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Why do certain domains of knowledge grow fast while others grow slowly or stag-
nate? Two distinct theoretical arguments hold that knowledge growth is enhanced by 
knowledge specialization and knowledge brokerage. Based on the notion of recom-
binant knowledge growth, we show that specialization and brokerage are opposing 
modes of knowledge generation, the difference between them lying in the extent to 
which homogeneous vs. heterogeneous input ideas get creatively recombined. Ac-
cordingly, we investigate how both modes of knowledge generation can enhance the 
growth of technology domains. To address this question, we develop an argument that 
reconciles both specialization and brokerage into a dynamic explanation. Our conten-
tion is that specializing in an increasingly homogeneous set of input ideas is both more 
efficient and less risky than brokering knowledge. Nevertheless, specializing implies 
progressively exhausting available recombinant possibilities, while brokerage creates 
new ones. Hence, technology domains tend to grow faster when they specialize, but 
the more specialized they become, the more they need knowledge brokerage to grow. 
We cast out our argument into five hypotheses that predict how growth rates vary 
across technology domains. 

Introduction 

The ability of human societies to transform economic inputs into outputs of 
greater value, and hence to generate material wealth, rests on their technological 
knowledge (Jones 2005). In contrast to preliterate societies, where information 
about inventions circulated mostly by word of mouth (Diamond 2001), a distin-
guishing trait of the knowledge-based economy1 is that a considerable share of the 
existing technological knowledge is a public good (Mokyr 2002). Technological 
knowledge is a public good to the extent that it is clearly explicated and codified, 
and it is made widely available through media accessible at negligible costs, such as 
patents and technical literature (Arrow 1962). As most scholars agree, the growth 
of public technological knowledge has increased progressively during the past two 
centuries, yielding an unprecedented rate of economic growth (Jones 2005). The 
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mechanisms and dynamics driving the growth of public technological knowledge, 
however, are still poorly understood. 

In this research, we investigate why some domains of technology grow quickly 
while others grow slowly or stagnate (Nelson 2003). We understand the growth 
of technology as the extent to which new inventions engender new ideas and 
applications. Hence, our definition is in line with the notion that the growth of 
knowledge reflects both the number of new ideas generated and the extent to 
which these ideas are accepted (Simonton 2000; Walberg 1998; Weisberg 1993). 
To explain growth differentials across technology domains, we analyze the inter-
twined effects of two modes of knowledge generation that are commonly assumed 
to enhance knowledge growth in general. First, it has been argued that knowledge 
specialization facilitates the progress of knowledge by increasing the efficiency of 
the knowledge generation process, a notion that is at the core both of economic 
theory (e.g., Smith 1776; Walker 1867; Young 1928; Marshall 1936) and of 
bounded-rationality theories of learning (Simon 1977). Second, the argument 
that brokerage of knowledge across disparate domains yields novelty and thereby 
boosts knowledge generation, has recently become widespread in sociological pub-
lications (e.g., Burt 2004; Stuart and Podolny 1996; Sutton and Hargadon 1996). 

Over the years, both the specialization and the brokerage arguments have 
gained substantial empirical support and many followers. However, the theoreti-
cal relation between knowledge specialization and knowledge brokerage has not 
yet been explicated in any detail. To relate the specialization and brokerage argu-
ments, we build on the concept of “recombinant knowledge growth” (Weitzman 
1996, 1998) by taking the position that, whether generated through knowledge 
specialization or through knowledge brokerage, new knowledge always derives 
from recombinations of existing knowledge (Schumpeter 1939; Usher 1954; 
Weitzman 1998; Fleming 2001; Nolan and Lenski 2006). While the mechanism 
of knowledge recombination is common to both knowledge specialization and 
knowledge brokerage, we contend that the difference between these two modes of 
knowledge generation lies in the extent to which creative recombinations build on 
homogeneous rather than heterogeneous input. Hence, a technology domain is 
specialized to the extent that its new knowledge builds on a homogeneous set of 
closely related ideas; by the same token, the more that new knowledge builds on 
a wide spectrum of heterogeneous knowledge, the more that domain is brokering. 

Seen from the perspective of recombinant knowledge growth, knowledge spe-
cialization and knowledge brokerage are therefore endpoints of one conceptual 
continuum, rather than distinct concepts. That is, the higher the degree of specializa-
tion of a technology domain, the lower its degree of brokerage, and vice-versa. But 
if a specialized domain is the opposite of a brokering domain, it follows that the 
growth of technological knowledge cannot be faster in both specialized and broker-
ing domains at the same time, as the specialization and brokerage arguments would 
suggest if taken individually. To resolve this apparent paradox, we develop a theory 
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that integrates the specialization and brokerage arguments into a dynamic explana-
tion. The core of our thesis is that knowledge brokerage generates new opportunities 
for knowledge recombination, while these opportunities are more efficiently and 
more securely exploited through increasing knowledge specialization. 

The Salience of Technology Domains in Recombinant Knowledge Growth 

Public knowledge tends to diffuse in spite of geographic, organizational and 
social barriers, and it does not deplete with usage (Arrow 1962). Furthermore, 
new ideas spring from the novel combination of earlier ideas, and thus the input 
for future knowledge is existing knowledge (Gilfillan 1935; Schumpeter 1939; 
Usher 1954; Romer 1993).2 In his research, inspired by these considerations, 
economist Martin Weitzman proposed to conceive the growth of public knowl-
edge as a process of “recombinant knowledge growth,” which he represented 
mathematically as a combinatorial process (Weitzman 1996, 1998). Weitzman’s 
modelling strategy captures elegantly what is arguably the most distinctive trait 
of the knowledge generation process, namely that because each new idea can 
potentially be recombined to produce multiple new ideas, knowledge growth 
tends to increase in scale. Allowing for a combinatorial explosion across the 
board, however, Weitzman’s model fails to consider why knowledge grows in 
trajectories (Dosi 1982) and, in particular, why some trajectories grow faster 
than others (Nelson 2003). Furthermore, while in principle all ideas can be 
recombined with one another, there are numerous reasons why this does not 
happen. First, paraphrasing George Akerlof,3 one may wonder if combining 
chicken and ice cream is at all useful, or, said more generally, if all existing ideas 
can be recombined productively. Second, “[p]erceptions that certain technolo-
gies or components ‘belong together’ develop through social construction and 
previous association.” For example, “if an electrical engineer of the 1940s had 
been asked about his profession’s use of sand and aluminum, he probably would 
have replied with a blank stare. Today, he or she probably would reply that they 
are the most common basic materials of semiconductors and the focus of much 
research investment.”(Fleming 2001:119) Third, the body of human knowledge 
is so large and dispersed (Hayek 1945) that only small portions of the potentially 
productive recombinations are envisioned, and even smaller portions material-
ize. Indeed, the creative recombination of ideas is a problem-solving endeavour 
characterized by limited information-processing capacity (Simon 1977), and is 
based on a highly incomplete and uncertain search (Fleming 2001). Thus unlike 
Weitzman’s model, the actual processes of knowledge recombination through 
which new knowledge is generated can unfold in very different patterns across 
technology domains (or, for that matter, across individuals, firms, institutions, 
etc.) as well as over time. In line with this view, the goal of this research is to 
investigate how different dynamics of knowledge specialization and knowledge 
brokerage affect the rate of progress of technology domains. 
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We believe that focusing on technology domains is particularly useful in study-
ing the growth of public technological knowledge. One notable advantage is that 
one can simultaneously address the rate and the direction of knowledge growth, 
which would hardly be feasible when looking at individuals or organizations (see 
Dosi 1982).4 Meanwhile the variance observed across technology domains informs 
us about the mechanisms affecting knowledge growth in general, the direction of 
knowledge growth is determined by the growth rate of individual domains. Of 
course, paraphrasing Simon (1991), one may say that all inventions take place in 
the minds of individuals. As Simon was well aware, though, this does not mean 
that inventions take place in isolated individuals. To the contrary, inventions and 
inventors always build on existing technological knowledge and, in domains of 
technology, the body of received knowledge “is the necessary background against 
which new insight emerges.”(Staudenmaier 1985:65)  Thus, even the inventive-
ness of the most extraordinary genius and the most creative of organizations are 
deeply shaped by the state and evolution of the knowledge domain to which they 
are contributing, and this is true not just for technology (Rosenkopf and Tushman, 
1998; Tushman and Rosenkopf 1992), but also for areas where the solitary work 
of genius is generally regarded as quintessential, such as philosophy (Collins 
1998), art (Becker 1982) and mathematics (Davis and Hersh 1980). Progress in 
a technology domain is thus the result of an inherently social process, and quite 
often it happens that an inventor builds on technological knowledge generated 
by someone he or she does not even know (Ziman 1967; Knorr-Cetina 1999). To 
study the growth of public technological knowledge, therefore, a vantage point 
may be gained by focusing on the network of knowledge recombination at the 
level of technology domains, even if this comes at the cost of remaining agnostic 
about other relevant units of analysis such as “organizations, individuals, or other 
combinations of actors.”(Marquis and Davis 2005:337) From this perspective, 
inventors and organizations are then seen as relatively denser clusters of ideas 
within a knowledge recombination network, possibly linking “…multiple com-
munities with highly specialized technologies and knowledge domains.”(Boland 
and Tenkasi 1995:350; Brown and Duguid 2001)5  

