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SummaRrY. Two polysaccharides produced concurrently by Lactococcus lactis subsp.
cremoris strain LC330 have been identified. One had a high molecular mass (>
1 x 10% Da) and was neutral. The second was smaller (~ 10000 Da), charged and had
a high phosphorus content. Sugar composition also differed. In chemostat culture the
neutral polysaccharide was influenced by temperature and by nitrogen limitation.
This polysaccharide was branched with terminal galactose moieties and contained
galactose, glucose and glucosamine. The phosphopolysaccharide was more complex
with glucose, rhamnose, galactose and glucnsamine in an approximate ratio of
6:5:4:1.

A number of authors (Brooker, 1976; Macura & Townsley, 1984 ; Cerning et al.
1986, 1988, 1992; Doco et al. 1989, 1990, 1991 ; Nakajima et al. 1990 ; Toba et al. 1990)
have investigated the ropy nature of milk fermented with mesophilic and
thermophilic dairy lactic acid bacteria. It is generally accepted that the ropiness
produced by these bacteria is related to synthesis and secretion of exopolymers (for
review, see Cerning, 1990).

Macura & Townsley (1984) suggested that the ropy characteristic of milk-grown
cultures was the result of a glycoprotein of which 47 % was proteinaceous in nature.
Schellhaass (1983), however, found that the exopolymer isolated from cultures grown
in milk ultrafiltrate to which casamino acids were added contained 85%
carbohydrate, composed of glucose and galactose. There now appears to be a
consensus that, unlike the homopolysaccharides produced by mesophilic leuconostoc
bacterial species, those from the lactococci are heteropolysaccharides. There is
disagreement concerning the composition of the heteropolysaccharide, although the
presence of glucose and galactose is always reported. Some differences in composition
may be due to a lack of distinction between extracellular, capsular polysaccharide
and exopolysaccharide that can be dissociated easily from the cell wall, but such
distinction is difficult (Sutherland, 1982). For example, Toba et al. (1991) examined
capsules removed from cells by sonication of strains of Lactococcus lactis subsp.
cremoris and found that they contained 44 % protein and only 22 % carbohydrate.
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These authors found that the polysaccharide fraction of the capsular material
contained rhamnose, glucose, glycerol and phosphorus and suggested that it was
deacylated lipoteichoic acid. Macura & Townsley (1984) found a similar composition
in the carbohydrate fraction of the glycoprotein isolated from whey-grown cultures
of lactococei. Others (Schellhaass, 1983 ; Cerning et al. 1992 ; Cowie, 1993) found that
the polymer precipitated from a culture supernate with ethanol was predominantly
carbohydrate.

Synthesis and secretion of exopolysaccharide occur during different growth
phases and may be regulated by proteins located on the cell surface (Forsén & Héivi,
1981; Kontusaari & Forsén, 1988). In some cases the ropy character may be
associated with plasmid DNA. This has been reported for the ropy strains of
Lactobacillus casei NCIB 4114 (Vescovo et al. 1989), Lb. casei CG11 (Vedamuthu
& Neville, 1986; Kojic et al. 1992) and for strains of lactococei (Von Wright &
Tynkkynen, 1987; Neve et al. 1988). Heteropolysaccharides are made by poly-
merizing precursors formed in the cell cytoplasm. Here sugar nucleotides are formed
which play an important role, as does the lipid isoprenoid carrier located within the
cytoplasmic membrane. The lipid carrier is also involved in syntheses of cell wall
lipopolysaccharide, peptidoglycan and teichoic acid, so there is competition for this
facilitating membrane component during different phases of growth. The competition
may explain the appearance of exopolymers and capsules during different phases of
growth and different growth conditions (Sutherland, 1982).

This paper reports on a ropy strain of Lc. lactis subsp. cremoris where two
different exopolysaccharides, with different composition and molecular mass, could
be isolated from the fermentation medium. In addition we report that the production
of the two polymers was influenced by different growth conditions.

MATERIALS AND METHODS

Organism and growth conditions

Le. lactis subsp. cremoris LC330 (Lc. lactis) was obtained from the Nestlé Culture
Collection (CH-1000 Vers-Chez-les-Blanc, Switzerland). It was maintained on glass
beads at —70 °C (Jones et al. 1984), resuscitated and routinely grown in M17 (Lab
M, Bury BL9 6AU, UK) liquid medium. All experiments were carried out in
cremoris defined medium (CDM), based on a defined medium described by Otto et al.
(1983). Glucose, galactose or lactose at 20 g/l was added and the medium filter
sterilized (045 ug; Millipore Ltd, Watford WD1 8YW, UK) and stored at 4 °C. For
experiments with limiting lactose, the sugar was replaced by lactose at 2:5 g/1. For
nitrogen-limiting growth the concentration of glucose, galactose and lactose
remained at 20 g/l, trisodium citrate replaced triammonium citrate and casamino
acids were added at 300 mg/1. An inoculum (10 g/1) from an overnight M17 medium
at 30 °C was used to start the fermentation. For batch experiments, cultures were
grown in 250 ml conical flasks at 30 °C unless otherwise stated.

