
Journal of Mechanics, Vol. 28, No. 3, September 2012 523 

 

MODELING SHALLOW OVER-SATURATED MIXTURES ON 
ARBITRARY RIGID TOPOGRAPHY 

 

 I. Luca * C. Y. Kuo 

 Department of Mathematics II Division of Mechanics, Research Center for Applied Sciences 
 University Politehnica of Bucharest Academia Sinica 
 Splaiul Independentei 313, 060042 Bucharest, Romania Taipei, Taiwan 11529, R.O.C. 

 

 K. Hutter Y. C. Tai 

 Bergstrasse 5, 8044 Zürich Department of Hydraulic and Ocean Engineering 
 Switzerland National Cheng Kung University 
  Tainan, Taiwan 70101, R.O.C. 

 

ABSTRACT 

In this paper a system of depth-integrated equations for over-saturated debris flows on three-      
dimensional topography is derived.  The lower layer is a saturated mixture of density preserving solid 
and fluid constituents, where the pore fluid is in excess, so that an upper fluid layer develops above the 
mixture layer.  At the layer interface fluid mass exchange may exist and for this a parameterization is 
needed.  The emphasis is on the description of the influence on the flow by the curvature of the basal 
surface, and not on proposing rheological models of the avalanching mass.  To this end, a coordinate 
system fitted to the topography has been used to properly account for the geometry of the basal surface.  
Thus, the modeling equations have been written in terms of these coordinates, and then simplified by us-
ing (1) the depth-averaging technique and (2) ordering approximations in terms of an aspect ratio ε which 
accounts for the scale of the flowing mass.  The ensuing equations have been complemented by closure 
relations, but any other such relations can be postulated.  For a shallow two-layer debris with clean water 
in the upper layer, flowing on a slightly curved surface, the equilibrium free surface is shown to be hori-
zontal. 

Keywords: Two-layer debris flow, Over-saturated mixture, Shallow flow, Fluid mass exchange, Ar-
bitrary topography. 

1.  INTRODUCTION 

There are many geophysical flows, such as earth-
quake, typhoon induced landslides, turbidity currents, 
which develop into a shallow layer of solid-fluid (e.g. 
sediment-water) mixture beneath a lighter fluid layer 
(e.g. clean water).  Larcan et al. [1] have evidenced 
such a stratification in a dam-break experiment of hy-
perconcentrated mixture of water and granular material, 
depending on the bed slope and the solid volume frac-
tion.  The need to have models for a two-layer debris 
flow (called immature debris flow by Takahashi [2]), is 
therefore clear.  

There are models in which the lower sediment-water 
layer is treated as a one-constituent body with its own 
rheology, Fraccarollo and Capart [3], Morales [4], Luca 
et al. [5].  Slightly more general, Fernández-Nieto et 
al. [6] treat the lower layer as a mixture of two con-

stituents moving with the same velocity and according 
to the momentum balance equation of the mixture as a 
whole; doing so, the stresses of each mixture constitu-
ent could be accounted for in this momentum balance 
equation.  All the cited papers consider the two layers 
as being immiscible.  The most comprehensive treat-
ment of an immature debris flow is likely due to Taka-
hama et al. [7], which includes the fluid mass exchange 
at the layer interface, but still dealing with mixture 
constituents moving with the same velocity, which ex-
cludes the influence of the interaction force between the 
mixture constituents.  

However, equality of the granular and pore-fluid ve-
locities in a sediment-water mixture is a strong assump-
tion.  With it a debris can not be initiated by motion of 
water on a stable debris deposition (such as a dam or 
soil slope).  Moreover, a consolidation process in the 
debris deposit of a water soaked landslide is equally 
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impossible to be described.  Larcan et al. [1] empha-
sized the need to have a model for a two-layer debris 
flow in which each mixture constituent is considered 
with its own velocity.  To our knowledge, except the 
papers by Berzi et al. [8-10], in which a simple model 
is proposed for such a flow in a laboratory chute, a 
general model taking into account the temporal effects 
has not yet been derived.  However, theoretical 
descriptions of the motion of an ice layer above an 
ice-sediment layer by Hutter et al. [11], Svendsen et al. 
[12] and Wu et al. [13] are quite general: different ve-
locities of ice and sediment in the lower layer, and mass 
entrainment at the layer interface.  

Here we treat the debris as developed into a lower 
solid-fluid mixture layer, in which each constituent 
moves according to its own mass and momentum bal-
ance equations, and an upper fluid layer, with or with-
out fluid mass transfer at the layer interface.  More-
over, noting that the trend in avalanche modeling is to 
account for curvature effects (see, e.g., Sivakumaran et 
al. [14], Dewals et al. [15], Iverson [16], Pudasaini et al. 
[17,18], Bouchut and Westdickenberg [19], De Toni and 
Scotton [20], Bouchut et al. [21], Tai and Kuo [22], Tai 
and Lin [23], Pelanti et al. [24], Luca et al. [25-27,5]), 
emphasis is on the description of the flow on arbitrary 
terrain, using the approach initiated by Bouchut and 
Westickenberg [19], and not on the formulation of con-
stitutive laws, even if we indicate such laws as possible 
choices.  In particular, the shallow saturated mixture in 
the lower layer is treated in Truesdell’s sense, in the 
same manner as it has been done by Luca et al. [27].  

In Sect. 2 we recall the change of coordinates as used 
by Bouchut and Westdickenberg [19] in the neighbor-
hood of the basal topography, and list the properties of 
this change of coordinates.  In Sect. 3 we present the 
intrinsic modeling equations describing the two-layer 
flow of debris with fluid mass exchange at the layer 
interface (miscible layers) and without such a mass en-
trainment (immiscible layers).  Balance statements of 
mass and momentum are presented in absolute and  
topography-fitted curvilinear coordinates as are bound-
ary and transition conditions.  The equations are made 
dimensionless, then depth-integrated over the two lay-
ers, and subsequently, via a scaling analysis, reduced to 
shallow flow equations.  Closure relations are pre-
sented in Sect. 4, and in Sect. 5 a set of model equations 
in a single spatial dimension are presented.  In Sect. 6 
we show that, when a shallow over-saturated mixture, 
with water as the fluid constituent, is at rest on a 
slightly curved basal topography, the modeling equa-
tions predict a horizontal free surface.  We end with 
conclusions in Sect. 7.  

Let us introduce notations, which we use throughout 
the paper.  The 2-column matrices are denoted by 
small upright boldface letters, e.g., a, and the 2 × 2 ma-
trices are denoted by capital upright boldface letters, e.g. 
A.  A similar notation, but with slanted letters, e.g., a, 
A, is used for vectors and tensors in the translation 
vector space V of the 3D Euclidean space E.  The dy-
adic product of two column matrices a and b is a ⊗ b ≡ 
abT where T stands for the transpose of a matrix; the 
symbol ⊗ also denotes the tensor product of two vec-

tors in V.  For a square matrix A, tr A is the trace and 
det A is the determinant of A.  The inner product of 
the 2-column matrices a and b is a ⋅ b ≡ tr (abT), and if 
A, B are square matrices, A ⋅ B ≡ tr (ABT).  Greek 
indices have the values 1, 2, Latin indices range from 1 
to 3, and summation over repeated indices is understood.  
The matrix I denotes the 2 × 2 unit matrix, α

βδ  is the 
Kronecker symbol, and 1 is the unit second order tensor 
on V.  For a scalar function f and a 2-column matrix 
function v = (v1, v 2)T depending on the Cartesian coor-
dinates x1, x2 (Fig. 1), we let grad denote the gradient 
operator, i.e.,  

 
1 2

grad , , grad ,
T

f f vf
x x x

α

β

⎛ ⎞⎛ ⎞∂ ∂ ∂
≡ ≡ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

v  

and if f, v depend on the curvilinear coordinates ξ1, ξ2, 
we use Grad, i.e.,  

 1 2Grad , , Grad .
T

f ff
α

β

⎛ ⎞⎛ ⎞∂ ∂ ∂υ
≡ ≡ ⎜ ⎟⎜ ⎟∂ξ ∂ξ ∂ξ⎝ ⎠ ⎝ ⎠

v  

Notation Div stands for the divergence operator refer-
ring to ξ1, ξ2, 

 Div , Div ;v Tα αβ

αα β

∂ ∂
≡ ≡

∂ξ ∂ξ
v T e  

T is a 2 × 2 -matrix function with Tαβ as entries, and 

 1 2(1, 0) , (0, 1) .T T≡ ≡e e  (1) 

2.  CHANGE OF COORDINATES 
In modeling surface flows on general topography, 

Bouchut and Westdickenberg [19] and, independently, De 
Toni and Scotton [20] have used curvilinear coordinates 
fitted to the topography.  For the flow over a spillway this 
type of coordinates has been also used by Dressler [28], 
Sivakumaran et al. [14,29] and Dewals et al. [15].  In this 
paper we use the approach initiated in [19].  

