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Background. Differentiation between gametocyte-producing Plasmodium falciparum clones depends on both
high levels of stage-specific transcripts and high genetic diversity of the selected genotyping marker obtained by a
high-resolution typing method. By analyzing consecutive samples of one host, the contribution of each infecting
clone to transmission and the dynamics of gametocyte production in multiclone infections can be studied.

Methods. We have evaluated capillary electrophoresis based differentiation of 6 length-polymorphic gametocyte
genes. RNA and DNA of 25 µL whole blood from 46 individuals from Burkina Faso were simultaneously genotyped.

Results. Highest discrimination power was achieved by pfs230 with 18 alleles, followed by pfg377 with 15 alleles.
When assays were performed in parallel on RNA and DNA, 85.7% of all pfs230 samples and 59.5% of all pfg377
samples contained at least one matching genotype in DNA and RNA.

Conclusions. The imperfect detection in both, DNA and RNA, was identified as major limitation for investigat-
ing transmission dynamics, owing primarily to the volume of blood processed and the incomplete representation of
all clones in the sample tested. Abundant low-density gametocyte carriers impede clone detectability, which may be
improved by analyzing larger volumes and detecting initially sequestered gametocyte clones in follow-up samples.

Keywords. Plasmodium falciparum; transmission dynamics; gametocytes; genotyping; capillary electrophoresis;
pfg377; pfs230.

Malaria infection and transmission dynamics both de-
scribe the appearance, loss or persistence of genotypes
of Plasmodium parasites in a given host. Although
infection dynamics describe longitudinal changes
among asexual parasite clones, the focus of transmis-
sion dynamics lies on the sexual stages, gametocytes.
To answer gaps in our knowledge on parasite reproduc-
tion and transmission, both the sexual and asexual

stages, concurrently present in a host, need to be ana-
lyzed by genotyping. Examples of specific research
questions are: Do all concurrent P. falciparum clones
contribute to gametocyte production? Do drug-
resistant clones contribute more to transmission?
Does within-host competition between clones or other
environmental factors affect the start and duration of
gametocyte production?

Superinfections of already infected hosts and a high
number of concurrent infections are common in areas
of high malaria transmission. Polymorphic molecular
markers are amplified to differentiate concurrent
clones. The number of clones per blood sample (multi-
plicity) varies according to the transmission intensity;
mean multiplicity of infection (MOI) was 2 in Papua
New Guinea (PNG) and almost twice as much in
Tanzania [1].MOI is age-dependent and peaks in high-
ly endemic settings in the age range of 5–9 year-olds [2].
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Human and rodent models suggested that clone multiplicity af-
fects transmission stages [3–5].Antimalarials also were found to
affect transmission. Residual submicroscopic parasitemia after
ACT treatment was associated with a higher transmission in
Kenyan children [4], but the individual clones within the infec-
tion were not differentiated in this study. A further determinant
of transmission is the quantity and duration of gametocyte pro-
duction. Asexual P. falciparum clones can persist in a host for
many months as asymptomatic infections [6]. From this obser-
vation the question arises whether gametocytes are produced
continuously by each clone, and whether gametocyte produc-
tion is up-regulated or suppressed by concurrent clones of the
same or other Plasmodium species.

Genotyping of gametocytes depends on high stage-specific
expression and high genetic diversity of the chosen genotyping
marker in the study area. Classical length-polymorphic markers
for differentiation of gametocytes are pfs230 and pfg377. Pfs230
was first observed as a potential transmission-blocking antigen
in 1988 and thereafter characterized by several immunological
studies [7–10]. Williamson and co-workers first described 2
polymorphic repeat regions in pfs230 by comparing 5 cultured
parasite lines [11]. A separate polymorphic, glutamate-rich re-
gion within pfs230 was described, but diversity was limited [12].

Another frequently used genotyping marker, pfg377, is spe-
cifically expressed in female gametocytes. Transcripts are de-
tectable from gametocyte stage III onward [13]. Menegon and
co-workers developed 4 pfg377 gametocyte genotyping assays
[14].The first longitudinal monitoring of gametocyte-producing
clones was conducted in samples from Sudan. Results indicated
that gametocytes were present for up to 8 months of dry season
and thus were considered the most probable source of malaria
outbreaks in the following rainy season [5, 15]. Gametocytes
from multiclone P. falciparum infections persisted 3 times lon-
ger than those from single-clone infections; thus multiplicity of
infection may promote either longer persistence or continuous
production of gametocytes [5]. Feeding experiments in the
Gambia confirmed that gametocytes from coinfecting clones
were simultaneously transmitted to mosquitoes [16]. Despite
a lower multiplicity of gametocyte clones compared to asexual
MOI, it was found that clones not detected on RNA level still
produced gametocytes and nevertheless contributed to trans-
mission [16]. Of all asexual clones detected in Thai patients,
25% had no corresponding pfg377 transcript and thus no mo-
lecularly detectable level of gametocytes [17].