Chemostat cultures

Cultures (700 ml) were maintained at constant temperature and pH in a Microlab
fermenter (LH 500; LH Fermentation Ltd, Reading RG2 OEB, UK). Samples
(10 ml) were removed for analysis and steady state re-established by allowing at least
three fermenter volumes to flow through the system before further sampling.
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Exopolysaccharide separation and determination

Cultures from CDM were centrifuged at 1000 g for 10 min to remove cells and the
supernatant fluid (10 ml) was dialysed (molecular mass exclusion, 12000 Da) at 4 °C
for 4d against frequent changes of distilled water. Total carbohydrate was
determined with phenol-sulphuric acid, measuring absorbance at 490 nm and using
glucose standard solutions (Dubois et al. 1956). Neutral sugars were determined by
gas chromatography (Carlo-Erba 4160, equipped with on-line injector and flame-
ionization detector; Carlo Erba Strumentazione, 1-20090 Rodano, Ttaly) as the o-
methyloxime derivatives after hydrolysis with 4 M-trifluoroacetic acid (Neeser &
Schweizer, 1984). The derivatives were separated on a Carbowax 20M NP fused silica
capillary column (0-3 mm x 25 m) with hydrogen (70 kPa) as the carrier gas. Sugar
linkages were determined after methylation according to the method of Hakomori
(1964). Permethyl n-allose and quebrachitol (Aldrich Chemical Co., Gillingham SP8
4JL, UK) were used as the internal standards. Partly methylated alditol acetates
were separated by gas chromatography (Carlo-Erba 5160) on three different column
packings: SP-1000 (Sepelco Ltd, Poole BH17 7NH, UK), CPSiL88 and OV-1
(Chrompack UK Ltd, London E14 9TN, UK) using helium as the carrier gas, and
identified by their retention times and by mass spectrometry (Lomax et al. 1983).

Acidic and neutral polysaccharides were separated using DEAE sepharose.
Molecular masses were determined using gel filtration chromatography (Sepharose-
CL 4B and Sephacryl S300; Pharmacia Biotechnology, St Albans AL1 3AW, UK) by

comparing retention times with known dextran standards.

Phosphorus determination
Phosphorus was determined using the method of Dittmer & Wells (1969).

RESULTS

Lc. lactis grown in CDM as a batch culture without pH control achieved a
maximum population of 5-6 x 10® ¢fu/ml. Exopolysaccharide was produced towards
the end of the exponential phase and during stationary phases of growth (Fig. 1). The
total exopolysaccharide produced was 25 (sp 2:0) ug/ml from three determinations.

Analysis of polysaccharides

The polysaccharide produced by strain LC330 in CDM was resolved by column
chromatography into two components. The neutral polysaccharide was eluted with
the void volume and the charged polysaccharide, which bound to the DEAE, was
eluted using M-NaCl. The neutral polysaccharide was large with a molecular mass in
excess of 2 x 10% Da. The charged polysaccharide had a molecular mass corresponding
to 10000 Da.

Gas chromatography of the o-methyloxime acetate derivatives showed that the
charged polysaccharide was composed of glucose, rhamnose, galactose and
glucosamine in an approximate ratio of 6:5:4:1 with a phosphorus content of
56 g/kg. The larger, neutral polysaccharide had a simpler sugar content of glucose,
galactose and glucosamine in an approximate ratio of 6:3:2. Nakajima ef al. (1990)
also found a phosphopolysaccharide from a strain of Lc. lactis subsp. cremoris
composed of a branched repeat unit of rhamnose, galactose, and glucose in a molar
ratio of 1:2:2, but no glucosamine was found.

Previous work (J. Cerning, pers. comm.) has indicated a change in polysaccharide
composition isolated from Lb. case: as a result of growth on different sugars. The
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Fig. 1. Growth of, and acid and polysaccharide production by, Lactococcus lactis subsp. cremoris LC330
in a batch-grown culture at 30 °C without pH control: O, viable count; A, polysaccharide; W, pH.
Cultures were grown in cremoris defined medium with lactose as the carbon source. Values are means
for three experiments with sp indicated by vertical bars.

Table 1. Sugar linkages of neutral exopolysaccharide from Lactococcus lactis strain LC330%

Ratio of linkages
with different sugar sources

Linkage Lactose Glucose Galactose
Gal—1— 1-0 1-0 1-0
—4—Gal—1— 1-3 1-2 1-3

3

I
—4—CGluc—1— 2:4 23 2:4
—6—Gluc—1— 11 1-1 12

Gal, galactose; gluc, glucose.

t Cultures were grown at 30 °C in cremoris defined medium plus lactose to late stationary phase and the
neutral exopolysaccharide was separated using gel chromatography and analysed as methylated alditol
acetate derivatives by gas chromatography.