We briefly describe the topographic surface.  Let-
ting Ox1x2x3 be a Cartesian coordinate system in the 3D 
Euclidean point space E, such that Ox3 is (physically) 
the vertical direction, see Fig. 1, the mathematical 
model of the land area is a surface S given parametri-
cally by  

 ( )
1 2 1 2

1 1 2 2
1 2 1 2

3 1 2

( , ) , ( , ) ,
( , ), ( , ) ;

x x x x
x b x x

= ξ ξ = ξ ξ
= ξ ξ ξ ξ

 

x1, x2, and b are functions of class C2 on some open 
subset Δ0 of R2, and 

 
, {1, 2}

det 0 , .i

i

x
α

α∈

⎛ ⎞∂
> ≡ ⎜ ⎟∂ξ⎝ ⎠

F F  (2) 

If ρ is the position vector (in the Cartesian coordinate 
system) of a point on S, then 

 , {1, 2} ,α α

∂
≡ α ∈

∂ξ
ρ

τ  (3) 
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Fig. 1 Geometry of the two-layer flow with layers E1, 

E2, basal surface S, interface S1 and top sur-
face S2.  Layer E1 is filled with a solid-fluid 
mixture, layer E2 with the same fluid. The bed 
is treated as rigid 

define the natural basis of the tangent space to S at that 
point, and a unit normal vector field to S is  

 1 2

1 2

× ;
|| ||

≡
×

τ τ
τ τ

n  

here × stands for the cross product of two vectors, and 
|| || represents the Euclidean norm.  Condition (2) im-
plies that n so defined points upwards.  We denote the 
components of n with respect to the Cartesian basis {i1, 
i2, i3} by (−s1, −s2, c), and collect s1, s2 in the 2-column 
matrix s ≡ (s1, s2)T.  We have 

 1/ 2(1 grad grad ) , grad .c b b c b−= + ⋅ =s  (4) 

The coefficients of the first fundamental form of S are 
φαβ ≡ τα ⋅ τβ, see (3), and  

 1 1
0 0( ) , ( ) ,T− − −

αβφ = ≡ − ⊗M M F I s s F  (5) 

holds.  By the representation  

 , {1, 2} ,b Wα α
αβ β αβ

∂
= − β ∈

∂ξ
= − τ τ

n  

with {τ1, τ2} the reciprocal basis of {τ1, τ2}, one defines 

 ( ) , ( ) .b W α
αβ β≡ ≡H W  (6) 

Notice the matrix relations  

 0 , grad (grad ) .Tc b= =W M H H F F  (7) 

The curvature tensor H and the mean curvature Ω at a 
given point on S are defined by  

 1 1, tr tr .
2 2

b α β
αβ≡ ⊗ ≡ = WH Hτ τ Ω  (8) 

If r is the position vector of a point P lying near the 
basal surface, and ρ(ξ1, ξ2) is the position vector of the 
perpendicular projection onto S of P, the relation  

 1 2 1 2 1 2
1 2 3( , , ) ( , ) ( , ) ( , , )x x x = ξ ξ + ξ ξ ξ ≡ ξ ξ ξr n rρ  (9) 

defines a change of coordinates in a neighborhood of S, 
provided the Jacobian J of this transformation is non- 
zero.  Since J is given by  

 1 det with ( ) ,J
c

= ≡ − ξB B F I W  (10) 

condition J ≠ 0 is equivalent to 

 det( ) 0 .− ξ ≠I W  (11) 

This gives the constraint on the “arbitrariness” of the 
topography.  The vectors 

 
3

( ) , {1, 2} ,Wα α
β β β αβ

∂
≡ = δ − ξ β ∈

∂ξ
∂

≡ =
∂ξ

τ
rg

rg n
 (12) 

define the natural basis of V  at P.  Remarks:  
1. To work with the components of vector and tensor 

fields in block matrix form, as initiated in [19], cor-
responding to a vector v = vi gi and a symmetric ten-
sor σ = T ijgi ⊗ gj, the following quantities are in-
troduced: 

 

1 2 3

11 12 13

12 22 23

( , ) , v ,

, .

Tv v v

T T T
T T T

≡ ≡

⎛ ⎞ ⎛ ⎞
≡ ≡⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

v

T t
 (13) 

2. Equation (12) shows that g1, g2 are parallel to S, and 
g3 is normal to S.  Thus, see (13), we speak of the 
tangential components v and the normal component 
v of v; similarly, if σ is the stress tensor, T11, T22 are 
the normal stresses parallel to the base, T33 is the 
normal stress, T12 is the shear stress in the tangential 
direction, and t gives the shear stresses in the normal 
direction.  

3. If the stress tensor σ is written as 

 ,Ep= − +1σ σ  (14) 

with p the pressure and σE the extra-stress tensor, we 
have 

 33 33+ , , ,p T p P= − = = − +T M P t p  (15) 

where T, t, T33 refer to σ, and P, p, P33 refer to σE, 
according to (13); M is  

 1( ) ,T− −≡ − ⊗M B I s s B  

and note M0 = M | ξ = 0.  

https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jmech.2012.62
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 16:55:44, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jmech.2012.62
https:/www.cambridge.org/core


526   Journal of Mechanics, Vol. 28, No. 3, September 2012 

3.  SHALLOW FLOW OF AN 
OVER-SATURATED MIXTURE 

The flowing body is considered as consisting of a 
granular material and a lighter fluid, say water1.  The 
fluid is assumed to be in excess, so that the avalanching 
mass develops into two layers - the lower layer E1, in 
which granular solid and fluid coexist, and the upper 
layer E2, in which solely the fluid is present, see Fig. 1.  
Fluid mass may be exchanged between the layers.  

3.1  Intrinsic Modeling Equations 
The basic equations at hand are as follows.  

(1) In the lower layer the solid-fluid mixture consists 
of granular and fluid material treated as continuous 
bodies, moving according to the mass and momen-
tum balances, in which the dynamic interaction is 
accounted for by means of the so-called interaction 
force, denoted here by 

+
m .  Thus, for the solid 

constituent, characterized by ρs (mass of the solid 
constituent per mixture volume), the velocity v and 
the stress tensor σs (see Table 1 for notations), mass 
and momentum balance equations are  

 
div ( ) 0 ,

div ( ) ,

s
s

s
s s s

t

t

+

∂ρ
+ ρ =

∂
∂ρ

+ ρ ⊗ − = ρ +
∂

σ

v

v v v b m
 (16) 

where b is the specific body force (here gravity ac-
celeration) and div is the spatial divergence operator.  
Similarly, for the fluid constituent, characterized by 
ρf (mass of the fluid constituent per mixture vol-
ume), the velocity u and the stress tensor σf obey 
the mass and momentum balances 

 
div ( ) 0 ,

div ( ) ,

f
f

f
f f f

t

t

+

∂ρ
+ ρ =

∂
∂ρ

+ ρ ⊗ − = ρ −
∂

σ

u

u
u u b m

 (17) 

where the opposite of 
+
m  has been taken in (17).  

Moreover, we assume that (i) the constituents are 
density preserving, that is, the true densities sρ , 

fρ  (mass of a constituent per volume of that con-
stituent) are constant in time and uniform in space, 
and that (ii) the mixture is saturated, that is, there is 
no void space within the mixture.  If υ is the solid 
volume fraction (volume of the solid constituent per 
volume of the mixture), we therefore have 

 , (1 ) , (0, 1) ,s s f fρ = υρ ρ = − υ ρ υ∈  

which transforms Eqs. (16), (17) into 
                                                           

1 The pore fluid here may also be considered to be a slurry, i.e., 
a fluid with suspended clay particles. 

Table 1 Notations for densities, velocity vectors and 
stress tensors in the two-layer system 

layer E1 (lower layer) 

solid constituent 
ρs = υ sρ , v, σs 

sρ = constant 

fluid constituent 
ρf = (1 − υ) fρ , u, σf 

fρ = constant 

mixture as a whole 
ρ1 ≡ ρs + ρf 

v1 ≡ csv + (1 − cs)u,   cs ≡ ρs / ρ1 
σ1 ≡ σs + σf + ρ1 v1 ⊗ v1 − ρs v ⊗ v − ρf  u ⊗ u 

layer E2 (upper layer) 

fρ , v2, σ2 

 

 
div ( ) 0 ,

1 1div ,s
s s

t

t

+

∂υ
+ υ =

∂
⎧ ⎫∂υ

+ υ ⊗ − = υ +⎨ ⎬
∂ ρ ρ⎩ ⎭

σ b m

v

v
v v

 

and, respectively, 

{ }(1 ) div (1 ) 0 ,

(1 ) 1 1div (1 ) (1 ) ,f
f f

t

t

+

∂ − υ
+ − υ =

∂
⎧ ⎫∂ − υ ⎪ ⎪+ − υ ⊗ − = − υ −⎨ ⎬

∂ ρ ρ⎪ ⎪⎩ ⎭

u

u u u b mσ
 

(2) In the upper layer the fluid is characterized by the 
density fρ  (we assumed the same fluid in both 
layers), the velocity v2 and the stress tensor σ2, and 
moves according to mass and momentum balances 

 
2

2
2 2 2

div 0 ,
1div .

ft

=
⎧ ⎫∂ ⎪ ⎪+ ⊗ − =⎨ ⎬∂ ρ⎪ ⎪⎩ ⎭

bσ

v

v
v v

 

(3) The basal surface S, x3 − b(x1, x2) = 0, is a stagnant 
material surface (we neglect erosion/deposition), so 
that the kinematic boundary conditions read 

 0 , 0 .⋅ = ⋅ =v n u n  

Because of computational intricacies the stresses at 
the base will be postulated in Sect. 4.   