These previous studies have provided relevant information
on malaria epidemiology and transmission dynamics but were
hampered by the limited resolution of the available gametocyte-
genotyping methods. Size-polymorphic diversity of molecular
markers used in these earlier studies was maximal 7 for
pfg377 and 4 for pfs230 [12, 16]. To improve the discriminatory
power of markers pfg377 and pfs230, we created amplicons
spanning several polymorphic domains of these genes and

increased accuracy of fragment sizing by replacing gel-based
sizing by capillary electrophoresis (CE). In addition, we
screened the gametocyte transcriptome [18] for tandem repeat-
containing genes expressed only in gametocytes and evaluated
these in search for novel high-resolution markers. Our assays
were applied to asexual parasites by targeting genomic DNA
(gDNA) from field samples and in parallel to gametocytes
from the same blood samples by targeting RNA. Our aim was
to employ high-resolution typing to gain a clearer picture on
how many coinfecting asexual clones simultaneously produce
gametocytes.

METHODS

Study Population and Ethics
The diversity of genotyping markers was determined in 111 ar-
chived anonymized DNA samples collected in Madang prov-
ince, PNG, from April 2004 to February 2005 [19]. Scientific
approval and ethical clearance was obtained from the Medical
Research and Advisory Committee of the Ministry of Health
in PNG (MRAC no. 09.24). Informed consent was obtained
from parents or legal guardians prior to sampling. In addition,
46 archived anonymous RNA samples collected in the course
of a cluster-randomized trial in Saponé, Burkina Faso
[NCT01256658] [20] were used for evaluation of gametocyte
detection assays. Ethical clearance was obtained from the Na-
tional Ethical Committee for Health Research of Burkina Faso
(no. 2013-3-019).

Nucleic Acid Extraction
DNA samples from PNG, stored at −20°C, had been extracted
previously using QIAamp DNA Blood Kit (Qiagen) [19]. Total
RNA of Burkina Faso samples was extracted from 25 µL whole
blood stored with 125 µL RNAprotect Cell reagent (Qiagen).
RNeasy Plus 96 kit (Qiagen) was used as previously described
[21]. RNA was eluted in 50 µL water. The gDNA was eluted si-
multaneously from the gDNA elimination column (provided by
the kit) using the QIAamp 96 Blood DNA Kit (Qiagen) proto-
col from the column washing step onwards. The gDNA was
eluted twice in 50 µL of 40°C prewarmed AE elution buffer
(Qiagen) following 30 minutes incubation. RNA and gDNA
samples were stored at −20°C.

Validation of Genotyping Assays and Determination of Allelic
Diversity of Markers
Diversity of 6 genotyping markers was determined in 111
gDNA samples from PNG. Primer sequences for pfg377
(PF3D7_1250100), pfs230 (PF3D7_0209000), pf11.1 (PF3D7_
1038400), PF11_0214 (PF3D7_1120700), PFI1210w (PF3D7_
0924600), and PFL0545w (PF3D7_1211000) are given in
Table 1. Composition of reaction mixes and thermo profiles
are shown in Supplementary Table 1. For CE sizing the
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products were diluted in water according to their agarose gel
band intensity. Samples were analyzed by ABI3130xl using
GS500LIZ as size standard. Electropherograms were analyzed
using GeneMapper Software version 3.7. A cutoff set at 250
fluorescence units (FU) defined the minimal required peak
height. In samples containing dominant peaks of >10 000 FU,
the cutoff was increased to 500 FU. Stutter peaks (defined by
accompanying peaks with a regular pattern of >6 bp and
heights <20% of the main peak) were censored. A bin width of
3 bp was defined for each allele to accommodate small variations
in fragment sizing. To test whether a size standard containing
larger fragments would provide more accurate CE sizing, a sub-
set of 13 pfg377 fragments were simultaneously sized by CE
using GS1200LIZ (Applied Biosystems). The expected heterozy-
gosity (HE) was calculated as published elsewhere [22].

