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ABSTRACT

This paper characterises the semi-Chebychev subspaces of preduals of von Neumann algebras. As an
application it generalises the theorem of Doob, that says that Hi has unique best approximations in L^T),
to a large class of preannihilators of natural non-selfadjoint operator algebras including the nest algebras.
Then it studies the semi-Chebychev subspaces of the trace class operators and shows that the only
Chebychev *-diagrams are 'triangular'.

1. Introduction

This paper characterises the semi-Chebychev subspaces of preduals of von
Neumann algebras; in particular, those of the trace class operators.

As an application of this, we generalise the Theorem of Doob [3] that says that
HI has unique best approximations in L\T), to a large class of preannihilators of
natural 'triangular' algebras; for example, nest algebras.

In the final section we characterise the finite codimensional weak*-closed
subspaces of the trace class operators and clarify the situation for the special case of
•-diagrams.

The authors want to thank Professor D. Larson and Professor J. Ward for useful
discussions.

2. Preliminaries

In this paper Hdenotes a Hilbert space, and cx{H) the trace class operators; that
is, those TEB(H) for which HT^ = trflrQ < oo. We identify B(H) with c* under the
trace duality; that is, for Teq and SeB(H), (T,S) = tr(TS). We also use the fact
that every compact operator has a Schauder decomposition T= £<ai(^)0i® Vv
where ̂  (g) y/ is the rank-1 operator sending h to (0, h) y/ and the at(T) are the singular
numbers of T. Moreover, if Tecx then \\T\\X = J^<ai(T) (see PI).

Let M be a von Neumann algebra, and M+ the unique isometric predual (see [11]).
If/eM* and 6eMthen bftM^fbeM* andf*eM+, where these are defined by

bAx)=Axb), fb(x)=Abx), f*(x)=Ax*).
Now/eM* is positive if for every xeM,j{x*x) ^ 0. We shall use the fact t h a t / ^ 0
if and only if7(1) = ||/||. We say that/eM,,, is hermitian if/* = / . There is also a
polar decomposition in M+. If/eM* we can find usM, a partial isometry, such that
uf= \f\. For more information on von Neumann algebras see [11].
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Let X be a Banach space and G c l a closed subspace. Then G is proximinal in
X if every xeX has a best approximant from G; that is, there exists yeG such that
| |x-^| | = d(x,G). Now G is semi-Chebychev if every xeX has at most one best
approximant; and G is Chebychev if every xeZhas a unique one. A fundamental
reference concerning best approximations is Singer's book [10].

3. The main result

In this section we characterise the semi-Chebychev subspaces of the preduals of
von Neumann algebras; in particular, those of the trace class operators, cv

I f G c M + we let

Gx = {b€M: b{h) = 0 for every h e G)

and GXG = {bh\beGL and heG). Notice that G1G <= M*.

THEOREM 1. Let M be a unital von Neumann algebra and G a M+. Then G is not
semi-Chebychev if and only if there exist heG, h # 0 and beG1, \\b\\ = 1 satisfying

(i) bh is hermitian,
(ii) b*bh = h.

REMARK. Notice that if M = B(H), condition (ii) is equivalent to b is an isometry
on the range of h.

As an immediate application of Theorem 1 we obtain the following.

COROLLARY 2. Let G c M+ such that GXG contains no non-zero hermitian
element; then G is semi-Chebychev.

Corollary 2 was proved in [1] for cx and was used to show that the non-
commutative //1-spaces in c1 (for example, the set of upper triangular elements of cx)
are Chebychev, just as in the commutative case [6]. (See Section 4 for further
discussion).

The proof of Theorem 1 depends on a generalisation of the following easy and
well-known lemma to the von Neumann algebra setting.

LEMMA 3. If Tec1} BeB(H) are such that \\B\\ = 1 and tr(BT) = \\T\h then
BT=\T\ andB*\T\ = T.

For the next lemma we assume that M c B{H) for some Hilbert space H.

LEMMA 4. Let M be a von Neumann algebra andletfeM+, beM, \\b\\ = 1 be such
that bf^ 0 and \\bf\\ = ||/||. Then we have that bf= \f\ andf= b*\f\.

Proof It follows from [2, Theorem 12.2.5] that bf= \f\.
Find Tecx such that for every xeM, J{x) = ti(Tx) and 11711!= ||/||. Since

tr(bT) = ||riband ||6|| = 1, Lemma 3 gives us that bT=\T\ and b*\T\ = T, or
b*bT= T Clearly, b*bf=f

We are now ready for the proof of Theorem 1.
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Proof of Theorem 1. Assume that G is not semi-Chebychev. Then we can find
, heG, h # 0 and beG1, \\b\\ = 1 such that

Il/H =d(f,G)=\\f+ h\\,

Since H6/II ^ Il/H =Ab) = bfi\) ^ ||6/|| we have that # > 0 and \\bf\\ = ||/||.
By Lemma 4, this implies that bf= | / | and b*\f\ = / . Similarly, b(f+h) = \f+h\ and
b*\f+h\=f+h.