(4) The layer interface S1, F1 (x1, x2, x3, t) = 0, is the 
surface separating the lower layer from the upper 
layer (we choose F1  such that n1 = 
∇F1 / ||∇F1 || points into the upper layer).  More 
exactly, S1 is the upper boundary of the granular 
material (S1 is material with respect to the solid 
constituent), which implies 

 1
1 0F F

t
∂

+ ∇ ⋅ =
∂

v  (18) 

at F1 = 0.  In particular, (18) shows that the speed 
U1 of displacement of the interface, defined as 
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 1
1 1 1/ || || at 0 ,F F F

t
∂

≡ − ∇ =
∂

U  

is equal to the normal component of the velocity of 
the solid constituent, i.e., U1 = v|F1 = 0 ⋅ n1.  

If E1, E2 are immiscible layers (say, case (I)), S1 
also coincides with the upper boundary of the fluid 
constituent in E1 and the lower boundary of the fluid 
in E2.  Thus,  

 1 1
1 1 20 , 0F FF F

t t
∂ ∂

+ ∇ ⋅ = + ∇ ⋅ =
∂ ∂

u v  (19) 

hold at F1 = 0 if there is no fluid mass flux across S1.  
In particular we have U1 = u|F1=0 ⋅ n1 = v2|F1=0 ⋅ n1.  
However, if fluid mass transfer into/from the mixture 
occurs (say, case (II)), the mass balance across S1 for 
the fluid in both layers must be accounted for:  

 1 1 1

2 1 1

( ) 0
( ) ,f int

ρ − ⋅ = ⇔
ρ ⋅ − =

U
U

n n
n

v
v M

 (20) 

where 

 
1 11 1 0 1 0( ) | ( ) |int f F f F= =≡ ρ ⋅ − = ρ − ⋅Uu n u nvM  (21) 

represents the fluid mass flux from the sedi-
ment-water mixture layer into the water layer.  In 
(20)1, as well as in the forthcoming (22), ρ, v are 
generic notations for the density and velocity fields.  

Conditions (19) are equivalent to (20) and  
Mint = 0.  Thus, the forthcoming analysis refers to 
case (II): The modeling equations for case (I) will 
consist of the modeling equations for case (II), to-
gether with condition Mint = 0.  

Apart from the jump of the mass across S1, (20), 
we account for the jump of momentum across S1.  
We consider the momentum interaction (i) between 
the pore fluid in E1 and the fluid in E2, and (ii) be-
tween the mixture as a whole in E1 and the fluid in E2.  
For each case the momentum jump across S1 takes 
the form 

 1 1 1 1 1( ) ( ) .− ρ − ⊗ − ⋅ =U Uσ n n n 0v v  (22) 

This entails a postulate about which part of the trac-
tion σ2n1 in E2 must be accounted for when (22) is 
used for the constituent fluid alone.  A sensible 
choice is to postulate  

 2 1 , with = 1 ,− υσ nλ λ  (23) 

which is a constitutive assumption.  Our choice for 
λ is a first, obvious suggestion.  Thus, by using 
(23), exploitation of the jump condition (22) for the 
fluid gives 

 1 2 1 2(1 ) ( )f int= − υ + −Mn n uσ σ v  

at F1 = 0.  Then, using (23), (22) for the mixture 
(see Table 1 for mixture quantities) reduces to the 
appealing statement 

 ( )1 2 1 2 1= (1 ) .s υ = −σ σ σn n nλ  (24) 

Let us comment on result (24): (24) has also been 
used by Wu et al. [13] for the flow of a glacier, 
however in a special form and as a consequence of 
two distinct assumptions: υ = 0 and σsn1 = 0 at F1 = 
0.  In the model by Berzi et al. [8-10] for a two- 
layer flow with a sediment-water mixture in the 
lower layer and clean water in the upper layer, σsn1 
= 0 is presumed at the layer interface and, as in 
Fraccarollo and Capart [3], a uniform υ along the 
avalanche depth is considered - this is different from 
(24).  Here we use (24), which is based on (23), and 
deal with a solid volume fraction which slightly de-
viates from uniformity along the depth, except, 
eventually, near the layer interface.  We introduce 
Boussinesq coefficients (see below) to account for 
these deviations, and let υ at the interface assume a 
value determined from experiments (Egashira et al. 
[30] used υ = 0.05, cf. Takahama et al. [7]).  

(5) The free surface, say S2, is material for the upper 
fluid, since we do not consider any mass exchange 
at this surface.  Therefore, 

 2
2 2 20 , at 0 ,F F F

t
∂

+ ∇ ⋅ = =
∂

v  (25) 

where F2 (x1, x2, x3, t) = 0 represents the equation of 
S2.  Moreover, S2 is assumed traction-free: 

 2 2 2, at 0 ,F= =σ n 0  (26) 

where n2 is the unit normal vector to S2.  

3.2 Dimensionless Equations in Curvilinear 
Coordinates 

Using a typical length L tangent to the topography, 
the gravitational acceleration g, and the densities sρ , 

fρ , we introduce non-dimensional fields as follows:  

 

1 2 3 1 2 3

2 2

ˆ

2 2

ˆˆ ˆ ˆ( , , , ) ( , , , ) ,

ˆˆ ˆ ˆ( , , , ) ( , , , / ) ,

ˆ , , ,

ˆ ˆ ˆ, ( , ) ( , ) .

s int f int

s s s f f f

x x x b L x x x b

t Lg t Lg

g g Lg

Lg Lg

+ +

=

=

= = ρ = ρ

= ρ = ρ

M F

σ σ σ σ σ σ

u u

b b m m

v v v v

 (27)

 

Let (ξ1, ξ2) ≡ ξ be length-dimensional surface parame-
ters, and define non-dimensional ξ̂ , ξ̂  by 

 ˆ ˆ, ) (L( ξ ξξ = ξ, ). (28) 

Henceforth we shall omit the hat when dealing with 
dimensionless quantities.  For instance, the non-  
dimensional mass flux at the layer interface is 
 

11 1 0(1 )( ) | .int F =≡ − υ ⋅ −F Uu n  (29) 

Thus, with the scalings (27), (28) and with 

 / ,sf s fc ≡ ρ ρ  (30) 

the modeling equations (1) ~ (5) emerge as follows:  
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(1′) in the lower layer, the mass and momentum bal-
ance equations for the solid constituent, 

 
div ( ) 0 ,

div{ } ,s

t

t

+

∂υ
+ υ =

∂
∂υ

+ υ ⊗ − = υ +
∂

v

v v v b mσ  (31)
 

and for the fluid constituent, 

 

{ }

{ }

(1 ) div (1 ) 0 ,

(1 ) div (1 )

(1 ) ;

f

sf

t

t
c

+

∂ − υ
+ − υ =

∂
∂ − υ

+ − υ ⊗ −
∂

= − υ −

σ

u

u u u

b m  (32)

 

(2′) in the upper layer, the mass and momentum bal-
ance equations for the fluid,  

 
2

2
2 2 2

div 0 ,

div{ } ;
t

=
∂

+ ⊗ − =
∂

v
v v v bσ

 (33) 

(3′) at the basal surface x3 − b(x1, x2) = 0, the non- 
penetration conditions  

 0 , 0 ;⋅ = ⋅ =v n u n  (34) 

(4′) at the layer interface F1 (x1, x2, x3, t) = 0, the ki-
nematic boundary condition 

 1
1 0 ,F F

t
∂

+ ∇ ⋅ =
∂

v  (35) 

the jump of the fluid mass flow across S1, 

 2 1 1 ,int⋅ − =U Fv n  (36) 

and the conditions on the tractions upon each side 
of S1, 

2 1 2 1 ,sfc = υn nσ σ  (37) 

1 2 1 2) ( ) ;f int= (1− υ + −Fσ σn n u v  (38) 

(5′) at the free surface F2 (x1, x2, x3, t) = 0, the kine-
matic condition and the traction-free condition 

2
2 2 0 ,F F

t
∂

+ ∇ ⋅ =
∂

v  (39) 

2 2 = .n 0σ   (40) 

Relations (31) ~ (40) involve the unknown fields υ, v, 
u, v2, σs, σf, σ2, 

+
m , F1, F2.  No constitutive assump-

tions have been made so far, except (23).  The way in 
which we treat (31) ~ (40) will be shown after the in-
troduction of the topography-fitted curvilinear coordi-
nates.  