Recombinant Knowledge Growth as an Evolving Network of Technology Domains

To formally define and, subsequently, empirically measure knowledge specializa-
tion and knowledge brokerage at the level of technology domains, we use a net-
work-analytic approach. Technology domains may be thought of as cross-sectional 

“slices” of technological trajectories (Nelson and Winter 1982). And indeed, the 
notion that technological knowledge grows along trajectories of accumulation 
implies that the bulk of inventive knowledge recombination takes place within 
distinct technology domains, very similar to scientific disciplines being the loci 
of scientific knowledge production. However, like scientific knowledge in one 
discipline often spawns innovations in another, inventions developed in a technol-
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ogy domain can serve as an input for inventions in other domains. Recombinant 
knowledge growth can thus be modelled as an evolving network of technology 
domains, where arcs (i.e., valued and directed ties) indicate patterns of inventive 
recombination both within and across domains. Figure 1 is an example of such a 
network which depicts a cross-cut of the growth process of a hypothetical stock of 
public technological knowledge within a given time window. This stock consists 
of three technology domains, A, B and C, in which 30, 40 and 10 new inventions, 
respectively, have accumulated over the given time interval. The arcs point to the 
domains from which ideas are taken and are drawn in the direction of knowledge 
search. Knowledge flows in the opposite direction of the arrows, though, and in 
the literature on diffusion (Rogers 2003), arrows are in line with the flows.6 The 
inventions generated in A resulted from the recombination of inventions from 
A’s own knowledge base 25 times, from B’s 30 times, and from C’s 20 times. Or, 
equivalently, knowledge spilled over7 25 times from past to current inventions in A, 
30 times from past inventions in B to current inventions in A and 20 times from 
past inventions in C to current inventions in A. During the same time interval, 
the inventions generated in A worked as an input for inventions in B 40 times, 
i.e., ideas spilled over from A to B 40 times.

Formally, a network Nt at time interval t is a four-tuple, 〈Nt = Jt , Lt , Vt , At〉
that consists of a finite set of nodes, tJ  = {i,…,k,q,…,j}, a finite set of arcs (i.e., 
directed ties) between the nodes, tL  = {lik,t, …, lqj,t}, a function Vt(.) mapping arcs 
onto pertaining arc values h (i.e., tie weights), and a function tA (.) mapping nodes 
onto node values. Nodes represent technology domains and their values represent 
knowledge output. The arc value hij represents the number of times that ideas 

Figure 1. Recombination Patterns within and between Technology Domains
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belonging to the right-hand subscript node have been used in idea-combinations 
of the left-hand subscript node, and arc directions point to the nodes where ideas 
have been taken from.  

A Network View on Domains Specialization and Brokerage

Intuitively, a technology domain is specialized insofar as it grows through the recom-
bination of a homogeneous body of closely related knowledge. In contrast, a domain 
is brokering insofar as it grows by recombining ideas across a broad spectrum of 
mutually unrelated technological areas. To flesh out and to model this intuition, our 
starting point is a domain’s recombinant niche (i.e., the sub-network comprising a 
focal domain), the domains from which it recombines ideas (the source domains), 
the valued and directed ties linking the focal domain to its source domains, and the 
valued and directed ties linking source domains among each other.8 

In general, the degree of brokerage in a focal node’s niche indicates the extent 
to which the focal node brokers between otherwise disconnected nodes (Burt 
1992). Applied to our network model, the brokerage of a domain’s niche indicates 
a pattern of knowledge recombinations from domains that in their turn do not 
recombine knowledge from one another or from the focal domain. Accordingly, 
the degree of brokerage of a domain’s recombinant niche indicates the extent to 
which its underlying technological community, in the aggregate, brings together 
knowledge across unrelated and, thus, heterogeneous source domains (Figure 2, 
Panel A). Conversely, a domain with high specialization recombines closely related 
knowledge (i.e., knowledge from either the focal domain itself ) or from domains 
that are strongly related among each another and to the focal domain (Figure 2, 
Panel C). Figure 2 shows four hypothetical domains, ranging from low specializa-
tion (Panel A) to high specialization (Panel D).  

Theory and Hypotheses

Having posited specialization and brokerage as opposites on a continuum, we are 
left with the paradox that, according to extant theory and empirical evidence, both 
specialization and brokerage enhance knowledge growth. To resolve this paradox, 
and to specify a theory of knowledge growth where the effects of specialization and 
brokerage are explicitly related, it is necessary to distinguish between specialization 
as a property and as a process. Applied to a technology domain, specialization is 
a property indicating that, at a given point in time, ideas are recombined from a 
homogeneous body of closely related knowledge. For example, our data show that 
the technology domain of “mechanical guns and projectors” is highly specialized 
(like Panel D in Figure 2) while, in contrast, the domain of “coating processes” is 
highly brokering (like Panel A). Seen dynamically, specialization indicates the pro-
cess by which ideas are recombined from a body of increasingly related knowledge. 
For example, the domain of “superconductor technology: apparatus, material, 
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process” became much more specialized between the beginning and the end of 
the 1990s. The property vs. process distinction is not generally made in literature. 
As we aim to show, however, revisiting knowledge brokerage and knowledge spe-
cialization in light of this analytical distinction helps to reconcile the two concepts 
in a unitary theory. 

The central claim of the brokerage argument is that the more mutually un-
related are the ideas one is exposed to, the more innovative (on average) are the 
ideas one generates (e.g., Burt 2004). The knowledge recombination perspective 
makes it possible to spell out the causal mechanism underlying this claim. The 
ideas that an actor (in our case, a technological community) is exposed to provide 
the input that the actor considers in knowledge recombination. Thus, in general, 
the more one is exposed to ideas that are unrelated, the more abundant and 
diverse are the potential new combinations and, therefore, the more numerous 
and innovative the ideas generated. Supporting this view, Holyoak and Thagard 
(1995) have shown at the individual level that creative transfers of ideas occur 

Figure 2. From A to D, Increasing Specialization of Focal Technology Domain 
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by shifting mental models in a cross-fertilizing fashion. Regardless of the spe-
cific cognitive mechanisms involved, being confronted with ideas from diverse 
knowledge domains and applications prompts unexplored mental representations, 
thereby exposing potentially useful relations between previously unrelated ideas 
(Anderson and Thompson 1989; VanLehn and Jones 1993). A well-known ex-
ample is Gutenberg’s printing press, which resulted from the combination of ideas 
from the disparate bodies of knowledge that Gutenberg had studied, including 
metallurgy, press, ink, movable type and the alphabet (Diamond 1997). Literature 
overflows with similar accounts of other inventions (Mokyr 2002). More system-
atic empirical evidence is reported by Dunbar (1996), among others; he showed 
that scientists working in teams with a greater diversity of scientific backgrounds 
tend to solve problems by conceiving more innovative solutions. Evidence is also 
provided by Burt (2004), who found that firm employees embedded in brokering 
networks generate more numerous and creative ideas. 

The benefits of recombining knowledge from diverse domains extend be-
yond the individual, resulting in more creative artistic and academic teams (e.g., 
Guimerà, Uzzi, Spiro and Amaral 2005) and organizations (e.g., Hargadon 2002). 
Notice that, at these aggregate levels, knowledge can also be recombined by pool-
ing members with distinct specializations. Thus, the beneficial effects of knowledge 
brokerage derive from the aggregate spectrum of ideas that a team, organization or 
community draws from collectively, whether through individuals with knowledge-
brokering competencies (such as Gutenberg) or through the pooling of knowledge 
from individuals with diverse specialties. Applying the brokerage argument to the 
level of technology domains therefore suggests that the amount and the novelty of 
potential recombinations available to a technological community depend on how 
heterogeneous is the stock of public knowledge residing within the community’s 
recombinant niche (as captured by Figure 2). This leads us to our first hypothesis:

H1: The higher the degree of brokerage of a technology domain 
at a given point in time, the higher its subsequent growth rate; 
similarly, the higher the degree of specialization of a domain 
at a given point in time, the lower its subsequent growth rate.9 

If knowledge brokerage increases both the amount of recombinant opportuni-
ties and their novelty, it follows that knowledge specialization reduces both of 
them. What, then, are the benefits of knowledge specialization? Seen another way, 
what are the limits of knowledge brokerage? An obvious scope condition is that 
while knowledge brokerage and knowledge specialization are opposite modes of 
knowledge generation, their effects are to some extent complementary; indeed, 
the expected benefits of knowledge brokerage would vanish in the absence of 
knowledge specialization. That established, we contend that the relation between 
knowledge specialization and knowledge brokerage can be fully understood only 
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from a dynamic perspective. While technological growth is enhanced by the 
abundant recombinant opportunities associated with a high degree of knowledge 
brokerage (brokerage as a property), the positive impact of knowledge specializa-
tion rests on the fact that recombinant opportunities are more efficiently exploited 
by increasing specialization (specialization as a process). Applied to the context 
of technology domains, when a domain grows through increased knowledge spe-
cialization, knowledge is recombined more efficiently, i.e., with lower marginal 
costs. In contrast, when a technology domain grows through increased brokerage 
(i.e., when a technology domain is in the process of de-specializing), the marginal 
costs of knowledge recombination are much higher. 