Hence,

is clearly hermitian and

b*bh = b*\f+h\-b*\j) =f+h-f= h.
Conversely, let us assume that heG, h^O, beG1, \\b\\ = 1 are such that bh is

hermitian and b*bh = h.
Find ueM, \\u\\ = 1 such that \bh\ = u(bh). Since bh is hermitian, we have

\bh\ = (bh)u*. Let f=b*\bh\.
Claim: ||/|| = d(f,G) = \\f+h\\.
Since h # 0 this clearly implies that G is not semi-Chebychev. We will now check

the first equality of the claim.
Clearly ||/|| ^ \\bh\\; on the other hand

f{b) = bf{\) = bb*\bh\(l) = bb*bhu*(\) = bhu*{\) = \bh\(l) = \\bh\\.

Since beG1 and \\b\\ = 1, we have that ||/|| = d(f,G).
For the other equality notice that

f+h = b*\bh\ + b*bh = b*[\bh\ + bh].

Since bh is hermitian, we have that

and
= \bh\(l)=\\bh\\.

Hence, \\f+h\\ < \\bh\\. On the other hand,

(f+h)(b) =Ab) + Kb) =Ab) = 11/11 = \\bh\\.

Therefore,

REMARK. According to [8], a subspace Y of a Banach space X has property
if any y* e y* has a unique Hahn-Banach extension in X*. Phelps proved that Y has
i^W) if and only if Yx is semi-Chebychev in A'*. It follows that Theorem 1 can be used
to study this property when M+ is a dual space. It is also clear that the result can be
used to find unique weak* Hahn-Banach extensions of weak*-continuous functionals
on M whenever they exist. This happens when the preannihilator is proximinal.

4. PREANNIHILATORS OF SUB ALGEBRAS

Doob [3] proved that H\ is a semi-Chebychev subspace of L\T). In this section
we shall show that this property is shared by a large class of preannihilators of natural
non-selfadjoint subalgebras of M, including the analytic algebras (see [7]), in
particular, nest algebras and nest subalgebras of von Neumann algebras.
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For si c M let si* = {x*: x e si), where * means the adjoint operation in M; and
let si L = {/e M+ :f^ = 0} be the preannihilator.

PROPOSITION 5. Let M be a von Neumann algebra and si <= M a weak*-closed
unital subalgebra of M. Then the following are equivalent:

(i) siL is semi-Chebychev;
(ii) siL contains no non-zero hermitian element;

(iii) si + si* is w*-dense in M.

Proof (i) o (ii) It is easy to check that since si is a unital algebra it follows that
sisi1 = si±. Hence, the equivalence of (i) and (ii) follows directly from Theorem 1.

(ii) => (iii) If si + si* is not w*-dense then there exists a non-zero fesi± n C^*)i-
Clearly,/* esi± n (^*)x

 a s weU- Therefore,/+/* esiL and one of them is non-zero.
(iii)=>(ii) Let fEsi± be such t h a t / = / * . It is clear that /e(^*)x . Since si + si*

is w*-dense, we have tha t /= 0.

REMARK. Notice that Proposition 5 is interesting only in the non-selfadjoint
case. If si = si* then six is semi-Chebychev if and only if si = M.

There are many natural examples where Proposition 5 applies. For instance, since
HI = H^ and H^ + TF5 is w*-dense in the von Neumann algebra L0O(r) we get the
following.

COROLLARY 6 (Doob [3]). Hi is semi-Chebychev in L\T).

Other important examples are the nest algebras. By a nest of projections in H we
mean any linearly ordered set & of orthogonal projections which is closed in the
strong operator topology and contains 0 and /. The nest algebra induced by & is the
set of all operators TeB(H) that leave invariant every element of ^ ; that is,

= {TGB(H):(I-P) TP = 0 for every Pe0>}.

It is well known that Alg^ + (Alg^>)* is w*-dense in B(H). Hence, we recover the
result from [1].

COROLLARY 7 [1]. (Alg^)± is semi-Chebychev in cv

This result is true for a more general type of nest algebras. I f ^ c M one defines
si = Alg^* P) M. Nest subalgebras of von Neumann algebras have been studied by
Gilfeather and Larson [4] and it is known that si + si* is w*-dense in M (see [7] or
[5]). Hence, the proposition applies.

And finally, if SeB(H) let M = {S}" be the von Neumann algebra generated by
S. Let B.

sis = {p(S):p is a polynomial} .

