lemma 13 that any two rows or columns of \mathscr{G} are comparable (otherwise we could reproduce the pattern of Lemma 13) and so $D = (I, \leq_r)$ and $\tilde{D} = (I, \leq_c)$ are totally ordered sets having the same cardinality as *I*. The isometries $U: l_2(D) \to H$ and $V: H \to l_2(\tilde{D})$ defined by the 'identities' $D \to I$ and $I \to D$ can be regarded as an operation of changing rows and columns in the 'matrix' of \mathscr{G} . It is now just a matter of time to verify that the 'matrix' of $V\mathscr{G}U \subset c_1(l_2(D), l_2(\tilde{D}))$ is triangular in the sense described above.

References

- 1. A. ARIAS, 'Some properties of non-commutative H¹ spaces', Proc. Amer. Math. Soc. 112 (1991) 465-472.
- 2. J. DIXMIER, Les C*-algèbres et leurs représentations (Gauthier-Villars, Paris, 1969).
- 3. J. L. DOOB, 'A minimum problem in the theory of analytic functions', Duke Math. J. 8 (1941) 413-424.
- 4. F. GILFEATHER and D. LARSON, 'Nest-subalgebras of von Neumann algebras', Adv. in Math. 46 (1982) 171–199.
- 5. F. GILFEATHER and D. LARSON, 'Structure in reflexive subspace lattice', J. London Math. Soc. (2) 26 (1982) 117-131.
- 6. J. P. KAHANE, 'Best approximations in $L^{1}(T)$ ', Bull. Amer. Math. Soc. 80 (1974) 788-804.
- 7. R. I. LOEBL and P. S. MUHLY, 'Analycity and flows in von Neumann algebras', J. Funct. Anal. 31 (1979) 275-292.
- 8. R. R. PHELPS, 'Uniqueness of Hahn-Banach extensions and unique best approximation', Trans. Amer. Math. Soc. 95 (1960) 238-255.
- 9. A. PIETSCH, Eigenvalues and s-numbers (University Press, Cambridge, 1987).
- 10. I. SINGER, Best approximation in normed linear spaces by elements of linear subspaces (Springer, Berlin, 1970).
- 11. M. TAKESAKI, Theory of operator algebras I (Springer, New York, 1979).
- 12. B. VENTURA, 'A note on subdiagonality for triangular AF Algebras', Proc. Amer. Math. Soc. 110 (1990) 775-780.

Department of Mathematics Texas A&M University College Station Texas 77843 USA

Current address: Department of Mathematics, Statistics and Computing Science University of Texas at San Antonio San Antonio TX USA Department of Mathematics University of Zurich Rämiistraße 74 CH-9001 Zurich Switzerland

Current address: Department of Mathematics University of Texas at Austin Austin TX USA