To elaborate, we define the specialization of a technology domain as the extent 
to which it recombines ideas from a homogeneous body of knowledge. Starting 
from a highly brokering niche (Figure 2, Panel A), the homogeneity, and thus spe-
cialization, of a domain can increase in four ways. First and foremost, a technologi-
cal community may draw a progressively larger fraction of its total recombinant 
inputs from the domain’s knowledge base, thereby increasing the proportion of 

“self ” recombinations. Second, a community may concentrate on fewer source 
domains, thereby progressively shrinking its recombinant niche. In both cases, 
specialization increases as a result of exploitation, i.e., by increasing the depth and 
reducing the scope of knowledge recombination patterns (Katila and Ahuja 2002), 
consonant with theory elaboration and integration in scientific research programs 
(Wagner and Berger 1985, 1986). Figure 1, however, shows that the homogene-
ity of a domain’s recombinant niche may also increase in two indirect ways. The 
source domains may become progressively more homogeneous due to an increased 
recombination of ideas among one another; and, a source domain may become 
progressively more similar to the focal domain by recombining a larger proportion 
of its recombinant inputs from the focal domain.10 

In short, our argument is that the more the progress of a technology domain 
is achieved through progressive specialization, the greater the efficiency gains as-
sociated with exploiting an increasingly familiar and homogeneous recombinant 
niche. By combining ideas from the same subset of the technological landscape 
in a path-dependent fashion, exploitation increases familiarity with these ideas 
(Fleming 2001). At the individual level, familiarity with a subject matter due to 
accumulated experience enables the individual to handle larger chunks of infor-
mation, thereby facilitating knowledge recollection and application (Chase and 
Simon 1973), which helps him/her to search for, appreciate and pursue potential 
recombinations (Simonton 2000; Walberg 1988). Furthermore, problems related 
to familiar knowledge can be more effectively and more efficiently decomposed 
into simpler sub-problems (Eisenhardt and Tabrizi 1995). Familiarity with a new 
technology domain, however, can be achieved only at the price of high, fixed learn-
ing costs (Hayes 1989; Simonton 1991), typically requiring a substantial amount 
of domain-specific tacit knowledge (Gavetti and Levinthal 2000) and many years 
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of preparation even for talented individuals (Weisberg 1993). Therefore, there is a 
scale advantage to spreading fixed learning costs over a relatively larger knowledge 
output, and “[i]t is only when one has hit the frontier of one’s primary specializa-
tion, where new items of interest are hard to find, that it might be cheaper to learn 
items outside that specialty.”(Postrel 2002:306) 

The efficiency gains associated with the process of specialization are amplified at 
higher levels of aggregation, where knowledge is recombined by actors dispersed 
throughout an organization or a technological community. In these cases, famil-
iarity with the recombinant niche also results in more widely shared “embedding 
circumstances” (for example, with regard to the technical jargon, instruments 
and testing criteria used in the inventive process), and thus it is associated with 
more effective and efficient communication. Moreover, in the context of public 
knowledge, every new relation that is established among ideas and inventions 
within a recombinant niche effectively homogenizes the knowledge therein; this, 
in turn, progressively reduces the cognitive and technical distances among a com-
munity’s recombinant inputs. In summary, due to the efficiency gains associated 
with the exploitation of an increasingly homogeneous and familiar recombinant 
niche, knowledge growth tends to be faster when technology domains advance 
by progressive specialization. By the same token, these efficiency advantages are 
lost when knowledge is recombined in a de-specializing fashion, i.e., when a 
domain’s recombinant niche becomes more heterogeneous and knowledge broker-
ing. Accordingly, domains’ growth rates should be lower during those times when 
previously unrelated knowledge enters a domain’s recombinant niche.

H2: The more the degree of specialization of a domain increases 
during a given time period, the higher its growth rate in that 
period; similarly, the greater the increase of brokerage, the 
lower the growth rate. 

In addition to efficiency losses, exploratory recombinations and knowledge bro-
kerage entail higher unpredictability. Although both exploitation and exploration 
are uncertain processes that may or may not yield knowledge growth, exploitation 
rests on known uncertainties involved in recombining knowledge from a more 
familiar niche, whereas exploration is based on unknown uncertainties inherent 
in distant search (March 1991; Fleming 2001; Cohen and Aston-Jones 2005). 
Notably, exploitation reduces the probability of dead ends because failed recom-
bination attempts indicate less successful parts of a familiar recombinant niche 
(Fleming 2001; Vincenti 1990). When one ventures into brokering previously 
unexplored domains, hardly any prior information is available within the focal 
community regarding fruitless combinations that should be avoided. Furthermore, 
brokering knowledge means de-embedding knowledge from one community 
and re-embedding it in another; this entails passing more arduous cognitive and 
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cultural barriers (Brown and Duguid 2001), and it may trigger political intrica-
cies and irrational factors whose effects are hard to predict (Latour 1987). When 
Edison invented the light bulb, he was accused of “the most airy ignorance of 
the fundamental principles of electricity and dynamics.”(quoted by Hargadon 
2002:57) However, in addition to a greater risk of failure, and consistent with both 
Edison’s experience and Hypothesis 1, brokering knowledge through explorative 
recombinations is also more likely to generate unusually fruitful inventions due 
to the greater innovative potential inherent in recombining heterogeneous knowl-
edge inputs. These arguments lead to our third hypothesis:

H3: There is greater variance in growth rates among highly 
brokering technology domains than among highly specialized 
ones.

As stated by Hypothesis 2, the greater the increase in the degree of specializa-
tion of a technology domain during a given time interval, the higher we expect its 
growth rate to be (net of differences in the number and novelty of inputs available 
in the domain’s recombinant niche). In line with Hypothesis 1, though, the number 
and novelty of input potentially available for recombination vary inversely with a 
domain’s degree of specialization, for three reasons. First, as experience accumulates, 
most of the recombinations in a domain’s niche have already been tried. Second, 
when a domain becomes more specialized, its recombinant niche becomes more 
homogeneous, and thus the recombinant inputs that remain are more likely to 
yield cumulative refinements of existing ideas than to yield breakthrough inven-
tions. Third, being exposed to increasingly unambiguous and taken-for-granted 
methods may engender a habit of reproducing those methods and understandings 
at all costs (March 2005), thus reducing actors’ ability and willingness to search for 
path-breaking solutions (Levinthal and Rerup 2006). Therefore, the higher the level 
of specialization of a domain, the greater the likelihood that the efficiency gains 
associated with a further increase in specialization will be offset by a lack of creative 
input and seminal ideas. From these arguments it follows that the effects of increas-
ing specialization are inversely proportional to a domain’s degree of specialization. 
 

H4: The positive effect of increasing specialization on a 
domain’s growth rate becomes less pronounced as domain’s 
degree of specialization rises, eventually reaching a point where 
a further increase in specialization hampers the domain’s 
growth rate. 

Our first four hypotheses focused on the relation between domains’ special-
ization and brokerage on the one hand, and the (variance in) domains’ growth 
rates on the other hand. Specifying hypotheses where the dependent variable is a 
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change variable allows us to test postulated causal relationships more directly and 
unambiguously than can be done through level variables (Hsiao 2003). However, 
our theoretical arguments can also be extended to predict a level variable – the 
knowledge output accumulated within a domain during a given time interval. To 
appreciate the difference between the two types of dependent variables, consider 
the following example. Our first four hypotheses attempt to explain why, be-
tween the early 1990s and the late 1990s, the knowledge output generated in the 
technology domain “internal-combustion engines” grew by one fourth and the 
knowledge output generated in the technology domain “mineral oils: processes 
and products” decreased by one fourth. However, our first four hypotheses are 
silent about the absolute size of domains’ knowledge output in the late ‘90s, which 
for “internal-combustion engines” is about three times as large as for “mineral oils: 
processes and products.”   