Sequencing of PCR Fragments of Single Clone Infections for
Evaluating Fragment Sizing
Nucleotide sequences of 12 pfg377 and 10 pfs230 nested poly-
merase chain reaction (nPCR) fragments from single clone in-
fections were determined in both directions for pfg377 and in
one direction for pfs230 by direct Sanger sequencing. Sequences
were analyzed with BioEdit version 7.3.2, and alignments were
performed with T-Coffee multiple alignment server and Box-
Shade server version 3.21. Sequences were submitted to Gen-
Bank [KJ566743-KJ566764].

Evaluation of Sensitivity of Reverse Transcription (RT)-PCR
The detection limits of all nested RT-PCR assays were
evaluated on a trendline of stage IV/V gametocyte in vitro cul-
ture of P. falciparum 3D7 as previously described [21]. RT of

Table 1. Primary and Nested Primer Sequences for Gametocyte Genotyping Markers

Marker Primer Sequences (5′->3′)

Pfs230
Primary Pfs230_PF AAG ACA TGT CGC CCA GGG ATA

Pfs230_PR TTC TTC TTC ATC ACC AAA TGG ATA T

Nested Pfs230_NF VIC - CAG GGA TAA TTT TGT AAT RGA TGA TGa

Pfs230_NR ACC TTG CCT TTC TTT TTC ATC TAC A - tail
Pfg377
Primary Pfg377_PF CAC AAC GAA GGT TAT ATA CCT CAT AC

Pfg377_PR TCC ATT CTT CTT TAA GGT TCG CTT C
Nested Pfg377_NF 6FAM - GAA GAT GAC GAA GGG GAT GAA G

Pfg377_NR CTG TAA GAA TTG GTT ATT ACT TTT GTG G - tail

PF11.1
Primary Pf11.1_PF1b GAT ATA TTC TAA TAA T|TG TTC CAA TGG

Pf11.1_PF2 AAG TGC AGG GGA TAG TGC AG

Pf11.1_PR CGG TAA TAC CAT AAG CTC CTC CT
Nested Pf11.1_NF 6FAM - GGA ATA AGG ATG ATG ATG ACG AA

Pf11.1_NR AAC CTT CAA ATT CTT TGT CTC TTT C - tail

PF11_0214
Primary PF11_0214_PF TCG AGA CAA ATT GAA AAG TTA TGG

PF11_0214_PR TTA GTG GAT AAA TGA ATA TCT ACC G

Nested PF11_0214_NF 6FAM - AAT GAT ACA GAT TGT GAA GAA TGG T
PF11_0214_NR TGA GGA ATA TCG TTT TGT ATA AAT GTT - tail

PFI1210w
Primary PFI1210w_PF TTG ATA AGG GAT ATA TAC ACA ACC ATA

PFI1210w_PR TTC CCG TTG TGT ATT TAA GTA GAA T

Nested PFI1210w_NF 6FAM - TGT TTC AAT TTA CCA TCT TTC TTT TC

PFI1210w_NR GTT TTT CAA TTT TTA TGT TGT TCT CCA - tail
PFL0545w
Primary PFL0545w_PF GGA AGG AAA CGA AGA AGA AAC A

PFL0545w_PR AAA GAT TGA AAT GGA GAT TCA CCT
Nested PFL0545w_NF VIC - TGA CAA AGG GCA CTT TAT TAT TT

PFL0545w_NR TTT CTT CAA CAG CAT TTT GCA T – tail

a Primer sequence contains a wobble: R = A/G.
b Pf11.1_PF1 is spanning an intron boundary indicated by “|”.
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gene-specific complementary DNA (cDNA) was performed in a
multiplex reaction using pfg377 and pfs230 primary reverse
primers, 15 µL RNA and Superscript II (Invitrogen) according
to the manufacturer’s protocol. In a second multiplex RT reac-
tion cDNA was reverse transcribed for pf11.1, PF10_0214,
PFI1210w, and PFL0545w using the primary reverse primers
(Table 1). In total, 4 µL of cDNA were added to the primary
PCR (pPCR) mix and 2 µL of primary product to nPCR. The
composition of reaction mixes and thermo profiles are shown
in Supplementary Table 1. The nPCR products were run on a
2% agarose gel. The detection limit of each marker was com-
pared to that of pfs25 qRT-PCR, which is highly sensitive and
widely used [21].