It is easy to see that sis satisfies property (iii).

Since six is semi-Chebychev in Af+ one could believe that si1, the annihilator of
si in M*, is semi-Chebychev in M*. This would imply that any continuous linear
functional on si has a unique Hahn-Banach extension to M. Unfortunately this is
not the case for our natural candidates.
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PROPOSITION 8. Let 3b be a unital C*-algebra and sf e M a unital subalgebra.
Then the following are equivalent:

(i) J ^ 1 is Chebychev;
(ii) s& + jrf* is norm dense in 3b.

Proof. Since jrf1 is w*-closed and 3b* is a dual space, it follows that sf1 is
proximinal. Notice that 3b* is the predual of the von Neumann algebra 3b**. We are
going to use Theorem 1; for s/1 and stf11. Notice also that s/ is w*-dense in jrfxx.

(i)=>(ii) If jtf + jrf* is not norm dense in 3b we can find/e^*\{0} such that
festf1 n (s?*)1. Since f*esfL n (^*)x we can assume that / = / * . The proof
follows from Theorem 1 by noticing that \estfxx, I/is hermitian and 1*1/=/.

(ii) => (i) If s0L is not semi-Chebychev in Sib* we can find h e J / X \{0} and b e sf11,
\\b\\ = 1 such that bh is hermitian and b*bh = h. It is easy to see that bhesf1. Since
bh is hermitian it follows that bhejtf1 n (sf*)x.

REMARK. It is well known that nest algebras in B(H) do not satisfy condition (ii).
This implies that biduals of nest algebras are not nest subalgebras of the von
Neumann algebra B{H)** and also provides an example of a Chebychev subspace
I c Y such that X** is not Chebychev in Y**.

In contrast, if 3b is an AF-algebra and sf is a strongly maximal triangular
subalgebra of 3b, then $$ satisfies (ii) (see [12]). Hence, s/x is Chebychev in 3b*. As
an immediate corollary we obtain the following.

COROLLARY 9. Let $0 be a strongly maximal triangular subalgebra of the
AF-algebra 3b. Then the Hahn-Banach extensions on s$ to 3b are unique.

Proposition 8 and the analogue of Corollary 9 apply also for 3b = C(T), the space
of continuous functions and on the unit circle, and s/ = A, the disk algebra.

5. Semi-Chebychev subspaces of the trace class operators

In this section we study some of the natural semi-Chebychev subspaces of the
trace class operators. We start with the weak*-closed «-codimensional subspaces.

PROPOSITION 10. Let G c: cxbe a weak*-closed, n-codimensional subspace. Let

Then the following are equivalent.
(i) G is Chebychev.
(ii) Whenever ReGx, \\R\\ = 1, R = Ylta{(R)4>i®y/i (with (^M^,) orthonormat)

we have
(a) m = msixii-.a^R) = 1} ̂  n,
(b) rankK/ty,,/^,)],.! m>J_x n = m.

Proof, (i) => (ii) Suppose that R e G\ || R || = 1, R = £ , a^R) <f>t ® y/it where
(y/t) are orthonormal, and let m = max{/:ai(i?) = 1}. If 7? fails (a), that is, if m > n,
consider the system of linear equations
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Clearly, there is a non-trivial solution (al5..., an+1). Define
n+l

and note that A e G\{0}. Further, R is isometric on A(H) c: [0l5..., 0n+1] (since
m>n) and RA = YJiaiy/i®y/i is selfadjoint. By Theorem 1, G is not semi-
Chebychev.

If R fails (b) but not (a), the system

has a non-trivial solution (a15..., aTO). In this case A = £<a( y/i <g) <j>i will do the trick
as above.

(ii) => (i) Since G is weak*-closed, if G is assumed to be not Chebychev, it is not
even semi-Chebychev, and so Theorem 1 states that there are AeG\{0}, ReG1 such
that \\R\\ = 1, R is isometric on the range of A and RA is selfadjoint. So, if rank
A > n, we must have m = max{i:at(R) = 1} > n and/? fails (a). If rank A = k ^ m ^ n,
let

Jfc

with some orthonormal sequences (0,), (^4), and consider that since the system

has the non-trivial solution (al5..., afc), R must fail (b).

REMARK. It is interesting to note the analogy between Proposition 10 and the
similar statement for lx (see [10, III.2.11]): let G <= /x be weak*-closed and n-
codimensional; that is, G1 = \filt..., /?„] and fa e c0. Then G is Chebychev if and only
if for any fieG1 such that fl(k) — \\fi\\ for some k we have

m = caid{k:\P(k)\ = W\) ^n

and, if {klt..., km} is the set of coordinates where /? attains its norm,

i-l n

We have also some results about the finite dimensional subspaces.