Synthesizing H1, H2 and H4, the following argument can be postulated about 
the absolute size of domains’ outputs. While a brokering domain has greater re-
combinant potential for future growth than a specialized domain, that potential is 
realized only to the extent that the heterogeneous inputs in its recombinant niche 
are progressively related to one another through exploitation-driven recombina-
tions. However, the longer this process continues, the higher the degree of special-
ization reached by a domain and the fewer and less path-breaking are the potential 
recombinations left to sustain the domain’s future advancement. Together, H1, 
H2 and H4 entail that (1. a domain characterized by low specialization (i.e., high 
brokerage) has not exploited its recombinant potential, while conversely (2. a 
highly specialized (i.e., low-brokerage) domain has already exhausted most of it. 
Thus (3. on average, the absolute size of accumulated knowledge output should be 
largest when a domain is at intermediate levels of specialization (and brokerage), 
when its pertaining technological community can carry out abundant exploitative 
recombinations within a still sufficiently heterogeneous recombinant niche. These 
arguments lead us to our fifth hypothesis.

H5: The absolute size of the knowledge output generated in 
a technology domain within a given time interval varies 
concavely with the domain’s degree of specialization.

Data and Operationalization

To test our theory, we have chosen what is probably the largest stock of public 
technological knowledge, a database that describes all of the patented inventions 
(more than 2 million), and all of their citations (more than 16 million), granted 
by the United States Patent and Trademark Office in 1975-1999 (Hall, Jaffe 
and Trajtenberg 2001). We use the USPTO data to indicate (1. the nodes of our 
knowledge recombination network, i.e., technology domains, (2. the ties con-
necting these domains, signalling knowledge recombination patterns, and (3. the 
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domains’ growth rates. On the basis of this network, we will then operationalize 
our explanatory and response variables.

Technology Domains
The USPTO has expert patent classifiers who examine the claims made in each 
application document. After the content of an application has been analyzed, the 
application is classified according to a set of well-specified criteria. According to 
the 1999 concordance scheme, the United States Patent Classification features 418 
three-digit, or primary, classes of technological knowledge, and more than 120,000 
subclasses. For the nodes of our network we chose to use the former, for four reasons. 
First, primary classes correspond more closely to well-circumscribed technologies or 
industrial sectors, and are therefore more reliable and robust than other partitions 
(Henderson, Jaffe and Trajtenberg 2005). Second, while some patents contribute 
to more than one subject, patents are assigned to only one primary class based on 
their “main inventive content,” i.e., their most important knowledge contribution 
as perceived by the patent examiner (Earls, Smith, Wolf, Saifer, Rishell, Russell and 
Rademaker 1997). Because primary classes do not overlap, in contrast to subclasses, 
only the former can be unambiguously operationalized as nodes in a network. Third, 
patents are periodically reassigned to patent classes in a retrospective fashion to 
reflect the emergence of new technological domains or the disappearance of existing 
ones. Clearly, the more narrowly one defines the technology domains the shorter 
the time scale within which these structural changes occur. Within our observation 
period, reassignments have been extremely rare at the level of primary classes, while 
they have been in the thousands at the level of subclasses. This makes primary classes 
a preferable unit of analysis for our research purposes.11 Fourth, there are about 400 
primary patent classes, which is a large yet manageable sample size. 

Although the examiners’ judgement is to some extent subjective, we believe 
that the combination of the USPC system with the examiners’ expertise yields 
high levels of accuracy, reliability and inter-subjectivity. Moreover, there is an 
extensive body of literature that uses patent classes to indicate technology do-
mains. For example, Powell and Snellman (2004) used patent classes to trace 
the changing importance of technological sectors over time. Similarly, patent 
classes have been used to measure technological proximity by, among many oth-
ers, Almeida (1996); Jaffe and Trajtenberg (1999); Hicks, Breitzman, Olivastro 
and Hamilton (2001); and Frost (2001). Also, in studies at the national level, 
patent classes frequently have been used to measure countries’ technological 
specialization and technological advantage (Soete 1987; Patel and Pavitt 1987; 
Cantwell 1989; Patel and Vega 1999). 

Furthermore, whether the USPC technological classification is in part a social 
construction matters less for our research purposes. Our argument is that inven-
tors operating in different technological communities are exposed to different 
recombinant niches. Thus, our assumption is that inventors busy with power plant 
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technologies, for example, will try to keep stride with and build on the inventions 
within that domain. They will search the USPTO database through the USPC 
technological classification scheme, whether that reflects an entirely objective 
representation of the underlying domain or not. The result of that search will 
shape the recombination inputs to which they are exposed and thereby, according 
to our theory, the amount and novelty of new knowledge they are able to generate. 

Knowledge Recombination Patterns
Patents cite earlier patents, pointing out that public knowledge inventions draw 
from prior art. Thus, patent citations are indicative of the recombination pro-
cess underlying the creation of an invention. Following Griliches’ seminal work 
(1979), in the past few decades many scholars, especially in the field of applied 
economics, have exploited patent citations to investigate the dynamics of knowl-
edge recombination. In addition to the indirect validation provided by such large 
body of empirical work, Jaffe, Fogarty and Banks (1998) devised a validity test 
of patent citation indicators, concluding that patent citations are “a valid but 
noisy measure of technology spillover,” a finding later confirmed by Jaffe and 
Trajtenberg (2002). Certainly, patent citation data must be treated with cau-
tion. Alcácer and Gittelman (2006) used new data available since 2001, making 
possible to disentangle the patent citations made by inventors from those added 
by patent examiners, and concluded that taking individual patent citations as 
indicators of knowledge recombination yields a risk for both type I and type II 
errors. Despite these risks, however, overall there is ample evidence that patent 
citations are a useful indicator of knowledge recombination. Furthermore, unlike 
many prior studies, we do not focus on individual patent citations, but on ag-
gregated patterns at the level of technology domain. As Alcácer and Gittelman’s 
(2006) study showed, at this level of aggregation the patent citations added by the 
patent examiners do not significantly differ from those inserted by the inventors. 
Finally, it is important to note that we are interested in how recombinant niches, 
capturing the different exposition of technological communities to recombinant 
inputs, affect knowledge growth. From this perspective, patents’ prior art provides 
us with the information we’re after – i.e., the recombinant inputs that are most 
immediately visible. Thus, paradoxically, when there is a difference between the 
actual recombination inputs used for an invention and the ones inferred from the 
prior art of the patent document, it may be argued that for us the latter are more 
relevant, given that they are the ones that are most likely to be retrieved (and thus 
recombined) by inventors interested in the focal patent. 

Network Evolution
In our model, we represent USPC three-digit technology domains as nodes and 
citations of patents in one domain by patents in other domains as arcs, where 
arc weights indicate the number of citations and arrows point into the direction 
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of citations.12 Based on all knowledge patented in the United States 1975-1999, 
Figure 3 shows the network of knowledge recombinations between technology 
domains. The network is highly connected because, on average, a domain has 
at least one patent citation to more than half of the other domains; the highest 
arc values are of domains citing themselves. The thickets created by the weakest 
5 percent of the ties and by the reflexive ties have been omitted; if they had been 
included, the representation would be too dense for readers to see any network. 

For the remainder of our analyses, in order to capture the evolution of the 
network we partitioned the observation period into five-year intervals, following 
Podolny and colleagues (1996). Clearly, this truncation yields a bias if domains’ ci-
tations of older patents systematically point to different technology domains than 
do more recent citations. We assessed the magnitude of this bias by a Quadratic 
Assignment Procedure (Krackhardt 1987, 1988), regressing the network based on 
the most recent five-year windows (1995-1999) on the entire 25-year observation 
period (1975-1999). This analysis showed that the two network configurations 
yielded a correlation coefficient as high as .999 (p < .001), thus indicating that a 
network representation based on a five-year interval is as unbiased as one based 
on the 25-year period. To avoid spurious relationships between the variables of 
interest, we then opted to model our knowledge recombination networks as a 

Figure 3. The Network of Patented Technological Knowledge Production in the USA
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time series of five non-overlapping networks, for the following time intervals: 
1975-1979, 1980-1984, 1985-1989, 1990-1994 and 1995-1999. 