Effects of DNase Treatment on RNA Quality
For marker pf11.1 an additional forward PCR primer was de-
signed to span an exon-intron boundary (Table 1). Including
this primer-binding site into an amplicon covering the poly-
morphic region of pf11.1 resulted in a 680 bp longer fragment.
The sensitivity of both pf11.1 assays was assessed with 2 game-
tocyte trendlines that differed by omitting the DNase digest for
the intron-spanning assay [21]. Assay conditions were identical
except for a higher annealing temperature (58°C) for pPCR with
the intron-spanning primer.

Evaluation of Gametocyte Genotyping Markers in Field Samples
The discrimination power for gametocyte clones in field sam-
ples was assessed for the 2 most diverse markers using 46
RNAs from Burkina Faso. Alleles detected on RNA level were
compared to those found in gDNA of the same sample. In
total, 5 µL RNA, equivalent to 2.5 µL whole blood, were re-
verse-transcribed and amplified for pfs230 and pfg377 by Affi-
nityScript One-Step RT-PCR kit (Agilent Technologies) in
simplex reactions. The nPCR was performed using 1 µL of pri-
mary product. Composition of reaction mixes and thermo pro-
files are shown in Supplementary Table 1. Reaction conditions
were modified because the SuperScript II protocol (Invitrogen)
used for work on parasite culture performed less well in field
samples (data not shown).

The gDNA coextracted from the same blood samples was
amplified for pfg377 and pfs230 as described above with the
following modifications: an increased amount of 5 µL
gDNA, equivalent to 1.25 µL whole blood, was added into a
30 µL reaction. Numbers of gametocytes originally present in
whole blood samples were calculated by a conversion factor
of 10−1.6225 × (copy number pfs25 transcripts/µL whole
blood)0.8518 as described elsewhere [21]. Correlation between
gametocyte density (pfs25 transcripts) and asexual density
(S-type 18SrRNA copy numbers) with DNA or RNA-derived
MOI was analyzed by Kendall rank correlation τ for nonpara-
metric data.

RESULTS

High Allelic Diversity of Gametocyte Genotyping Markers in
PNG
New length polymorphic and gametocyte specifically expressed
genes were selected by screening publically available gametocyte
transcriptome data [18] followed by tandem repeat detection
using Tandem Repeats Finder [23]. Primers were designed to
maximize size variation in amplified fragments. For pfg377 we
combined polymorphic regions 2 and 3 described by Menegon
into one larger amplicon [14]. Similarly, also our pfs230 ampli-
con spans 2 polymorphic regions (Figure 1A). Diversity of both
markers in 111 gDNAs from PNG was highest with 18 pfs230
alleles (HE = 0.92) and 15 pfg377 alleles (HE = 0.81). The detec-
tion limit of each assay and parameters describing the genetic
diversity and resolution of each marker are listed in Table 2. Al-
lelic frequencies of the 6 gametocyte markers showed equal dis-
tribution for most of the pfs230 alleles, but for pfg377 a
predominant allele (39%; Figure 1B). Sequence alignments of
12 pfg377 and 10 pfs230 nPCR products (Supplementary Fig-
ure 1) served for validating CE fragment sizing. Sizing of
pfs230 fragments was more accurate than that of the larger
pfg377 fragments. Comparison of 38 amplicons sized in parallel
with GS500LIZ and GS1200LIZ size standards indicated that
GS1200LIZ yielded better resolution for pfg377 with amplicon
sizes >700 bp (Supplementary Figure 2). GS500LIZ worked well
for pfs230 with amplicons <600 bp.

Detection Limits of Gametocyte Assays Assessed With a
Trendline of Cultured Gametocytes
The limit of detection (LOD) of our gametocyte typing assays
ranged from 1 (pfg377 and pf11.1 without DNase digestion)
to 5 (pf11.1 with DNase digestion) and 10 gametocytes/µL cul-
ture (pfs230, PF11_0214, PFI1201w and PFL0545w; Table 2).
These LODs were 50–500 times less sensitive than that of
pfs25, a qRT-PCR assay able to detect 0.02 gametocytes/µL
blood [21, 24]. Our pfg377 LOD was in line with earlier reports
[14].