We use the representation of the stress tensors σs, σf, 
σ2 in the form (14), i.e., 

2 2 2, , .E E E
s s s f f fp p p= − + = − + = − +1 1 1σ σ σ σ σ σ  

With notations analogous to those in (15) we have 

 33 33, , ,s s s s s s s sp T p P= − + = = − +T M P t p  

and similar relations for the fluid in both layers.  Then, 
the terms in the momentum equations containing the 
Christoffel symbols accompanying the change of coor-
dinates can be gathered in block-matrices of the form  

( )1 1 1

1 1 1

1 1 1

( , ) tr ( ) ,

( , ) 2 ( ) ,

( , v) 2v ( ) ,

( ) ,
( ) ,

T T

T T

p p − − −
αα

− − −
αα

− − −
αα

−

−

⎧ ⎫∂
− ≡ + − ξ⎨ ⎬

∂ξ⎩ ⎭

∂
≡ − + + Γ

∂ξ
∂

≡ − ⊗ + + Γ
∂ξ

Γ ≡ − ⋅
Γ ≡ − ⋅ ⊗

BM 0 B Me W I W B s

BP p B Pe B FWp P B s

Bv B (v v)e B FWv v B s

P B F H P
v B F H (v v)

Γ

Γ

Γ

 

  (41) 

with α = 1, 2, see [25]; p, v are scalars, p, v are 2- 
column matrices, P is a 2 × 2 matrix, e1, e2 are defined 
in (1), and for s, F, B, M, H, W see Sect. 2.  The body 
force b is the gravitational force, so that its non- dimen-
sional components b and b are 

 1 , b ,c c−= − = −b B s  (42) 

see [25].  We have the following results:  
(1′′) In the lower layer, following Luca et al. [27], the 

mass balance (31)1 for the solid constituent reads  

 { } { v} 0 ,J Div J J
t

∂ υ ∂
+ υ + υ =

∂ ∂ξ
v  (43) 

and the momentum balance (31)2 is separated into 
two scalar components parallel to the topography, 

 

{ }

{ }

{ } Div ( )

( v ) ,

, = + ( , v) ,

s s

s s

s s

J J p
t

J J p

J J J J
+

∂
υ + υ ⊗ + −

∂
∂

+ υ − + (− )
∂ξ

+ ( ) υ υ +

v v v M P

v p M 0

P p b v m

Γ

Γ Γ  (44)

 

and a scalar component normal to the topography,  

 

{ }

{ }2 33

{ v} Div ( v )

( v )

= b + ( ) ,

s

s
s

s

J J
t

pJ P J

J J J J
+

∂
υ + υ −

∂
∂ ∂

+ υ − +
∂ξ ∂ξ

+ Γ( ) υ υΓ +

v p

P v m  (45)

 

For the fluid constituent we have the mass balance, 

 
{ } { }

{ }

(1 ) Div (1 )

(1 ) u 0 ,

J J
t

J

∂
− υ + − υ

∂
∂

+ − υ =
∂ξ

u

 (46)
 

the momentum balance parallel to the topography, 
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{ } { }
{ }

(1 ) Div (1 )

(1 ) u , 0 ,

(1 ) + (1 ) ( , u) ,

f f

f f f f

sf

J J p
t

J J p J

J J c J
+

∂
− υ + − υ ⊗ + −⎡ ⎤⎣ ⎦∂

∂
+ − υ − + (− ) + ( )⎡ ⎤⎣ ⎦∂ξ

= − υ − υ −

u u u M P

u p M P p

b u m

Γ Γ

Γ

 

  (47) 

and a momentum equation normal to the topogra-
phy, 

 

{ } { }

{ }2 33

(1 ) u Div (1 ) u

(1 ) u  

(1 )b + (1 ) ( ) m .

f

f
f f

sf

J J
t

p
J P J J

J J c J
+

∂
− υ + − υ −⎡ ⎤⎣ ⎦∂

∂∂ ⎡ ⎤+ − υ − + + Γ( )⎣ ⎦∂ξ ∂ξ

= − υ − υ Γ −

u p

P

u  (48)

 

(2′′) In the upper layer, Eq. (33), written in the curvi-
linear coordinates (9), appear as 

2 2Div{ } { v } 0 ,J J∂
+ =

∂ξ
v  (49) 

{ } { }

{ }

2 2 2 2 2

2 2 2 2

2 2 2 2

Div ( )

(v ) , )

, ) = ( , v ) ,

J J p
t

J J p

J J J

∂
+ ⊗ + −

∂
∂

+ − + −
∂ξ

+ +

v v v M P

v p M 0

P p b v

Γ(

Γ( Γ  (50)

 

{ } { }

{ }
2 2 2 2

33 2
2 2 2 2

2

v Div (v )

v (v ) )

= b ( ) .

J J
t

pJ P J J

J J

∂
+ −

∂
∂ ∂

+ − + Γ
∂ξ ∂ξ

+ Γ

v p

p

v

+ (

 (51)
 

(3′′) At the basal surface, ξ = 0, conditions (34) of the 
tangency of the velocities emerge as 

 v 0 , u 0 at 0 .= = ξ =  (52) 

(4′′) The equation for the layer interface is supposed to 
emerge as F1(ξ, ξ, t) ≡ ξ − h1(ξ, t) = 0; thus, 

1 1

1 1
1

1 1

1 ,
|| || || ||h h

F h
F F

α
α

ξ= ξ=

⎛ ⎞∇ ∂
= = −⎜ ⎟∇ ∇ ∂ξ⎝ ⎠

n n g  (53) 

where {g1, g2, g3 = n} is the reciprocal basis of {g1, 
g2, g3}, and 

 
1

1
1

1

1 .
|| || h

h
F tξ=

∂
=

∇ ∂
U  

As a consequence, at ξ = h1 we have:  
(a) the kinematic boundary condition (35) reads 

 1
1Grad v ;

h
h

t
∂

+ ⋅ =
∂

v  (54) 

(b) the jump relation (36) takes the form 

 1
1 2 2

1Grad v ,h h s
t J

∂
+ ⋅ = −

∂
v int  (55) 

where  

{ }
1

1

1

1
1

|| ||

(1 ) u Grad ;

inth

h

s J F
hJ h
t

ξ=

ξ=

≡ ∇

⎧ ∂ ⎫⎛ ⎞= − υ − − ⋅⎨ ⎬⎜ ⎟∂⎝ ⎠⎩ ⎭
u

Fint

 (56)
 

note the equivalence 

0 0 0 .int int ints= ⇔ = ⇔ =M F  (57) 

(c) condition (37) emerges as 

{ }
{ }

1

2 2 1 2

33
1

33
2 1 2 2

( )Grad

( )Grad ,

{ Grad }

{ Grad } ,

sf s s s

sf s s s

c p h

p h

c h p P

h p P

− + −

= υ − + −

⋅ + −

= υ ⋅ + −

M P p

M P p

p

p
 (58)

 

and (38) is written as 

{ }
1

2 2 1 2

2

( )Grad
(1 ) ( )Grad

1 ( ) ,

f f f

int

p h
p h

s
J

− + −
= − υ − + −

− −

M P p
M P p

u v

 

33
1

33
2 1 2 2

2

Grad
(1 ){ Grad }

1 (u v ) .

f f f

int

h p P
v h p P

s
J

⋅ + −
= − ⋅ + −

− −

p
p

 (59)

 

(5′′) The free surface equation F2 (x1, x2, x3, t) = 0 in 
the curvilinear coordinates (9) is assumed F2(ξ, ξ, t) 
≡ ξ − h2(ξ, t) = 0.  Thus, at ξ = h2 (39) reads 

2
2 2 2Grad v ,h h

t
∂

+ ⋅ =
∂

v  (60) 

and the traction-free condition (40) can be written 
as  

2 2 2 2

33
2 2 2 2

( ) Grad ,

Grad 0 .

p h

h p P

− + −

⋅ + − =

M P p 0

p

=
 (61) 

3.3  Depth-Averaging Procedure 
The equations, derived in Sect. 3.2, are next recast 

into a form which allows the derivation of the final 
equations involving depth-averages of the fields enter-
ing the flow model.  Doing so we shall use the Leibniz 
formula  

( ) ( )

( , ) ( , )

( , ) ( , )
Div Div

, ( , ) Grad , ( , ) Grad ,

g t g t

f t f t
d d

f t f g t g

ξ = ξ

+ ⋅ − ⋅
∫ ∫

ξ ξ

ξ ξ
Λ Λ

Λ ξ ξ Λ ξ ξ
 

for a 2-column matrix Λ = v(ξ, ξ, t), and a square ma-
trix Λ = P(ξ, ξ, t) of order 2.    

First we note that the normal velocity v of the solid 
constituent in the lower layer can be determined, with 
the boundary condition (52)1, by integrating the mass 
balance equation (43) from 0 to ξ ∈ (0, h1): 
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0

1v Div .J J d
J t

ξ ∂ υ⎧ ⎫ ′= − + υ ξ⎨ ⎬
υ ∂⎩ ⎭∫ v  (62) 

Evaluating this at ξ = h1, applying the Leibniz rule to 
the emerging expression and substituting the result into 
(54) yields 

 
1 1

0 0
Div 0 .

h h
J d J d

t
∂

υ ξ + υ ξ =
∂ ∫ ∫ v  (63) 

Similarly, from the mass balance equation (46) for 
the fluid and the boundary condition (52)2 we derive 

 
{ }

0

1u (1 )
(1 )

Div (1 ) .

J
J t

J d

ξ ∂⎧= − − υ⎨− υ ∂⎩
⎫ ′+ − υ ξ⎬
⎭

∫
u

 (64) 

In particular, this turns definition (56) of sint into 

 
1 1

0 0
(1 ) Div (1 ) .

h h

ints J d J d
t

∂
≡ − − υ ξ − − υ ξ

∂ ∫ ∫ u  (65) 

Now, the velocity v2 of the fluid in the upper layer 
can be deduced by integrating mass balance (49) from 
ξ∈(h1, h2) to h2, and using (60).  One obtains 

 
2

2

2

2
2 2 2

2

|
v Grad |

1 Div .

h
h

h

J h h
J t

J d
J

ξ=
ξ=

ξ

∂⎛ ⎞= + ⋅⎜ ⎟∂⎝ ⎠

′+ ξ∫

v

v
 (66) 

In particular, from (66) we can deduce v2|ξ=h1, which, 
when inserted into (55), transforms (55) into 

 
2 2

1 1
2Div .

h h

int
h h

J d J d s
t

∂
ξ + ξ =

∂ ∫ ∫ v  (67) 

We can refer to (63), (67) as the depth-integrated 
mass balance equations corresponding to the solid con-
stituent in layer E1 and the fluid in layer E2.  This is so, 
because (63), (67) can also be deduced by integrating 
(43) from 0 to h1, and (49) from h1 to h2.  Note that by 
integrating the mass balance Eq. (46) from 0 to h1 one 
obtains the expression (65) of sint.  Thus, (65) can be 
conceived as the depth-integrated mass balance “equa-
tion” corresponding to the fluid constituent in layer E1.  
However, this interpretation is misleading, since (65) is 
not an equation: sint is the quantity defined in (56), and 
re-written as (65) by using the solution u of the BVP 
(46) and (52)2.  Unlike (65), relations (63), (67) are 
equations, since they are obtained by introducing v, v2 
into the interface boundary conditions (54), (55).  For 
immiscible layers we have the additional boundary 
condition sint = 0 at ξ = h1, which yields the equation 

 
1 1

0 0
(1 ) Div (1 ) 0 ,

h h
J d J d

t
∂

− υ ξ + − υ ξ =
∂ ∫ ∫ u  

which may be interpreted, without ambiguity, as the 
depth-integrated mass balance equation for the fluid in 
the lower layer.  