Domains’ Growth
For an invention to be patented, it must consist of knowledge that is new, non-
trivial and applicable. Therefore, a patent is, by definition, an idea that advances 
the stock of public technological knowledge. Accordingly, patent counts are 
generally regarded as a valuable proxy for measuring knowledge growth if the 
success of each patent is taken into account (Grilliches 1990). If a patented 
invention consists of knowledge that is useful for the generation of subsequent 
inventions, it will be cited. In the words of Gittelman and Kogut (2003:380), 

“because certain patents open richer technological veins, the subsequent ad-
vances in related technical knowledge encourage more innovative efforts in 
that area and, hence, more patents. These, in turn, cite the initial patents that 
opened this avenue of technological innovation. It is this feedback that carves a 
trace in the patent patterns.” Accordingly, a widely used indicator of the impact 
of a patent is the number of citations it receives (Griliches 1990). As validation 
that a patent’s forward citations capture knowledge contribution, these citations 
were found to be positively related to received royalties (Giummo 2003), to 
intangible assets after controlling for R&D expenditure (Hall et al. 2005), to the 
value of a patent in the eyes of the patent holder (Harhoff et al. 1999), and to the 
social value of a patent (Trajtenberg 1990). Forward citations were also directly 
validated as a measure of knowledge contribution through surveys of inventors 
and experts by Albert et al. (1991), and by Jaffe et al. (2000). No published 
study in the large body of empirical research on the topic has disconfirmed the 
validity of this measure. 

At the level of technology domains, we measure knowledge output by count-
ing all the patents granted within a domain over a given time interval, weighed 
by the number of forward citations they received. Because it weighs each pat-
ent by the number of forward citations it received, our measure is consistent 
with the well-established notion that any quantification of knowledge output 
must reflect both the number of new ideas generated and the extent to which 
these ideas gain recognition (Simonton 2000; Walberg 1998; Weisberg 1993; 
Fleming 2007). Call our knowledge output measure Mit, where i indicates all 
domains in our study population and t = ⎨1975-1979, 1980-1984, 1985-1989, 
1990-1994, 1995-1999⎬. To calculate a domain’s growth rate, we then take the 
percentage difference between the domain’s knowledge outputs in subsequent 
time intervals: (Mt+1 – Mt)/ Mt,. The choice to confine the measure of domains’ 
knowledge output within a five-year interval may engender an error, given that 
less than 30 percent of citations are made to patents less than five years older 
than the original patent. It takes some 50 years to capture 90 percent of all cita-
tions received by a patent (Hall et al. 2001), which is well beyond our observa-
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tion period. To assess the magnitude of this error, we took all patents granted in 
each domain during the first five-year interval (1975-1979), and counted the 
citations they received during the same period. Then we counted the citations 
received by those same patents up to the year 1999, and we calculated the cor-
relation between the two measures. Both Pearson’s and Spearman’s rho values 
were above .97 and highly significant (p < .001), indicating that it is acceptable 
to measure domain’s knowledge output, and thus domain’s growth rate, on the 
basis of five-year intervals.

Domain’s Specialization and Brokerage
To model for each domain i knowledge specialization and knowledge brokerage, 
as illustrated by Figure 2, we adapt Ron Burt’s well-established network broker-
age measure (Burt 2004, 1992). In Burt’s model, brokerage is the opposite of 
constraint; while in our model, brokerage (Bi) is the opposite of specialization (Si), 
which we define as Bi = 1 – Si. The concise form of our specialization model is 
expressed by Equation (1); time indices are left out for ease of reading. 

			 

 
Si   = Σ j  (pij  + Σq  piq  pqj )2

		           (1)

When i has no arcs, we leave Si undefined because, in our conceptualization, a 
domain that carries out no recombination is neither specialized nor brokering. 
Let us start by fleshing out pij , which, as in Burt’s model, indicates proportional 
tie strengths of i’s direct contacts, here the proportion of ideas taken, and thus 
0 ≤  pij ≤ 1.  For our knowledge recombination model, a few changes are neces-
sary with respect to Burt’s model, the most important of which is the inclusion 
of arcs of nodes to themselves (see Figure 1), by allowing for the possibility that 
i = j (Equation 5). Then there are three more issues to consider when i ≠ j. First, 
our specialization model should capture well that if source domain j frequently 
takes ideas from focal domain i while i only rarely takes ideas from j, then i is not 
highly specialized in j (although i is constrained by j in Burt’s model), and hence 
pij should in our model be small. Second, if i is highly specialized in ideas from j 
while j is highly specialized in ideas from i, then pij should approach 1. Third, if i 
takes ideas a given number of times from j and if j takes more ideas from i that to 
some extent funnel back to i, then i’s level of specialization is higher and pij should 
have a higher value, accordingly. To express these three requirements for i ≠ j, we 
first define a term sij that is independent of j’s specialization on i,

	 	 	           

sij =
hij

Σkhik

.	 		           
(2)

The index variable k indicates all of the nodes in i’s ego network, that is, all nodes 
that i draws from directly, including i itself. The arc value, h, is the number of 
times that ideas belonging to the right-hand subscript node are used in combina-
tions of the left-hand subscript node. The same story can be told from j’s point 
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of view (again i ≠ j),

	 	 	          

 
sji =

hji

Σ l hji

.	 	 	         
(3)

The index l denotes the nodes in the ego network of j, including j itself.13 By 
combining (2) and (3), we can define pij in a way that meets our requirements,

	 	 	          
pij  = SijS ji

		   	 	         (4)

If the focal domain has an arc to itself (i = j), we define pii = Sii .	          (5)	
					   
For definitions of proportional tie values for indirect contacts with j via q 
(where q is also in i’s ego network, and q ≠ i and q ≠ j) we follow Burt (1992).14 
Corresponding to our informal description of the process of specialization (Figure 
2), Model (1) and its satellite definitions of proportional tie strength make clear 
that the increased specialization of focal domain i can happen in four ways. First, it 
can happen by an increase in the proportion of self-recombinations (pii increases). 
Second, when the focal domain increases its concentration on a limited number 
of source domains (sij increase). Third, when there are more strongly interrelated 
source domains (pqj increase). Fourth, when source domains use proportionally 
more ideas from the focal domain (sji increase), which partly return to the focal 
domain later on (depending on a given value of sij). Finally, to measure how i’s 
specialization changes between subsequent time intervals, we subtract i’s prior 
level of specialization from i’s current level of specialization. 15 

Analysis

Statistical Methods

There are four sources of possible non-independence in our data. First, time-
varying factors could affect the growth of all technology domains in a similar way; 
these may include macro-economic fluctuations, the rapid generic increase of both 
the number of patents and the number of citations (Hall et al. 2001), and chang-
ing practices among USPTO officers, etc. To model these temporal effects, we use 
period dummy variables. Second, non-independence could also occur within sub-
sets of units, as Hall et al. (2001) have shown by pointing out similarities in pat-
enting and citation patterns within six USPC macro-technological areas (“1-digit” 
classification). Again, we model these effects by means of dummy variables. Third, 
as domains are interconnected by knowledge flows, non-independence may also 
yield network autocorrelation; that is, the growth of a technology domain may 
affect the growth of its contact domains. To account for this specific kind of non-
independence, we adopt an established method in the social network literature 
and use a network disturbance model (Leenders 2002).16 Finally, the fourth kind 
of non-independence that could arise in the context of our study is related to 
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the panel structure of our data. There may be unobserved heterogeneity across 
technology domains; thus, repeated observations within units are likely to be more 
similar than between units in our data. For example, certain technology domains 
may inherently have greater potential for growth than other domains, for reasons 
that are either unknown to or unobserved by the researcher. We exploit the panel 
structure of our data to account for this possible unobserved heterogeneity, using 
both a fixed-effects and a random-effects model to test our hypotheses.17 

Results

Our dependent variable – the domains’ percentage growth rate – is distributed 
along a fairly well-behaved Gaussian curve, with very few outlying observations 
featuring exceptionally high values (i.e., 10 times the population mean). All of 
the outliers correspond to very small technology domains, which could explain 
why their percentage growth rate is so high. To ensure that our estimates are not 
unduly influenced by a few peculiar cases, we removed all observations in which 
a domain’s growth rate between two subsequent time intervals was higher than 10 
times the population mean. This resulted in the removal of six observations. Post-
estimation analyses of the residuals confirmed the appropriateness of this choice. 
Further, we removed all observations corresponding to technology domains that 
received no citations at all during a given time interval (again, corresponding to 
very small technology domains), because the concepts of recombinant niche, spe-
cialization and brokerage are meaningless in those cases. Lastly, we removed from 
the analyses the technology domain called “miscellaneous” because it is merely a 
residual class in the USPC patent system. As a result of these choices, our sample 
decreased from 1,672 observations to 1,639 observations.18 