Quantifying the Gain in Sensitivity After Bypassing DNase
Digestion
Using an intron-spanning marker permits omitting DNase di-
gestion prior to reverse transcription but also increases ampli-
con length. By using alternative primers for marker pf11.1 we
analyzed whether bypassing digestion would exceed the benefit
of a smaller amplicon. Sensitivity was 5-fold higher for the 680 bp
longer fragment not requiring DNase digestion (Table 2).

Evaluation of Gametocyte Typing Markers in Field Samples
Markers pfs230 and pfg377 were genotyped in parallel in paired
DNA/RNA samples coextracted from 46 blood samples from
Burkina Faso, all of which had been gametocyte-positive by
pfs25 qRT-PCR. RT-PCR was successful in 42/46 field samples
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for pfs230 and in 37/46 samples for pfg377. For pfs230 18 alleles
were detected and 19 for pfg377. For each blood sample, geno-
types detected in gDNA were compared with genotypes ampli-
fied from gametocyte transcripts. A higher concordance
between DNA- and RNA-derived genotypes was observed for
pfs230 (Figure 2). From the total of 93 pfs230 PCR fragments
amplified from all DNA samples, 41 (44.1%) were not observed
in the corresponding RNA fraction. These clones either did not
produce gametocytes or were below the detection limit of RT-
PCR. For pfg377 61.5% (48/78) of fragments were missed on
RNA level (Table 3). Similarly, MOI on DNA level (MOIDNA)
was higher for pfs230 with a mean of 2.21 [range 1–5] infections
per carrier in contrast to 2.11 [range 1–4] for pfg377, also argu-
ing for pfs230 as the more sensitive marker. When combining

all DNA- and RNA-derived genotypes per sample, mean
MOI of pfs230 and pfg377 increased to 3.14 [range 1–6] and
3.08 [range 1–5], respectively (Table 3). This combined MOI
(MOIcombined) represents a more realistic, though still underes-
timated number of any stage of all coinfecting clones per sam-
ple. No correlation between MOIRNA, MOIDNA, MOIcombined,
and gametocyte or asexual densities was found (Kendall rank
correlation, all τ’s > 0, all P-values > .07).

DISCUSSION

Gametocyte typing depends on detection of transcripts from
genes exclusively transcribed in gametocytes. In addition, exten-
sive length polymorphism is required to permit tracking of

Figure 1. Location of repeat regions within pfs230 and pfg377 amplicons and allelic diversity of 6 gametocyte markers. A, Markers pfs230 and pfg377 both
span 2 distinct repeat regions. Individual repeat units are in shades of grey. Protein sequences of Plasmodium falciparum strain 3D7 were derived from Plas-
moDB: PF3D7_0209000 (pfs230 ) and PF3D7_1250100 (pfg377 ). B, Allelic frequencies of 6 molecular markers for genotyping gametocytes determined in 111
cross-sectional samples from Papua New Guinea. Highest diversity was found for pfs230 (18 alleles) and pfg377 (15 alleles). The rounded average allele size is
indicated for each allele in addition to the frequencies of the most frequent alleles of each marker in the study population. Abbreviations: NF, nested PCR
forward primer; NR, nested PCR reverse primer; PCR, polymerase chain reaction; PF, primary PCR forward primer; PR, primary PCR reverse primer.
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gametocytes from multiclone infections. Multiple P. falciparum
infections can coexist over weeks or months, but the variation
in their relative densities and contribution to transmission over
time has not yet been adequately quantified. The available data
on gametocytes production of individual co-infecting clones
were compromised by limited size-polymorphism in marker
pfg377-R3 [5, 15–17, 25]. High-endemic settings are characterized
by high MOI, where a limited marker resolution of ≥7 alleles will
not adequately discriminate gametocytes of all clones present in a

sample. By combining 2 repeat regions into 1 amplicon, we sub-
stantially improved the discriminatory power of both major
markers. In 46 samples from Burkina Faso we detected 19 pfg377
and 18 pfs230 alleles by CE. A comparable diversity was observed
in samples from PNG indicating that these markers may have suf-
ficiently high diversity for genotyping in both African and non-
African populations with different transmission intensity.

High MOI in the Burkina Faso study area [26] can contribute
to discrepant results between RNA- and DNA-derived MOI.