Next we re-write the dynamic boundary conditions 
(58)1, (59)1, (61)1.  To this end we depth-average the 
tangential momentum balances (44), (47), (50), i.e., 
integrate (44), (47) from 0 to h1, and (50) from h1 to h2.  
After straightforward calculations using the Leibniz 
rule, the expressions 

 
{ }
{ }

1

2

, , 1 ,

2 2 2 2

( ) Grad ,
( ) Grad ,

s f s f s f h

h

p h
p h

ξ=

ξ=

− + −

− + −

M P p
M P p

 

can be identified in the emerging formulae, which can 
be combined with (58)1, (59)1, (61)1.  The result are 
the following depth-integrated momentum equations: 

[ ]{ }

{ }

1 1

1

1

1 1 1

0 0

2 2 1 2

0 0

0 0 0

Div { + }

1 ( ) Grad

( ) | , ) + , )

, ) ,

h h

s s

h
sf

h

s s s s

h h h

J d J p d
t

J p h
c

J J p d

J d J d J d

ξ=

ξ=

+

∂
υ ξ + υ ⊗ − ξ

∂

+ υ − + −

+ + (− ( ξ

= υ ξ + υ ( ξ + ξ

∫ ∫

∫
∫ ∫ ∫

v v v M P

M P p

p M 0 P p

b v m

Γ Γ

Γ v  (68)

 

{ }
[ ]{ }

{ }

1 1

1

1

1 1

1

1

0 0

2 2 1 2

0 0

0 0

20

(1 ) Div (1 ) +

(1 ) ( ) Grad

( ) | , ) + , )

(1 ) (1 ) , )

| ,

h h

f f

h
h

f f f f

h h

h

s f int h

J d J p d
t

J p h

J J p d

J d J d

c J d s

ξ=

ξ=

+

ξ=

∂
− υ ξ + − υ ⊗ − ξ

∂
+ − υ − + −

+ + (− ( ξ

= − υ ξ + − υ ( ξ

− ξ −

∫ ∫

∫
∫ ∫

∫

u u u M P

M P p

p M 0 P p

b u

m v

Γ Γ

Γ u

  (69) 

and 

 

{ }
[ ]{ }

{ }

2 2

1 1

1

2

1

2 2

1
1 1

2 2 2 2 2

2 2 1 2

2 2 2

2 2 2

Div +

( ) Grad

, ) + , )

, v ) | ,

h h

h h

h
h

h
h h

int hh h

J d J p d
t

J p h

J p d

J d J d s

ξ=

ξ=

∂
ξ + ⊗ − ξ

∂
− − + −

+ (− ( ξ

= ξ + ( ξ +

∫ ∫

∫
∫ ∫

v v v M P

M P p

M 0 P p

b v v

Γ Γ

Γ  (70)

 

for the solid in E1, the fluid in E1 and the fluid in E2.  
We summarize the modeling equations of (1′′) ~ (5′′) in 
Table 2 together with their physical meaning.  In these 
equations v, u, v2 are given by (62), (64), (66).  

To cope with the complexity of these equations we 
follow the so-called depth-averaging procedure, i.e., we 
ignore the local tangential momentum balance equa-
tions (44), (47), (50), and exploit the remaining system 
of equations.  More exactly, letting f be a function 
defined in the lower layer and g in the upper layer, we 
introduce the depth-averages f  and g  by the ex-
pressions 
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Table 2  Summary of model equations 

Physical statement Eq. No.

Local tangential/normal balance of solid 
momentum in E1 

(44), (45)

Local tangential/normal balance of fluid 
momentum in E1 

(47), (48)

Local tangential/normal balance of fluid 
momentum in E2 

(50), (51)

Depth-integrated mass balance of the solid in E1 (63) 

Depth-integrated mass balance of the fluid in E2 (67) 

Expression of sint (64) 

Depth-integrated tangential momentum balance 
of the solid in E1 

(68) 

Depth-integrated tangential momentum balance 
of the fluid in E1 

(69) 

Depth-integrated tangential momentum balance 
of the fluid in E2 

(70) 

Normal traction condition at S1 for the solid 
constituent 

(58)2 

Normal traction condition at S1 for the fluid 
constituent 

(59)2 

Normal traction condition at for S2 the fluid 
constituent 

(61)2 

 
 

 
1 2

101

1 1( , , ) , ( , , ) ,
h h

h
f f t d g g t d

h h
≡ ξ ξ ≡ ξ ξ∫ ∫ξ ξ  (71) 

where h ≡ h2 − h1.  Then, we (i) make ordering ap-
proximations justified by the shallowness of the ava-
lanching mass, (ii) determine the pressures ps, pf and p2 
from the normal momentum balances together with 
corresponding boundary conditions and constitutive 
assumptions, and (iii) transform the depth-averaged 
mass and momentum balances into equations for the 
determination of the basic scalar fields υ , v , u , 2v , 
h1, h2.  

3.4  Ordering Approximations 
For the derivation of the final modeling equations we 

use the same scaling approximations as in [27,5].  We 
express the approximations in terms of an aspect ratio ε 
≡ H/L << 1, where H is a typical thickness normal to the 
topography and L is the typical length-scale tangent to 
the topography.  A constant γ ∈ (0, 1) is also used.   

(a) Geometric approximations: Both layers are thin, in 
the sense that h2 = O(ε), which implies ξ = O(ε) for 
ξ∈(0, h2), in particular for ξ = h1.  

(b) Kinematic approximations: The tangential veloci-
ties v, u, v2 are O(1), the solid velocity satisfies 

 

1

1

1

1

2 ( ) 2
1 10

( ) 2
1 20

2 ( ) 2
1 30

2 2
10

1 ( ) ,
2

( ) ,

1 ( ) ,
2

1v ( ) ,
2

h s

h s

h s

h

s

d h m O  

d h m O  

d h m O  

d h O  

+γ

+γ

+γ

+γ

ξ ξ = +

⊗ ξ = ⊗ +

ξ ⊗ ξ = ⊗ +

ξ = β +

∫
∫
∫
∫

v v

v v v v

v v v v

v v

ε

ε

ε

ε

 (72) 

and similar relations hold with scalar coefficients 
( )
1
fm , ( )

2
fm , ( )

3
fm , βf for the pore fluid velocity.  

In the upper layer we assume 
2

1

2

1

2

1

2

1

(2) 2
2 1 2 1 2

(2) 2
2 2 2 2 2

(2) 2
2 2 1 2 3 2 2

2
2 2 2 2 2

2 2
2 2

1 ( ) ( ) ,
2

( ) ,

1 ( ) ( ) ,
2

v Grad

1 ( ) ,
2

h

h
h

h
h

h

h

h

d h h h m O

d hm O

d h h h m O

hd h h
t

h O

+γ

+γ

+γ

+γ

ξ ξ = + +

⊗ ξ = ⊗ +

ξ ⊗ ξ = + ⊗ +

∂⎛ ⎞ξ = + ⋅⎜ ⎟∂⎝ ⎠

+ β +

∫
∫
∫

∫

v v

v v v v

v v v v

v v v

v

ε

ε

ε

ε

 

  (73) 

owing to (66).  Here, h ≡ h2 − h1.  The correction 
factors (or Boussinesq coefficients) ( )

1
sm  to β2 are 

supposed to be scalar functions of ξ, t of order O(1).  

(c) Configurational-kinematic approximations: The 
solid volume fraction υ and the tangential veloci-
ties v, u are assumed to satisfy the relations 

 ( ) , (1) ,O Oυ = υ + υ =ε  (74) 

and 

 

1

1

1

1

( ) 2
1 10

( ) 2
1 20

( ) 2
1 10

( ) 2
1 20

( ) ,

( ) ,

( ) ,

( ) ,

h s

h s

h f

h f

d h n O

d h n O

d h n O

d h n O
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 (75) 

where the scalar coefficients ( )
1
sn  to ( )

2
fn  are 

functions of ξ, t of order O(1).  