In Table 1, we report descriptive statistics and a correlation matrix for all of the 
variables used in our analysis. Table 2 shows the results of our statistical test, on 
which we focus now. Models 1 and 3 are baseline models within the fixed-effects 
and random-effects frameworks, respectively; Models 2 and 4 add a triplet of 
covariates representing hypotheses 1, 2 and 4 to models 1 and 3.  Because most 
inventions are made within firms, we controlled for the log of the number of 
firms operating in a domain at t, which turns out to have a negligible effect on a 
domain’s percentage growth in all models. Furthermore, some authors have argued 
that the proportion of backward patent citations that firms make to their own 
patents is indicative of their ability to exploit their own inventions, which in turn 
may have repercussions on firms’ knowledge strategies and investments (Hall et al. 
2001). To make sure these firm-level dynamics do not affect our estimates of inter-
est, we calculated for each domain the average number of firm self-citations during 
each time interval and used it as a control.  According to our analysis, firms’ ability 
to exploit their own inventions has a positive effect on domains’ growth rates, but 
the effect is statistically significant only in Model 3. Our measure of specialization 
does not look at individual patents but rather at the aggregate recombination pat-
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terns occurring at the level of tech-
nology domains. As a consequence, 
our measure does not take into ac-
count whether a domain’s degree 
of specialization is the result of a 
set of similarly specialized inven-
tions or, in contrast, the result of a 
combination of highly brokering 
and highly specialized inventions. 
Of course, our specialization mea-
sure cannot be applied to the level 
of individual patents, because the 
patent-by-patent citation network 
is acyclic. Thus, to control for 
these patent-level differences, we 
computed Hall et al.’s (2001) in-
dicator of patent originality that 
measures the number of patent 
classes cited by a focal patent and 
can be regarded as a simplified ver-
sion of our brokerage measure at 
the patent level. On the basis of 
that, we then calculated for each 
domain during each time interval 
the coefficient of variation in pat-
ents’ originality. The coefficient of 
variation indicates the extent to 
which individual patents devi-
ate from the domain’s mean, in 
terms of originality. Therefore, 
the higher a domain’s coefficient 
of variation, the more that do-
main consists of a heterogeneous 
composition of highly brokering 
and highly specialized inventions; 
in contrast, the lower a domain’s 
coefficient of variation, the more 
that domain is comprised of in-
ventions with a similar degree of 
specialization. Our analyses show 
that the abovementioned variable 
has a positive effect on domains’ 
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growth rates, but the effect is statistically significant only after the hypothesized 
effects of specialization are accounted for. In line with previous analyses (Hall et 
al. 2001), we find a strong positive (albeit non-monotonic) relationship between 
time and a domain’s growth; as a reference category, we used the first time interval 
in our observation period, 1975-1979. Furthermore, models 3 and 4 show that 
the technology domains belonging to the areas of “computers & communications” 
and “drugs & medicals” (which includes biotech) have grown the fastest over the 
observation period, and have grown significantly faster than domains in our refer-
ence category, i.e., the miscellaneous category “others.” In contrast, the domains 

“chemicals” and “mechanical technologies” have grown significantly more slowly 
than the reference category. 

In the last three rows of the table, we report the estimates pertaining to our first 
three hypotheses. All three hypotheses are statistically supported within both the 
fixed-effects and the random-effects specifications. As predicted by Hypothesis 
1, specialized domains grow, on average, slower than brokering ones. Namely, 
according to our fixed-effects estimates, a difference of one standard deviation in 
the level of specialization of a technology domain results in an 18 percent decrease 
in the growth rate achieved in the subsequent five years. Conversely, as predicted 
by Hypothesis 2, the process of specialization is positively associated with growth. 
Thus, a technology domain that increases its specialization by one standard devia-
tion over a given time period sees its growth rate increase during that period by 4.5 
percent. However, as predicted by Hypothesis 4, the positive effect of increasing 
specialization is reversed for high levels of specialization. A one standard deviation 
increase in specialization in a highly brokering technology domain (S ≅ .05) yields 
a growth rate that is 10 percent larger than when no specialization occurs and, 
if the process of specialization is more rapid, this difference can be as high as 36 
percent. Conversely, for a technology domain characterized by a relatively high 
degree of specialization, the effect of further specialization is altogether reversed. 
For example, for a level of specialization of S ≅ .45, a one standard deviation 
increase in specialization leads to a 52 percent decrease in growth rates. 

To test Hypothesis 5, we estimated both a fixed-effects (Model 5) and a random-
effects model (Model 6) along the lines of models 1 through 4, making the response 
variable a level variable – knowledge output accumulated in a domain within a 
given time interval – rather than a change variable. Hypothesis 5 stated that the 
volume of knowledge generated in a technology domain within a given time inter-
val has an inverted U-shaped relationship with a domain’s degree of specialization. 
To model this non-monotonic relationship, we jointly estimated the effects of 
domain’s specialization and the effects of domain’s squared specialization. In Table 
3, we report the results of the test, according to which the inverted hypothesized 
U-shaped relationship between specialization and knowledge output is statistically 
highly significant.19 Namely, the effects of specialization are initially associated 
with larger volumes of accumulated output but become negative after some point. 
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Hence, the domains that accumulate the largest knowledge output within a five-
year interval are neither extremely specialized nor extremely brokering, but rather 
hover around the middle (the maximum being reached when S = .6). 

Finally, to test Hypothesis 3, we compared the variance in growth rates ex-
hibited over the observation period by highly brokering and highly specialized 
domains. To identify the two groups, we took the top 10 percent of domains with 
the highest levels of brokerage and the top 10 percent of domains with the high-

Table 2: Dynamic Effects of Specialization and Brokerage on Domains’  
Percentage Growth

Dependent Variable:
Domain’s % Growth

Fixed Effects Random Effects
Model 1 Model 2 Model 3 Model 4

Intercept  .132 -.011 .276*** .166
(.56) (-.05) (2.90) (.16)

1985-1989 (Reference: 1980-1984) .279*** .323*** .245*** .313***
(6.44) ( 7.44) (5.97) (7.48)

1990-1994 (Reference: 1980-1984) .072 .106** .035 .101**
(1.48) (2.12) (.80) (2.30)

1995-1999 (Reference: 1980-1984) .211*** .257*** .175*** .265***
(3.91) (4.57) (3.84) (5.65)

Computers & Communications
(Reference: Others)

.617*** .608***
(11.88) (11.97)

Drugs & Medical (Reference: Others) .574*** .562***
(7.63) (7.63)

Electronic  (Reference: Others) -.026 -.036
(-.59) (-.82)

Mechanical (Reference: Others) -.073** -.071**
(-2.12) (-2.09)

Chemicals (Reference: Others) -.137*** -.137***
(-3.42) (-3.42)

Number of firms (log) .014 .023 -.003 .006
(.31) (.50) (-.29) (.53)

Average Firm Self-citation Ratio .003 .001 .004*** .001
(1.47) (.47) (2.45) (.81)

Variation in Patent Originality .121 .265*** .014 .114*
(1.45) (3.15) (.24) (1.69)

Specialization -1.133*** -.342***
(-4.46) (-2.75)

D Specialization .484*** .967***
(2.44) (6.18)

Specialization * D Specialization -1.354*** -1.006***
(-2.89) (-2.63)

Number of Units 415 415 415 415
Periods 4 4 4 4
Number of Observations 1,639 1,639 1,639 1,639
R-Squared (Within) .111 .156
Log Likelihood -1,016.8 -985.4

Notes: Random effects models are estimated by Maximum Likelihood Estimation
t ratios in parenthesis.  
***p , .01     **p , .05     *p , .1
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est levels of specialization as measured during the first time interval. To account 
for possible fixed effects in the growth patterns of domains, we transformed the 
response variable in deviations from unit means; hence, the variance observed 
reflects the extent to which a domain’s growth rate over time deviates from the 
domain’s own mean. Our hypothesis is that the growth rates of domains that were 
highly brokering during the first time interval will exhibit greater variance over 
the observation period than those of highly specialized domains. As predicted, the 
variance in growth rates is larger for the group of brokering domains than for the 
specialized ones, and the difference is highly significant according to Levene’s test 
(1960). (See Table 4.) A glance at the confidence intervals for the means gives a 

Table 3: Effects of Specialization and Brokerage on Domains’ Knowledge Output
Dependent Variable:
Domains’ Knowledge Output

Fixed Effects Random Effects
Model 5 Model 6 Model 7 Model 8

Intercept 7.046*** 5.901*** 6.506*** 5.182***
(91.52) (56.58) (41.36) (32.08)

1980-1985 (Reference: 1975-1979) .263*** .182*** .276*** .174***
(6.53) (4.88) (6.91) (4.70)

1985-1989 (Reference: 1975-1979) .731*** .662*** .745*** .653***
(16.61) (16.29) (17.14) (16.20)

1990-1994 (Reference: 1975-1979) 1.102*** 1.035*** 1.118*** .102***
(23.19) (23.58) (23.85) (23.59)

1995-1999 (Reference: 1975-1979) 1.556*** 1.531*** 1.574*** 1.524***
(3.26) (32.33) (31.08) (32.63)