Table 2. Resolution of 6 Polymorphic Gametocyte Markers in Comparison to Asexual Marker Msp2 in 111 P. falciparum Positive Cross-
Sectional Samples From PNG

Marker
Positive
Samples

No. of
Clones

No. of
Alleles

CE-Product
Size Range Mean MOI HE

In Vitro Detection Limit
(Gametocyte/µL 3D7 Culture)

Msp2a 111/111 . . . . . . . . . 1.56 . . . . . .
Pfs230 95/111 124 18 463–614 1.31 0.923 10

Pfg377 97/111 117 15 521–695 1.21 0.816 1

Pf11.1 100/111 125 10 143–327 1.25 0.734 1 if intron boundary
5 if no intron boundary

PF11_0214 100/111 104 4 355–376 1.04 0.293 10

PFI1210w 90/111 110 5 442–551 1.22 0.527 10
PFL0545w 95/111 113 7 453–519 1.19 0.546 10

Abbreviations: HE, heterozygosity; MOI, multiplicity of infection; Msp2, merozoite surface protein 2.
a Results from [19].

Figure 2. Schematic of analytical procedures (right panel) and overlap of genotypes detected simultaneously in RNA and DNA by blood sample (left
panel). A, Pfs230, 42 paired RNA/DNA samples. B, Pfg377, 37 paired RNA/DNA samples. Abbreviation: MOI, multiplicity of infection.
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High MOI implies high clone competition in the host, resulting
in turn in fluctuations in clone densities [27]. During PCR the
presence of several templates of various concentrations may
lead to template competition. Both effects of high MOI result
in imperfect detectability [28]. This effect of competing tem-
plates, leading to lack of detection of genotypes either in
DNA- or RNA-based detection, is enhanced by applying a cut-
off for peak height in CE to separate background noise from real
signals (Figure 3). In view of these inherent shortfalls, it seems
essential to optimize sampling and preservation of both DNA and
RNA to maximize the volume of template in PCR and RT-PCR
in order to minimize the failures to detect all alleles present.

When comparing paired RNA- and DNA-derived fragments,
3 scenarios are expected: (I) RNA- and DNA-derived alleles
match; here asexual stages and gametocytes of a clone are con-
currently present in the blood sample, or DNA- and RNA- al-
leles both derive from gametocytes only. Yet, in multiclone
infections a perfect match might be rare because the ratio of
asexual vs sexual stages of each clone could differ considerably.
(II) DNA-derived alleles exceed those obtained from RNA of
the same sample. This is intuitively expected, because only
some of the concurrent clones might produce gametocytes, as
suggested by the frequent absence of gametocytes in some of

the P. falciparum-positive blood samples despite molecular de-
tection. (III) RNA-derived alleles are detected despite their ab-
sence on DNA level. This could occur when a gametocyte clone
is still circulating while its asexual stages are already cleared by
the immune system or below the detection limit. The gameto-
cytes’ nuclear DNA in this scenario remains below the detection
limit of PCR or suffers from competition in multiclone
infections.

In our study all 3 scenarios were seen, with scenario I pre-
dominant for pfs230 and scenario II for pfg377. An explanation
for this discrepancy is offered by the differential performance of
our 2 markers, which differed in their ability to detect a clone on
both DNA- plus RNA level: pfs230 detected at least one match-
ing genotype in >80% of samples, in contrast to only 60% for
pfg377. Similarly, more RNA clones were missed by pfg377
(60%) than by pfs230 (45%). This argues for a higher sensitivity
of pfs230 compared to pfg377 RT-PCR.

The imperfect detectability observed in asexual clones [6, 28]
is aggravated in gametocyte detection, because gametocytes
occur in densities about 100-fold lower than asexual stages
[29]. Detection of gametocytes depends greatly on the blood
volume processed, whereby a rare gametocyte clone might be
present or absent by chance in the limited volume of blood pro-
cessed. An additional limitation specific for Pfg377 consists in
its expression restricted to female gametocytes. Our RT-PCR as-
says amplified gametocyte-specific transcripts in field samples
that contained as little as 2 gametocytes/µL whole blood, as indi-
cated by the LOD for pfs230 and is thus in the range of previously
published assays [14, 30]. Even though this LOD permits detec-
tion of submicroscopic gametocytes, it does not reach the up to
100-fold higher sensitivity of pfs25 qRT-PCR [21].This difference
is mainly due to a lower expression rate of pfs230 compared to
pfs25. Amplicon size and differential stability of the RNA may
play an additional role as previously suggested [21].