(d) Dynamic stress approximations: It is conjectured 
that the stress tensors σs, σf, σ2 satisfy the order re-
lations 

 , ,2 , ,2
33 1

, ,2 , ,2

( ) , ( ) ,
( ) , ( ) .

s f s f

s f s f

p O O
O P Oγ +γ

= =
= =

P
p

ε ε
ε ε  (76)

 

Accordingly, Fig. 2, the shear stresses on planes 
perpendicular to the base and pointing upwards are 
the strongest, since this type of shearing is large, Fig. 
2(a).  The constraint pressure is essentially hydro-
static and therefore of O(ε), and of equal order are 
the shear stresses parallel to the base, Fig. 2(b).  
Finally, the normal stress beyond the hydrostatic 
pressure, orthogonal to the base and responsible for 
the normal stress effects is the smallest and of 
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(a)             (b)            (c) 

Fig. 2 Material differential element with surfaces 
parallel to ξ1, ξ2 and perpendicular to S. Plot-
ted are the stress components (dashed on in-
visible faces) of (76) 

O(ε1+γ), Fig. 2(c).  For further details on assump-
tions (a) ~ (d) see [27,5].  Here we additionally 
mention that, (i) instead of specifying the tangential 
velocity profile, we have introduced Boussinesq co-
efficients which account for deviations of the tan-
gential velocities from the plug-flow profile2, (ii) 
assumption (73)4 is justified by formula (66) for the 
normal velocity v2 in the same way as it has been 
done in [5] for a similar situation, and (iii) postulat-
ing (74), e.g., a profile of the solid volume fraction, 
linear in ξ, is envisaged. 

According to (62), (64), (66), since v, u, v2, υ, J are 
O(1), ξ = O(ε), the velocities v, u, v2 appear as 

 2v ( ) , u ( ) , v ( ) ,O O O= = =ε ε ε  

which will henceforth be used at some occasions.  The 
following estimations are also needed: 
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Ω  (77)
 

                                                           
2 Larcan et al. [1] pointed out that their experiments never 

evidenced a plug flow of the avalanching mass. 

they hold for a two-column v = O(1), a scalar v = O(ε), 
a 2 × 2 matrix P = O(ε), a two-column p = O(εγ), a sca-
lar p = p★+ O(ε1+γ), p★ = O(ε), and b from (42).  

3.5  Shallow Flow Equations 
Next we shall use the assumed ordering approxima-

tions to deduce the equations that model the shallow 
flow of the two-layer system.  

In order to determine the pressures ps, pf from the 
normal momentum balance Eqs. (45), (48) with the aid 
of the boundary conditions (58)2, (59)2, we need a con-
stitutive law for the interaction force 

+
m .  In an 

ad-hoc manner, for 
+
m  we take the (dimensional) law 

 {(1 ) } ( ) ,s s s f Dc p c p c
+

= − + ∇υ + −m u v  

see Schneider and Hutter [33], where the true pressures 
sp , fp  are defined by the equalities 

 , (1 ) ,s s f fp p p p= υ = − υ  

cs represents the solid mass fraction, 

 ,
1

s fs
s

s f s f

c
c

c
υρ

≡ =
ρ + ρ υ + − υ

 (78) 

and the drag coefficient cD is supposed to be constant.  
The non-dimensional components of 

+
m  then read 

 
(1 ) Grad ( ) ,
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s
s s f D

s f

s
s s f D
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cc p p c
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cc p p c
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m M u v
+

+
 

where the non-dimensional drag coefficient satisfies  

 non-dim dim
1

D D
s

Lc c
g ⋅=

ρ
 

With 
+
m  at hand we can now determine the pressures 

ps, pf.  Thus, appealing to the ordering approximations, 
the boundary conditions (58)2, (59)2 read 

 1 1
2 2

1 ( ) , ( )s f
s f

p p O p p O
c

+γ +γ= + = +ε ε  (79) 

at ξ = h1, and therefore we need first to determine p2.  
Equations in the upper layer coincide with those in [5], 
if therein the basal topography is fixed, and hence we 
can invoke the results of the mentioned paper: 

 
1

(2) (2) (2) 1
2 2 3 1 2 3 2

(2) 1
2 2 2 2 2 2

1 ( ) ( ) ( ) ,
2

| ( ) ( ) , .h

p h c a m h a m m O

p h c a m O a

+γ

+γ
ξ=

= + + − +

= + + ≡ ⋅Hv v

ε

ε  (80)
 

The determination of sp , fp  can now be done in the 
same manner as in [27], by using (79) and (80)2.  
Thus, 
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where sa ≡ ⋅H v v  and fa ≡ ⋅H u u , and the basal 
solid pressure is obtained as 
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 (82) 

Now, we focus on the depth-integrated mass and 
tangential momentum balance Eqs. (63), (67), (68) ~ 
(70).  We follow the same approach as in [27,5] with 
the aid of (77).  Here is the result:  

Except for negligible terms of order O(ε2+γ), Eqs. 
(63), (67), (68) ~ (70) appear as follows:  
• The depth-integrated mass and tangential momentum 
balances (63), (68) for the solid in E1 turn into 

,0s =M   (83) 
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with sa ≡ ⋅H v W v , and sp  as given by (81)1.  

• The depth-integrated tangential momentum balance 
(69) for the fluid in E1 reads 
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with fa ≡ ⋅H u W u , fp  as given by (81)2, and sint 
deduced from (65) as 
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• The depth-integrated mass and tangential momentum 
balances (67), (70) for the fluid in E2 emerge as 

2 ,ints=M   (87) 
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with 2 2 2a ≡ ⋅H v W v , and 2p  as given by (80)1.  
The 8 scalar shallow flow Eqs. (83), (84), (85), (87), 

(88) stand, under suitable closure relations, for the de-
termination of the 9 unknown scalar fields υ , v , u , 

2v , h1, h2.  Clearly, an additional equation is needed.  
For immiscible layers this equation is sint = 0, see (57).  
This suggests, for the general case, that apart from the 
classical closure relations a parameterization for sint 
must be prescribed.  When combined with (86) this 
gives the necessary equation, see Sect. 5.  

Next we consider 2 cases for which the shallow flow 
equations are further simplified.  

Case 1) Small Curvature  
If the basal topography exhibits small curvature, in 

the sense that H = O(εγ), many terms in the shallow 
flow equations are O(ε2+γ), and hence negligible.  
Moreover, a2 = O(ε1+γ) yields 2p = ch/2, and this to-
gether with 
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  (89) 

see [27], can be used to re-write Div(J0h1 sp FM0) and 
similar terms in Ls,f,2.  Thus, up to O(ε2+γ), the shallow 
flow equations read as follows: 
• Equations (83), (84) for the solid constituent in the 
lower layer turn, respectively, into 
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  (91) 

where, owing to (81)1 and as, a2 = O(εγ), 
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• Equation (85) for the fluid constituent in the lower 
layer emerges as 
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where, see (81)2 and (86) with af, a2, Ω = O(εγ), 
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• Equations (87), (88) for the upper layer read 
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In the above equations one can see that there are only a 
few terms which explicitly account for the curvature of 
the basal surface, namely, those which contain the ma-
trix W and the scalars as, af, a2.  However, the curva-
ture may also occur in the closure relations, see e.g. the 
Coulomb basal friction law (100) below.   

Case 2) Negligible Slip Between Solid and Fluid at 
Small Basal Curvature  

As argued by Iverson and Denlinger [31], see also 
Takahashi [2], a simplifying assumption in a fully de-
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veloped flow of a solid-fluid mixture is || u − v || << 
|| v ||: the granular solid moves nearly with the velocity 
of the adjacent fluid.  Hence, the momentum balance 
equation of the mixture as a whole should be used in-
stead of the two momentum balances for the constitu-
ents.  We assume 

 1( ) ,O +γ= +u v ε  (97) 

which implies satisfaction of the condition || u − v || << 
|| v || in the sense O(ε2) << M−1 v ⋅ v3, and use of the 
depth-averaged tangential momentum balance of the 
mixture as a whole instead of the depth-averaged tan-
gential momentum balance of each mixture constituent.  
Note, (97) yields, up to O(ε1+γ) terms, the same Boussi-
nesq coefficients for the pore fluid and the solid, i.e.,  
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For simplicity we refer to the case of small curvature H 
= O(εγ) of the basal surface, and hence the depth-   
averaged tangential momentum balance of the mixture 
as a whole is csf × (91) + (93), which emerges as 
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  (98) 

where af = as + O(ε1+γ) has been used (see definitions 
after (81) and (97)), and sp , fp  are given by (92), 
(94)1, respectively.  Moreover, in view of (90), the 
fluid mass flux sint in (94)2 is given by 

 0 1 0 1{ } Div { } .ints J h J h
t

∂
= − −

∂
v  (99) 

Therefore, under assumption (97), the equations de-
scribing the motion of the two-layer system on a sur-
face with H = O(εγ) are as follows:  
 • the depth-averaged mass balance Eq. (90) for the 

solid constituent;  
 • the depth-averaged tangential momentum balance 

Eq. (98) for the mixture as a whole;  
 • the depth-averaged mass and tangential momentum 

balances (95), (96) for the upper layer.  
The mean pressures ,s fp  are given by (92), (94)1, and 

                                                           
3 Indeed, || u − v ||2 = M−1(u − v) ⋅ (u − v) + (u − v)2, 

|| v ||2 = M−1v ⋅ v + v2, v = O(1), u = O(1), v = O(ε), 
u = O(ε), and one uses the assumption u = v + O(ε1+γ). 

sint can be found in (99).  
The above mentioned equations stand for the deter-

mination of the 7 basic unknowns υ , v , 2v , h1, h2.  
For immiscible layers equation sint = 0 must also be 
taken into account, and for miscible layers an additional 
closure condition is needed, see Sect. 4.2.   