Computers & Communications
(Reference: Others)

1.199*** 1.279***
(4.17) (4.87)

Drugs & Medical (Reference: Others) 1.317*** 1.187***
(3.12) (3.08)

Electronic (Reference: Others) .905*** .961***
(3.64) (4.24)

Mechanical (Reference: Others) .195 .175
(1.00) (.98)

Chemicals (Reference: Others) .757*** .979***
(3.47) (4.91)

Average Firm Self-citation Ratio .001 .004*** .000 .005***
(.56) (3.07) (.27) (3.42)

Variation in Patent Originality .145** -.102 .157** -.106*
(2.27) (-1.65) (2.51) (-1.74)

Specialization 5.787*** 6.713***
(13.95) (16.60)

Specialization Squared -4.637*** -5.820***
(-9.15) (-11.78)

Number of Units 415 415 415 415
Periods 5 5 5 5
Number of Observations 2,045 2,045 2,045 2,045
R-Squared (Within) .720 .764
Log Likelihood -184.378 -1,667.287

Notes: Random effects models are estimated by Maximum Likelihood Estimation
t ratios in parenthesis.
***p , .001     **p , .01     *p , .05
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sense of how differently the two modes of knowledge generation operate. Within 
a 95 percent confidence interval, the growth rate of a brokering domain is nearly 
twice as volatile as the growth rate of a specialized domain.  

Conclusions

Contributions of the Study

We believe that the present study yields three main contributions to the extant 
literature. First, it clears up the widely used notions of knowledge brokerage and 
knowledge specialization, showing more precisely what they are and how they 
relate to each another. As noted by Postrel (2002), task or labor specialization on 
the one hand and knowledge specialization on the other should not be confused. 
While task specialization may entail knowledge brokerage, and a brokering task 
may be based on highly specialized knowledge, knowledge specialization and 
knowledge brokerage define opposite patterns of knowledge recombination. The 
focus of this study was on the generation of knowledge, regardless of the underly-
ing organization of tasks. Therefore, we departed from the commonly used em-
pirical strategy of looking at firm-, network- or industry-level knowledge growth, 
and focused our attention directly on the growth of technology domains. In so 
doing, we were able to explicitly take into account that knowledge specialization 
and knowledge brokerage are opposite modes of recombinant knowledge growth, 
and explicate how their putative effects are dynamically intertwined. 

In contrast to earlier studies that treated specialization and brokerage as inde-
pendent drivers of knowledge growth, we used a large set of longitudinal data to 
demonstrate that knowledge brokerage creates a recombination potential that can 
be efficiently exploited only by a process of increasing knowledge specialization. 
Moreover, we showed that increasing specialization enhances knowledge growth at 
a declining rate, and that therefore the process of specialization is either alternated 
by knowledge brokerage or it will ultimately lead to stagnation. The picture that 
emerges from our analyses is congruent with descriptive accounts of the evolution 
of science (Kuhn 1962), and of industries (Abernathy and Utterback 1978; Dosi 
1982; Tushman and Anderson 1986; Utterback and Suarez 1993), where prog-
ress reportedly results from long periods of path-dependent, incremental refine-
ments within a given research program or paradigm, sometimes alternated with 
path-breaking paradigm shifts. Whether and to what extent these phenomena are 

 Table 4: Variance Ratio Test of Within-Domain Percentage Growth
95% Confidence 

Intervals
Groups N T Observation Mean SD SD Error Min Max
High Brokerage 41 4 157 0 .762 .060 -.120 .120
High Specialization 41 4 163 0 .433 .034 -.067 .067
Levene test 121.40
Sign 0
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driven by oscillating regimes of knowledge specialization and knowledge broker-
age are intriguing questions, as well as opportunities for future research. While 
bibliographic records are more cumbersome to deal with than patents, they could 
nonetheless serve as a useful starting point in examining whether our arguments 
apply to the development of scientific fields (De Solla Price 1965).

From a normative standpoint, our findings are compatible with the view 
that to maximize knowledge growth, a balance must be struck between knowl-
edge specialization and knowledge brokerage. Borrowing from March (2005:9), 
knowledge specialization tends to increase a desire for the purification of exist-
ing ideas, yielding “exquisite barrenness,” while knowledge brokerage entails the 
glorification of the newest recombinations, yielding shallow ideas produced in 

“cascades of triviality.” In line with this view, we find the technology domains that 
generate the most knowledge are neither too specialized nor too brokering. Our 
results also show that looking at knowledge growth from a static perspective makes 
little sense, and that any fixed position on the specialization-brokerage continuum 
is doomed to be sub-optimal. The issue is not to find the most productive point 
along the specialization-brokerage continuum. Rather, it is to oscillate between 
knowledge brokerage (to generate new veins of productive recombinant inputs 
when the wells start to dry out) and knowledge specialization (to efficiently exploit 
those recombinant opportunities). While timely switching between these two op-
posite modes of recombinant knowledge growth is likely to be hard, our theory 
warns against convenient yet non-efficacious equilibria. 

As a second contribution, the present study extends our understanding of 
how public technological knowledge accumulates. A distinguishing trait of the 
knowledge-based economy is that a large share of newly generated technological 
knowledge is a public good (Mokyr 2002). Most scholars agree that, since the 
Scientific Revolution, the rate of accumulation of public technological knowledge 
lies at the base of unprecedented yet sustained economic growth (Jones 2005). The 
mechanisms driving the accumulation of public technological knowledge, how-
ever, have hardly been studied and, to date, recombinant growth in the context of 
public knowledge is modelled as an unrealistically unconstrained combinatorial 
process (Weitzman 1996, 1998). This research took up the challenge to identify 
how specialization and brokerage affect the returns of knowledge recombination 
in the context of public technological knowledge. To this end, we studied how 
technological knowledge has accumulated across technology domains over a 25-
year period in the USPTO. Our analysis showed that the process of recombinant 
growth driving the accumulation of public technological knowledge is far from 
combinatorially unconstrained. Rather, at any point in time, the rate of future 
accumulation of public technological knowledge is affected in important and 
predictable ways by the extent to which the body of accumulated prior knowledge 
in a technology domain is specialized. Our results provide a relevant starting point 
to make current models of public knowledge growth more realistic and useful. 
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Furthermore, our study explicates a framework and a methodology that can be 
used to investigate other explanatory mechanisms.

The third contribution of this research is to shed new light on the widely ac-
knowledged fact that the domains of human knowledge grow at widely different 
rates (Nelson 2003). Earlier studies have argued that these differences depend on 

“demand-side” forces (e.g., Schmookler 1966), as well as on supply-side factors 
(e.g., Rosenberg 1974, 1983) such as the strength of the link between scientific 
knowledge and practical know-how, and relatedly, the difficulty of doing precise, 
reliable and generalizable experimentation (Nelson 2003). By explicating how the 
intertwined effects of knowledge specialization and knowledge brokerage affect 
the growth of technology domains, our study unveiled a previously unexplored 
mechanism that explains why certain domains of technological knowledge grow 
fast while others grow slowly or even stagnate. This theoretical advance may yield 
a practical contribution as well. In the knowledge-based economy, investing at 
the right time in the most profitable technology domain(s) is of high strategic 
importance because knowledge production capabilities develop in an irreversible 
fashion (Nelson and Winter 1982; Kogut and Zander 1992). While successful 
strategic positioning in an evolving technological landscape is a key competitive 
advantage both for organizations (Stuart and Podolny 1996) and for countries 
(Nelson 1993), managers and policy makers are typically faced with great uncer-
tainty when making these strategic decisions. To aid them in sailing the high seas 
of the knowledge economy, we showed that a specialization-brokerage analysis 
improves our ability to predict both the risks and the rates of return associated 
with investments in a given portfolio of knowledge domains. 

Limitations and Opportunities for Future Research

In order to focus on the dynamics of technological accumulation, we abstracted 
away from the actors that participate in and organize the inventive process. Thus, 
we were unable to analyze in any detail how individuals, teams, organizations, 
institutions and inter-organizational networks interact to produce aggregate out-
comes. For example, we could observe the body of knowledge accessed by a given 
technological community, but we could not observe whether there is “resource 
partitioning” (Carroll 1985) within technological communities, at what level 
(e.g., individual, firm, etc.) that would take place, or what it might mean for the 
dynamics of knowledge recombination and growth. Similarly, while our study 
showed that the processes of specialization and brokerage are crucial to understand 
the growth of technology domains, we did not observe how these processes occur. 