Convention: —4—Gal—I— indicates that carbons I, 3 and 4 of the galactose moiety are invoived in

| linkages.
3
|
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Table 2. Effect of temperature on exopolysaccharide production from Lactococeus
lactis strain LC330 grown as a batch culture in cremoris defined medium

Exopolysaccharide, gg/mlt

Temperature, °C Total Neutral Acidic
20 55+55 62 10
25 50+45 65 10
30 50+4-0 18 10
35 32+30 ND ND

ND, not determined.
t Values for total exopolysaccharide are means+sp for four experiments; neutral and acidic values were
determined in a separate experiment.

composition of the neutral polysaccharide from L¢. lactis grown in CDM with lactose,
glucose or galactose as the carbon source was the same. Further analysis of
methylated alditol acetates revealed similar linkage patterns in polysaccharides
produced with different carbon sources (Table 1). The linkage patterns revealed a
branched polysaccharide which had terminal galactose residues.

Growth conditions and polysaccharide production

Strain LC330 grown in continuous culture in CDM under lactose limitation at
different temperatures produced more neutral polysaccharide at the lower growth
temperatures (Table 2). At 40 °C LC330 produced very little polysaccharide and
growth was poor.

When cultures were limited by availability of nitrogen a marked effect was noted
when the amount of polysaccharide per dry weight of cells was measured. Nitrogen
limitation increased the amount of neutral polysaccharide produced (from 58 pg/mg
for carbon limited cells to 92 pg/mg cells) but had only a slight effect on the
phosphopolysaccharide, reducing the production from 23 ug/mg cells under carbon
limitation to 18 ug/mg cells when nitrogen limited. When incubation temperature
was varied, different effects were noted for the two polysaccharides: more neutral
polysaccharide was produced at the lower temperatures, but there was little
temperature effect on production of phosphopolysaccharide.

DISCUSSION

There has been considerable interest in the secretion of polymers by lactic acid
bacteria. A recent publication has revealed the structure of an exopolysaccharide
from Lb. delbrueckii subsp. bulgaricus as having galactose, glucose and rhamnose in
a molar ratio of 5:1:1 with predominantly 1 -4 and 1 - 3 linkage patterns (Gruter
et al. 1993). Similarly, Doco et al. (1989, 1990, 1991) have reported that the
exopolysaccharide from Streptococcus thermophilus was composed of galactose,
glucose and N-acetylgalactosamine in a molar ratio of 2:1:1 with 13 and 16
linkage patterns.

Our results with strain LC330 of Le. lactis subsp. cremoris also indicated the
presence of branched heteropolysaccharide. However, we showed that two polysac-
charides of different composition were produced. The results presented in this paper
on the larger neutral polysaccharide are in agreement with other reports (Schellhaass,
1983; Toba et al. 1991). However, direct comparisons cannot be made as no mention
is made elsewhere of any heterogeneity of the polysaccharide (i.e. the possibility of
two types).
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There were differences in size and charge between the two polysaccharides, the
charged polysaccharide having an association with phosphate. Earlier work with
CDM showed that growth and acid production by this strain was similar to that
achieved in milk (Cowie, 1993) and total polysaccharide production was also similar.
The CDM was designed so that growth and polymer production could be achieved
from utilization of small molecular mass compounds, thus allowing good recovery of
polysaccharides. Sugar linkage patterns of total polysaccharide from milk were also
found to be similar to those for the total polysaccharide from CDM (Cowie, 1993).
Gruter et al. (1992) also examined polysaccharide from Lc. lactis subsp. cremorts
strain H414 grown in defined medium and in milk. These authors found that the
polysaccharides from milk and defined medium had similar composition, but it
differed from that of strain LC330 reported in this paper, in that it was composed
only of p-galactose. This underlines the importance of the strain.

The large neutral polysaccharide was influenced by growth conditions. Sutherland
(1982) would predict that for heteropolysaccharides that are extracellular rather
than cell associated, slow growing cells (i.e. cells growing below their optimum
growth temperature, in this case 30 °C) would be able to produce more polymer
because of increased availability of the isoprenoid carrier. The results presented may,
therefore, indicate that the neutral polysaccharide was exocellular and that the
phosphopolysaccharide was more closely associated with cell wall material. The
results shown in Fig. 1 would indicate that exopolysaccharide synthesis towards the
end of exponential phase was likely to begin with synthesis of the neutral polymer
and that the phosphopolysaccharide was a minor component of the total
polysaccharide. The presence of two polysaccharides produced at different growth
phases may also occur in other milk fermentations and in part explain the results of
Gancel & Novel (1994), who found different modes of polymer production in response
to temperature and sugar availability, with hyperproduction occurring at onset of
the stationary phase.

Although a minor component, the phosphopolysaccharide was found consistently.
It was smaller and more complex and was not subject to changes in growth
conditions. It is proposed, therefore, that this smaller polysaccharide is associated
with cell wall material and its synthesis is linked to growth but can become detached.
Nakajima et al. (1992), in their work with an isolate of lactococci from the
Scandinavian fermented milk langfil, found a phosphopolysaccharide of similar
composition but with a larger molecular mass. Previous workers (Schellhaass, 1983
Doco et al. 1991; Cerning et al. 1992) have isolated exopolysaccharide by ethanol
precipitation. The method used in the work reported in this paper employed
exhaustive dialysis to remove small molecular mass compounds. The carbohydrate
content of the retentate was then analysed. This permitted good resolution of the two
components.
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