PROPOSITION 11. IfGczc1 and G is not semi-Chebychev, then it contains a non-
zero operator A such that £(e(fl<(^) = 0 for an appropriate choice o/e,e{—1,1}.
Further, if G is one-dimensional, the converse holds, too.

Proof If G is not semi-Chebychev we can find UeG1, \\U\\ = I and AeG\{0}
such that UA is selfadjoint and C/ is an isometry on the range of A. We see that, since

with (0t), (^4) orthonormal (we keep the same notation), then at(A) = |A(| for all / and
so, defining et = sign/lj, we get



PREDUALS OF VON NEUMANN ALGEBRAS 497

If G is one-dimensional, let (e() be such that et e {— 1,1} for all i and ]Tt e< at(A) = 0
for some AeG. Let A = £(0(O4)0((8) y/< for some orthonormal sequences (<pi),(y/i),
and define Uby Uy/i = £(0t. We see that UeG1, \\U\\ = 1, C/isisometric on the range
of A and UA is selfadjoint. By Theorem 1, G is not semi-Chebychev.

In [6], Kahane studied the approximation properties of the following subspaces of
L\T). If A £ Z let L \ ( r ) = {feLr:f{n) = 0 if n£ A}. If A = Z + then Z^ = / f j . He
proved that L^ is semi-Chebychev if and only if A = (2p — \)Z or A = (2p—l)Z+,
where peZ.

The analogue of these examples in cx are the *-diagrams.
Let (e,)teI be a fixed orthonormal basis of H, and let A c Ix I. By the *-diagram

induced by A we mean the class of all operators T in cx which have no component
outside A; that is, such that (I,K)£A implies that (e,, TeK) = 0. Since *-diagrams are
clearly weak*-closed subspaces of cx they are proximinal [10,1.2.5]. In [1] it has been
shown that the converse of Corollary 2 holds for *-diagrams; that is, a *-diagram G
is Chebychev if and only if GLG does not contain non-zero self-adjoint elements.
Actually, it was asked whether this is true in arbitrary weak*-closed subspaces of cx.
In this section we answer that question in the negative and show that the Chebychev
•-diagrams are in some sense triangular. This explains why the result is true for them,
keeping in mind the fact that Tx (the subspaces of the operators having an upper
triangular matrix) is Chebychev in cx (see [1]).

COUNTEREXAMPLE. Fix 1 # KEI and let

Then G is Chebychev and GLG contains a non-zero selfadjoint operator.

To see this note first that G1 = [U] for U = e,®e,+\eK® eK. Since

Proposition 10 easily implies that G is Chebychev. On the other hand, taking
A = e, ® e, — 2eK ® eK, we have A e G\{0} and UA is clearly selfadjoint.

We now prove that the Chebychev *-diagrams are 'triangular'.

THEOREM 12. Let H have the orthonormal basis (e,)l6/ (/ a totally ordered set)
and let & c= cx(H) be a Chebychev ^-diagram. We can find D, 3, totally ordered sets,
having the same cardinality as I and unitaries U:12(D)-+H, V: H -> 12(D) such that
<g = V&Ua cx{l2(D), 12(D)) is a ^-diagram which is 'triangular' with respect to the
natural bases ofl2(D) and 12(D); that is, if we have a zero at (d, d) then we have a zero
at {d1, d) for all d' < d and at (d, d') for all d' > d; and if we have a * at (d, d), then
we have a * at (d ' ,d) for d' > d and at {d,d')for d' < d.

The proof depends on the following lemma that appears in [1].

LEMMA 13. The ^-diagram <§ = I I is not Chebychev.
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As remarked in [1], note that Lemma 13 can easily be generalised. If we have a
general *-diagram such that, for some rows ix # i2 and columns KX ^ K2 we have a *
both at (i^Kj) and at (I2,K2), and a zero both at (I1}K2) and at (U,K^), then ^ is not
Chebychev.

Proof of Theorem 12. Let ^ be a Chebychev *-diagram. Define new order
relations ^ r , ^ c between the 'rows' and 'columns' of ^ in the following way:

if, whenever we have a zero at (I1}K) in ^, we have a zero at (I2,K) in ^. Proceed
similarly with the columns to define <c. It follows from the remark after Lemma 13
that any two rows or columns of ^ are comparable (otherwise we could reproduce the
pattern of Lemma 13) and so D = (/, ^ r ) and D = (/, ^c) are totally ordered sets
having the same cardinality as /. The isometries U:12(D)^H and V:H-*12(D)
defined by the 'identities' / ) - • / and I-*D can be regarded as an operation of
changing rows and columns in the 'matrix' of ^. It is now just a matter of time to
verify that the 'matrix' of V$U c cMD), 12(D)) is triangular in the sense described
above.
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