If there is no mass exchange at the layer interface, 
one may assume υ = constant.  If so, since now 

( )
1 1sn = , equations sint = 0 and (90) coincide, and the 

depth-averaged tangential momentum balance equation 
of the mixture as a whole, (98), is recast into 
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where ( ) ( )
2 2
s sn m= , which holds since υ = constant has 

been used.  A similar approach can be found in the 
paper by Fernández-Nieto et al. [6] for the description 
of a one-dimensional shallow flow of two immiscible 
layers.  

4.  CLOSURE RELATIONS 
4.1  The Stress Terms 

The shallow flow Eqs. (83), (84), (85), (87), (88) or 
their simplified forms corresponding to cases 1), 2) 
above, must be complemented by closure relations for 

 2 2 0 0, , , , , , | , | ,s f s f s fξ= ξ=P P P p p p p p  

as well as for 

 { }  11
2 2  1 2( ) Grad , | .hhp h ξ=ξ=

− + − υM P p  

We must also specify the pressures ps, pf, p2.  Besides, 
when there is mass exchange at the layer interface, a 
scalar equation, e.g., analogous to sint = 0, is needed.  

For the solid constituent we assume the closure rela-
tions proposed [27].  Accordingly, ps ≡ −σs n ⋅ n, the 
bulk granular material is modelled as (1) an inviscid 
fluid, or as (2) a topography-adapted version of the 
Iverson-Denlinger model, or as (3) a topography- 
adapted version of the Savage-Hutter model (see [27] 
for details), and the shear stresses ps|ξ=0 are derived 
from the assumption of the classical basal Coulomb 
friction as 

 0 0 0| (tan )( | ) sgn( | ) .s spξ= ξ= ξ== δ +p v  (100) 

In (100) the index + stands for the positive part of a 
quantity, i.e., f+ ≡ max{0, f}; for a 2-column x the mul-
tivalued function sgn x is defined as 
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1
0

1 , if ,
sgn

any 2-column , M 1 , if ,−

⎧ ≠⎪≡ ⋅⎨
⎪ ⋅ ≤ =⎩

x x 0
x M x x

m m m x 0

-1
0

 

the pressure ps|ξ=0 is given by (82), and δ > 0 is the 
basal angle of friction.  We assume 

 0tan ( ) , | , (0,1] .s sO γ
ξ=δ = = χ χ ∈v vε  

The fluid in both layers is supposed to be Newtonian 
with small viscosity, η = O(ε2+γ) (water is such a fluid).  
As a consequence, see e.g. [20], 

2 1 33 2
,2 ,2 ,2( ) , ( ) , ( ) ,f f fO O P O+γ +γ +γ= = =P pε ε ε  

  (101) 

and hence the ordering approximations (76) are satis-
fied.  Moreover, the terms containing fP , fp , 2P , 

2p  in the shallow flow equations referring to the fluid 
in both layers are negligibly small.  Then, the basal 
shear stresses pf | ξ=0 are obtained as in [27] by postu-
lating the viscous basal friction law (dimensionless 
form): 

 ( ) = (1 ) || || at 0 ,f f basec− ⋅ − υ ξ =n n n n u uσ σ  

with constant friction coefficient cbase.  Thus, with the 
assumption 

 0| , (0,1] ,f fξ= = χ χ ∈u u  

and neglecting O(ε2+γ) terms, this yields 

 2 1
0 0| (1 ) .f base fc −

ξ= = χ − υ ⋅p M u u u  (102) 

The friction coefficient cbase and the coefficient X f are 
such that 2 1( )+

base fc O γ=X ε , since pf on the left-hand 
side of (102) is of this order.   

At the layer interface ξ = h1, the shear stress of the 
fluid is assumed to follow a Chézy-like viscous friction 
law, which in non-dimensional form reads 

 

2 1 2 1 1 1

2 1 2 1

2 2 2 1 1 1 1 1 1 1

1
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|| || ( ) ,

( ) , ( ) ,
(1 ) ;

intc τ τ τ τ
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= − −

≡ − ⋅ ≡ − ⋅
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σ σn n n n

n n n n
u

v v v v
v v v v v v
v v

 (103) 

cint > 0 is assumed constant and of the same order as the 
left-hand side of (103), i.e., O(ε1+γ), see (101).  Since 
||∇F1||2 = 1 + M Grad h1 ⋅ Grad h1, see (53), we have 
||∇F1|| = 1 + O(ε2), which, in view of approximations 
(101), transforms the left-hand side of (103) into 

 2
2( ,0) ( ) .T O +γ+p ε  

Then, U1 = v1|ξ=h1 ⋅ n1 and definition (29) yield (36) as 
2 1 1 1⋅ = ⋅v n v n  at ξ = h1, and hence 

 2 1 2 1 2 1(v v ) ( ) ,Oα α
τ τ α− = − = − + εgv v v v  

so that, with cint = O(ε1+γ) and the assumption 

 
12 1 2 1( ) | ( ) , 0 ,h int intξ=− = χ − χ >v v v v  

(103) turns into 

 1

2 1
2 int 0 2 1 2 1 2 1

2

| ( ) ( )  ( )
( ) .

h intc
O

−
ξ=

+γ

= χ − ⋅ − −
+

p M v v v v v v
ε

 

Consequently, apart from O(ε2+γ) terms, we have 
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Recalling that ( )Oυ = υ + ε  and cint = O(ε1+γ), we see 
that in the preceding Chézy relation the mean velocity 

1v  can be replaced by 

 1 + (1 ) + ( ) .O= υ − υv v u ε  

For small curvature H = O(εγ), we have Grad c = O(εγ), 
and so (104) can be written as 
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2 1
0 0 2 1 2 1 2 1

( ) Grad
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int int

J p h
J h ch
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M P p
M

M v v v v v v  (105)
 

Now we refer to υ | ξ=h1.  In view of (74), 

 
1

( ) ,h Oξ =υ = υ + ε  (106) 

and with 1+
2 ( )E O γ= εσ , it is clear that υ | ξ=h1 can be 

replaced by υ  in (84) and (85).  However, for some 
flows (106) may be a too rough approximation for the 
volume fraction at the layer interface.  Indeed, data of 
Egashira et al. [32] show that in a water-sediment mix-
ture the solid volume fraction υ decreases abruptly to a 
value close to zero near the free surface.  Similar be-
havior for υ in the two-layer flow is likely, see Fig. 3, 
so, we may take relation (74) as an acceptable ap-
proximation whenever υ occurs under the integral from 
0 to h1 and when υ | ξ=0 has to be evaluated, and assign 
a value as determined from experiments to υ | ξ=h1.  
Note, the only terms in which υ is not under the integral 
sign are ps | ξ=0 and those evaluated at ξ = h1 in (84), 
(85).  

The formulation of the closure relations is now com-
plete for the case that there is no fluid mass exchange at 
the layer interface, because sint = 0 yields the necessary 
number of equations for υ , v , u , 2v , h1, h2.  

4.2 Mass Flux Across the Layer Interface ⎯ 
A Challenge 

For the case that fluid mass flux across the layer in-
terface occurs, there are 8 scalar Eqs. ((83), (84), (85), 
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Fig. 3 Conjectured experimental curve for the 

distribution of the solid volume fraction 

(87), (88)), complemented by closure relations as given 
in Sect. 4.1, for the 9 basic unknown scalar fields υ , 
v , u , 2v , h1, h2.  Therefore, one more closure equa-
tion is needed.  Next we make a few suggestions for it.  
1. A so-called saturation pressure ϖ has been used by 

Wu et al. [13] in their two-layer model for an 
ice-sediment mixture, to give closure relations for ps, 
pf in terms of ϖ and υ.  Applying this idea to our 
two-layer system, we could introduce the saturation 
pressure ϖ, and two equations, obtained by combin-
ing the closure relations for ps, pf with (81).  The 
question is then how to choose the dependence of ps, 
pf on ϖ, υ. 

For instance, we could use the pressure equilib-
rium assumption, which, in dimensional form, re-
quests 

 , (1 ) .s f s fp p p p= υ = − υ ⇔ =ϖ ϖ  (107) 

However, for small curvature H = O(εγ) of the basal 
topography, one can easily show that (107) and (92), 
(94)1 give s fρ = ρ , while in debris flows typically 
we have 2.5s fρ ≈ ρ .  That is, pressure equilibrium 
can not play the role of the additional equation that 
we need.  In passing we mention that Schneider and 
Hutter [33] pointed out that (107) has no theoretical 
basis other than rendering a closed system of equa-
tions.  Most likely, a thermodynamic analysis can 
deliver the dependence of ps, pf on ϖ, υ, see e.g., Wu 
et al. [13], Schneider and Hutter [33].  

2. Another possibility of choosing the additional equa-
tion consists in combining formula (81)1 for the 
mean solid pressure sp  with the prescription of a 
constitutive relation for ps (see e.g. Egashira et al. 
[32], Takahama et al. [7], Takahashi [2] for the clo-
sure condition on ps).  

3. Assuming the distribution of the solid volume frac-
tion υ, see e.g., Lien and Tsai [34], is another way to 
close the system of modeling equations for the two- 
layer flow.  

4. A closure relation for the mass flux Mint at the layer 
interface is also an option.  This way we can see the 
condition Mint = 0 for immiscible layers as a par-
ticular closure relation for Mint.  In view of (56), 
the closure relation for Mint gives a closure relation 

for sint.  According to (21), an estimation of Mint 
reduces to that of the solid volume fraction and of 
the relative velocity normal to the surface S1 of the 
two mixture constituents, evaluated on the layer in-
terface.  Giving a law for Mint is similar to giving a 
law for the erosion/deposition rate in processes with 
mass entrainment at the basal surface.  We are 
working on an explicit expression for Mint and will 
report the results in due time.  