We propose another strategy to address the problem of im-
perfect detectability of gametocyte clones: a longitudinal study
design would permit to detect a particular genotype on RNA-
level in a subsequent blood samples harboring higher gameto-
cyte density. It is possible that sexual and asexual densities do
not peak at the same time due to a 10 days maturation period of
gametocytes. Therefore, a better match may be achieved by
comparing results from consecutive bleeds. A gametocyte
clone missed at an earlier sampling date might appear in the fol-
lowing sample. This approach parallels our strategy adapted to
track asexual clones also fluctuating in their densities over time
[28, 31, 32]. Nevertheless, even a longitudinal approach to ga-
metocyte tracking will not overcome the imperfect detection
of a gametocytemia that is persistently very low.

No other candidate of higher diversity and sensitivity than
our CE-based pfg377 and pfs230 assays was found. Thus, length
polymorphism of intragenic repeat regions in gametocyte-
expressed genes seems to be less extensive than in genes

Table 3. Discrimination Power and Test Sensitivity of
Gametocyte Typing Markers pfs230 and pfg377 in 46 Blood
Samples From Burkina Faso

Marker pfs230 pfg377

No. of successful amplified
samples

42/46 37/46

Detection limit in field
samplesa

2 gametocyte/µL
WB

3.5 gametocyte/
µL WB

Median gametocyte
counta

17.0 gametocyte/
µL WB

17.9 gametocyte/
µL WB

No. of different alleles 18 19

DNA/RNA sample pairs
with at least 1 matching
PCR fragment

38/42 (85.7%) 22/37 (59.5%)

Total no. of PCR fragments
detected (DNA and RNA
combined)

132 114

Proportion of DNA
fragments not found on
RNA level

41/93 (44.1%) 48/78 (61.5%)

Proportion of RNA
fragments not found on
DNA level

39/91 (42.9%) 36/66 (54.5%)

Combined mean MOI
(DNA and RNA)

3.14 [range 1–6] 3.08 [range 1–5]

Mean MOI (DNA) 2.21 [range 1–5] 2.11 [range 1–4]

Mean MOI (RNA) 2.17 [range 1–5] 1.78 [range 1–4]

Abbreviations: MOI, Multiplicity of infection; PCR, polymerase chain reaction;
WB, whole blood.
a Determined by a conversion factor based on pfs25 transcripts copies/µL RNA
[21].
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expressed in asexual stages. For improving discrimination
power beyond 18 alleles by pfs23-CE, alternative approaches
could be investigated in, for example, future detection of
single nucleotide polymorphisms by targeted next generation
sequencing. However, the major challenges will likely persist,
e.g. imperfect clone detectability in a limited blood volume
from the field, expression levels of polymorphic gametocyte-
specific genes, and assay sensitivity impaired by long amplicons.

A major gap in our knowledge of P. falciparum transmission
dynamics is the onset and duration of gametocytogenesis of
each asexual clone in relation to coinfecting clones and the con-
tribution of resistant clones to transmission. We envisage that
the molecular description of clone transmission dynamics

may yield molecular gametocyte-specific parameters similar
to those used in the description of infection dynamics and com-
plementing these, for example, the duration of gametocyte pro-
duction or multiplicity of gametocyte clones. This will open up
new investigations of clone interaction, within-host competition,
and clonal fitness. So far, very little is known on gametocyte dy-
namics in natural infections, where concurrent clonal infections
might contribute to transmission equally or in competition with
each other. This determines parasite recombination inmosquitoes,
which in turn has major consequences for development of mul-
tilocus drug resistance phenotypes or antigenic diversity.

In summary, we improved the resolution of existing markers
for discriminating gametocyte clones, but were unable to find

Figure 3. Electropherograms of pfg377 fragments amplified by nested PCR from gDNA and nested RT-PCR from RNA coextracted from the same sample.
Arrows indicate minority peaks, which had fallen below the cutoff, whereas matching fragments of significant peak height were present in the correspond-
ing sample. Abbreviation: RT-PCR, reverse transcription polymerase chain reaction.
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alternative polymorphic markers of higher diversity. Pfs230
emerged as the most sensitive and diverse marker. Detectability
of minority clones was identified as a major problem for match-
ing asexual clones with their gametocytes. The loss of minority
clones seemed strongest in the high transmission setting with
high mean MOI where about half of all clones were missed in
either of the paired samples. Longitudinal analyses are needed
to permit temporally staggered alignment of fragments to com-
pensate imperfect detectability. This calls for longitudinal stud-
ies with short-term sampling intervals specifically designed for
genotyping DNA and RNA targets in parallel.

Supplementary Data
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