Our theory might be applied to lower levels of analysis. For example, it is 
well-known that business groups tend to experience diminishing returns over 
time (Granovetter 2005). Our conjecture is that this phenomenon may, in part, 
result from a decreasing ability to generate novel ideas and technologies. At the 
outset, organizations enter a business group with distinctive competencies and 
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specializations, thereby pooling a diversified stock of knowledge and generating 
recombinant potential through knowledge brokerage. As time passes, however, 
knowledge exchange relations tend to strengthen within the group. This fosters 
efficient knowledge generation but also progressively depletes the recombinant 
potential available to the business group. Hence, new business groups should yield 
more innovative ideas and technologies, and thus greater returns on average, than 
long-established business groups. However, new business groups should also run 
greater risks of failure due to the cognitive and communication difficulties associ-
ated with recombining heterogeneous technologies, competences and knowledge 
trajectories. Useful insights could be gained if future studies explored the effects 
and dynamics of knowledge specialization and knowledge brokerage at the level 
of business groups, and more generally across units of analysis other than the 
technology domain. 

The present study focused on the growth of publicly accessible, codified knowl-
edge. In so doing, we glossed over the role of tacit knowledge. By definition, tacit 
knowledge tends to remain private and it can only partially be transmitted beyond 
an inventor’s proximate social network. While tacit knowledge contributes to the 
accumulation of public knowledge to a limited degree, this doesn’t mean that the 
generation and exchange of tacit knowledge is irrelevant for the progress of public 
knowledge. On the contrary, knowledge that is codified and publicly accessible is 
unlikely to be understood and effectively recombined unless it is complemented 
by related tacit and taken-for-granted notions (Gavetti and Levinthal 2000). 
Precisely because tacit and codified knowledge are complementary dimensions of 
the same phenomenon (Polanyi 1958, 1967; Cowan et al. 2000), it seems reason-
able to assume that the unobserved flows of tacit knowledge occurring within and 
between technology domains are largely congruent with the observable flows of 
codified knowledge. Nonetheless, it would be ideal to study directly the role of 
tacit knowledge in the accumulation of public knowledge. While this goal may be 
hard to achieve with a large-scale quantitative research design, more appropriate 
methodological approaches and analytical techniques may be borrowed (or, one 
may say, recombined) from the large body of work on organizational routines 
(Nelson and Winter 1982).  

Notes

1. 	 The term “knowledge-based economy” is used for those economies where knowledge 
is more important for production than capital, labor and material resources, which 
holds for increasingly large parts of our modern economy. 

2. 	 A few authors distinguish between knowledge generated by inventions as a result 
of knowledge recombination, and knowledge generated by discovering empirical 
regularities. One may argue that even the latter mode of knowledge generation 
is ultimately combinatorial, because it involves synthesizing data and less general 
knowledge available at the time of discovery, some of which is embodied in scientific 
instruments. For that reason, DNA, for example, could not have been discovered in 
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the Middle Ages. 
3. 	 Reported in Jones (2005:3).
4. 	 Moreover, generating new knowledge can blur with other notions. For example, when 

a mathematics student learns the principles of calculus, his or her personal knowledge 
grows while no new knowledge is created in society at large. At the level of technology 
domains, it is much easier to keep new and existing knowledge apart.

5. 	 Our conception of technology domains is therefore identical to the one adopted in 
the literature on epistemic communities. While technology domains are analytical 
categories that pertain to the partitioning of technological knowledge into technically-
based categories, these analytic categories do not merely reflect objective properties 
of the knowledge. Rather, the categories defining technology domains co-evolve 
with the “embedding circumstances” prevailing within distinct networks of practice 
(Brown and Duguid 2001) and thus with the cultural and institutional arrangements 
of distinct social (epistemic) communities (Knorr-Cetina 1999). However, our 
focus differs from studies of epistemic communities in two ways. First, rather than 
investigating epistemic communities against the background of technology domains, 
we focus directly on technology domains. Second, rather than emphasizing how the 
categorical boundaries defining technology domains are negotiated and change over 
the course of time, we emphasize that after they become culturally and institutionally 
embedded, definitions of technology domains are fairly stable.  

6. 	 This graphic difference between the literatures on diffusion and cognition (i.e., 
knowledge search) set aside, it is clear that knowledge recombination, be it brokerage 
or specialization, is a special case of knowledge diffusion, in this case of ideas from 
multiple sources to a target while being modified and recombined. The two literatures 
are consistent and complementary, one focusing on the generation of new knowledge 
and the other on the transmission of it.

7. 	 Knowledge spillover is a broader concept than knowledge recombination. When used 
to describe the process of knowledge generation, an idea that spills over is one that 
becomes an input of recombination, contributing to the generation of a new idea. 
For an extensive discussion, see Jones (2005).

8. 	 This conception of niche as a relationally defined position in a network is similar to, 
and inspired by, the one employed at the level of the individual invention by Podolny 
and Stuart (1995). 

9. 	 A mathematical representation of our hypotheses is reported in Appendix 1, which 
is available at http://www.unisi.ch/print/personalinfo?id=1529.

10. 	These direct and indirect mechanisms do not have an equally strong impact on a 
domain’s specialization, and this should be accounted for. Given the structure of our 
data, more than 90 percent of a domain’s specialization is captured by the first two 
mechanisms.

11. 	The very few primary classes which have either emerged or disappeared from the 
USPTO classification during our observation period are not reported in the NBER 
patent and patent citations database. Hence, consistent with our theoretical approach 
and empirical focus, our analyses are based on technology domains whose boundaries 
were stable and institutionally recognized during the whole observation period.

12. 	Note that as a consequence of aggregating patent citations, a domain can have a loop,  
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or a reflexive tie, whereas an individual patent can’t cite itself.
13. 	We checked the data for cases when sji = 0 while sij > 0, since one could argue that 

despite requirement (3) above, i would then still slightly specialize on j. That was 
hardly ever the case, leaving our results unaffected. 

14. 	Thus piq = (hqi + hqi)/∑k (hik + hki) and pqj = (hqj + hjq)/∑z (hqz+hzq), but index variable z 
stands for nodes in q’s ego network, including q, thereby allowing q to have reflexive 
ties while i ≠ j, like in Burt’s model. To check for programming errors, each of the 
authors computed specialization with a different program and we correlated the 
results afterwards. Apart from rounding, the results were identical. 

15. 	 In the literature, the Herfindahl Index has been used to measure the degree of 
technological specialization of firms, industries and countries, indicating the extent 
to which their patent citations are concentrated among patent classes (e.g., von 
Tunzelmann 1998). Our network-based conceptualization of specialization may be 
regarded as an extension of the Herfindahl index that weighs the concentration of 
patent citations across patent classes by two additional terms. The first term weighs 
the extent to which the cited patent classes cite one another, indicating similarity 
or homogeneity among a focal domain’s source domains. The second term weighs 
the extent to which a cited class cites back the focal technology domain, indicating 
similarity or homogeneity among the focal and source domains. 

16. 	 Network disturbance models exploit available information on the network structure of 
the data to account for the effects of possible network autocorrelation in the residuals. 
See Leenders (2002) for an extensive treatment of network autocorrelation models. 

17. 	Because it entirely removes between-unit variation, the fixed-effects model provides a 
conservative approach yielding consistent estimates even in the presence of unobserved 
heterogeneity (Hsiao 2003). In contrast, based on a Hausman specification test 
(Hausman 1978), we cannot conclude that the estimates of the random-effects model 
are consistent in our case. Nonetheless, we chose to report the results of both the 
fixed-effects and the random-effects models because the latter makes it possible to 
estimate the effects of time-invariant control variables. Therefore, in reading the 
results of our analyses, one should rely primarily on the fixed-effects model, while 
the random-effects model is reported to show that the estimates pertaining to our 
variables of interest are not significantly altered by time-invariant controls. 

18. 	As a further warranty that our analyses are not unduly biased by the presence of very 
small domains, we also ran all of the analyses reported in this article on samples 
based on technology domains that had, respectively, at least 50 and at least 100 
patents granted within a given time interval. Although the sample size reduced to 
1,530 and 1,440 observations, respectively, the estimations yielded qualitatively 
identical results to those reported. In fact, the only noticeable difference was that 
the estimates pertaining to our variables of interest had higher t-values and, hence, 
higher significance levels when we excluded the smallest domains.  Furthermore, we 
have also collected data on the average R&D expenditure of technology domains. 
Because many R&D data were missing, we chose to report the models with the R&D 
control in Appendix 2, which is available at http://www.unisi.ch/print/personal-
info?id=1529. Our estimates of interest were unaffected by the R&D control. 

19. 	 In a model not reported, we also included a covariate for the number of firms 
patenting in each technology domain in any time interval. Although this covariate 
explained a very large portion of the variance in our dependent variable, the results 
pertaining to our hypothesized effects remained virtually identical. We chose not to 
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include this control variable because the number of firms patenting in a domain may 
depend on the growth of the domain, creating a potential endogeneity problem.
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