5.  SPECIAL CASE – ONE-DIMENSIONAL 
TWO-LAYER FLOW 

As an example we consider the flow without mass 
exchange at the layer interface over a one-dimensional 
slightly curved surface.  That is, the basal surface is 

 1 2 3, , ( ) , ( ) ;x x x y x b x O γ= = = = εΩ  (108) 

field quantities are independent of y, and v, u, v 2 have 
negligibly small components in the direction Ox2: 

 1 1 1
2 2 2 2( ) , ( ) , ( ) .O O O+γ +γ +γ⋅ = ⋅ = ⋅ =ε ε εv i u i v i  (109) 

As parameters ξ1, ξ2 on the surface (108) we take 

 
0

1 2 2( ) 1 ( / ) ' , ,
x

x
s x db dx dx yξ = ≡ + ξ =∫  

where x0 = constant is such that the plane x = x0 does 
not intersect the avalanche body at any moment.  
Clearly, s(x) represents the arc length between x0 and x 
of the curve x1 = x, x2 = constant, x3 = b(x).  Since 
corresponding to this parameterization we have 2 =g  

1 1
2 2( ) ( )O O+γ +γ+ = +ε εiτ , conditions (109) state that 

the mean velocities v , u , 2v  are of the form 
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V O
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The shallow flow equations that we envisage are (90) ~ 
(96) and sint = 0, and the closure relations are those from 
Sect. 4.  Thus, we have (see [5]) 
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For the granular solid we assume model 2 or 3 (they 
coincide if the topography (108) is considered, see [5]), 
with the earth-pressure coefficient k  given by 

1 1

1 2
/

if / 0 , if / 0 ,
2sec 1 2sec tan ,

act pass

act pass

k k V s k k V s
k
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where ϕ = constant is the angle of internal friction.  
Then, noting that 
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where ps | ξ=0 is given by (82), 1 (1 )V V U≡ υ + − υ , and 
O(ε2+γ) terms have been neglected, after straightforward 
calculations we arrive at the following results.  
• Equations for the solid constituent in the lower layer: 
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1 1 1{ } { } 0 ,sh h n V

t s
∂ ∂

υ + υ =
∂ ∂

 

as the depth-integrated mass balance equation, and  
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as the depth-integrated momentum balance equa-
tion.   

• Equations for the fluid constituent in the lower layer: 
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as the depth-integrated momentum balance equa-
tion.   

• Equations for the upper layer:  

 2{ } 0 ,h hV
t s

∂ ∂
+ =
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as the depth-integrated mass balance equation, and  
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t s
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+ + +

∂ ∂
∂
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as the depth-integrated momentum balance equa-
tion.  

Note that the curvature of the basal surface enters 
these equations only by means of the Coulomb basal 
friction stress, since the terms with ∂c / ∂s = −2Ω∂b / ∂s 
as a factor are negligibly small.  However, the cosine 
of the angle between the vertical direction and the nor-
mal to the basal topography, c, may vary, in contrast to 
the case of an inclined plane, when it is constant.  

6.  ON THE EQUILIBRIUM FREE SURFACE 

If a water layer is at rest, its free surface is horizontal, 
and hence a model describing the flow of such a layer 
should predict a horizontal free surface when the water 
stops to flow.  In this paper we dealt with a two-layer 
system.  Assuming that the upper layer consists of 
water, we are tempted to expect from the modeling 
equations to predict a horizontal free surface when the 
system is at rest.  However, there are two basic under-
lying assumptions which we used throughout the paper: 
(i) at any moment the avalanching mass consists of a 
mixture layer overlain by a lighter fluid, also present as 
pore fluid in the mixture, and (ii) both layers are thin.  
Imagine, now, that this two-layer system is at rest.  If 
the basal topography is only slightly curved, the previ-
ously mentioned assumptions (i) and (ii) very likely 
hold, and hence the modeling equations should indeed 
predict a horizontal free surface for the rest state.  
However, if the basal surface has large curvature, as in 
Fig. 4, the two-layer structure of the flowing mass is 
destroyed if there is not sufficient water in the upper 
layer; or, if there is sufficient water, the shallowness 
approximation is no longer fulfilled, as shown in Fig. 4.  

Now we prove that the modeling equations describ-
ing the two thin immiscible/miscible layers, with water 
as the fluid present in both layers and Chézy-like fric-
tion at the layer interface, predict a horizontal free sur-
face whenever the avalanching mass is at rest above a 
slightly curved basal surface, i.e., when 

 
2

1 2

, , ,

0 , 0 , 0h h
t t t

= = =
∂υ ∂ ∂

= = =
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v 0 u 0 v 0
 (110) 

hold within a time interval, and H = O(εγ). 
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Fig. 4 Over-saturated mixture in equilibrium on basal 

topography with large curvature 

We start from the depth-integrated momentum bal-
ance equation in the upper layer, (96).  Using (110), 
(101) and (105) in (96) we deduce 

 0 2Grad .ch c+ =FM s 0  

Moreover, with M0 given by (5) and F−T Grad ch2 = 
grad ch2, this relation turns into 

 2 2grad (grad ) .ch ch c− ⋅ +s s s 0=  (111) 

Taking the inner product of (111) with s and noting that 
s ⋅ s = 1 − c2, see (4), we find 

 2 2

1grad 1 ,ch
c

⋅ = −s  

which, when inserted into (111) together with relation  
s = c grad b, gives 

 2grad ( ) ,b ch+ 0=  

showing that the equilibrium free surface is horizontal.  
We mention that, keeping Grad (ch) in (96) instead of  
cGrad h (clearly, Grad c = O(εγ), see (89)), we could 
exactly show that the equilibrium free surface of the 
two-layer system, with water in the upper layer, is 
horizontal. 

If the curvature of the basal surface is arbitrary, 
starting from (88) and using the same line of argument 
as for the case H = O(εγ), one can prove that the height 
b + ch2 of the equilibrium surface of the two-layer sys-
tem, with water in the upper layer and Chézy friction at 
the layer interface, satisfies the condition 

 { }
2 1 2

3
grad ( ) ( )

grad (grad ) grad .
b ch h h

c b b
+ = +

× −IΩ  (112) 

The right-hand side of (112) can be zero only for par-
ticular elevation functions b.  Therefore, for arbitrary 
topography the equilibrium free surface fails to predict 
horizontal equilibrium surfaces.  The ordering ap-
proximations, as explained referring to Fig. 4, are the 
likely reason for this property.  

7.  DISCUSSIONS AND CONCLUSIONS 
This paper is a continuation of the work by Luca et 

al. [27,5].  In [27] the three-dimensional modeling 
equations of a shallow saturated solid-fluid mixture 
flowing over arbitrary fixed topography have been de-
rived, while in [5] the three-dimensional modeling 

equations for a shallow two-layer system, consisting of 
a one-constituent debris layer overlain by a lighter fluid 
layer, with the account of erosion/deposition processes, 
have been deduced.  Here we let the lower debris layer 
be a solid-fluid mixture as in [27], and the upper layer a 
lighter fluid layer as in [5].  The following particulars 
are the outstanding features of the model:  
 • The sediment and the fluid in the lower layer, as 

well as the fluid in the upper layer, are treated as 
density-preserving continuous bodies, each moving 
with its own velocity.  The mixture in the lower 
layer is saturated, with the solid volume fraction as 
a measure of the degree of saturation.  

 • At the basal surface, entrainment or deposition of 
material and lift-off are not considered.  

 • We neither assume any mass exchange at the free 
surface of the two-layer system, e.g. due to precipi-
tation; so this surface is material.  The free surface 
is also considered to be traction-free.  

 • The layer interface, defined as the upper surface of 
the granular material, deserved special attention.  

 • Irrespective of the fact whether there is fluid mass 
entrainment at the layer interface or not, the layer 
interface is material with respect to the solid.  

 • If the two layers are immiscible, the interface is also 
material with respect to the pore fluid and the fluid 
in the upper layer.  Accordingly, three kinematic 
scalar restrictions express this fact.  

 • If the layers are miscible, the jump of fluid mass 
accounts for this mass flow.  Thus, two kinematic 
scalar restrictions describe this case.  
Important steps in the formulation of the topography 
adjusted governing equations are as follows:  

 • Dimensionless balances of mass of solid and fluid 
constituents, and kinematic and dynamic boundary 
conditions in curvilinear coordinates (Sect. 3.2). 

 • Reduction of these equations to a spatially two-  
dimensional description by depth integration over 
the two layers with special consideration of the fluid 
mass exchange at the interface (Sect. 3.3).  

 • Performing a scaling analysis adjusted to considera-
tions of shallowness of geometry and flow 
considerations (Sect. 3.4) and presentation of 
modeling equations applicable under small 
curvatures (Sect. 3.5).  

 • Closing the equations by a selection of constitutive 
relations for the stresses (Sect. 4.1) and discussing 
the interfacial fluid mass flux (Sect. 4.2).  
The model equations were also given in spatially 

one-dimensional form ⎯ the dominant case treated in 
the literature (Sect. 5), and for the 2D case with small 
curvature it was demonstrated that the equilibrium 
configurations necessarily possess horizontal free sur-
faces.   
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