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ABSTRACT
We have carried out a comparison study of hydrodynamical codes by investigating their per-

formance in modelling interacting multiphase fluids. The two commonly used techniques of

grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to

model processes that are fundamentally important across many areas of astrophysics. Whilst

Eulerian grid based methods are able to resolve and treat important dynamical instabilities,

such as Kelvin–Helmholtz or Rayleigh–Taylor, these processes are poorly or not at all resolved

by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard

implementation, introduces spurious pressure forces on particles in regions where there are

steep density gradients. This results in a boundary gap of the size of an SPH smoothing kernel

radius over which interactions are severely damped.

Key words: hydrodynamics – instabilities – turbulence – methods: numerical – ISM: clouds
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1 I N T RO D U C T I O N

The ability to numerically model interacting fluids is essential to

many areas of astrophysics and other disciplines. From the formation

of a star and its protoplanetary disc to galaxies moving through the

intracluster medium (ICM), dynamical instabilities such as Kelvin–

Helmholtz (KH) and Rayleigh–Taylor (RT) play a fundamental role

in astrophysical structure formation. Most popular hydrodynami-

cal methods can be divided into two classes: techniques following

the gas using Eulerian grids (e.g. Laney 1998; Leveque 1998) and

those which follow the Lagrangian motions of gas particles such as

‘smoothed particle hydrodynamics’ (SPH; Monaghan 1992). Grid-

based techniques solve the fluid dynamical equations by calculating

�E-mail: agertz@physik.unizh.ch

the flux of information through adjacent cell boundaries, while SPH

techniques calculate the gas properties on each particle by averag-

ing over its nearest neighbours. Because of the extensive use, and

sometimes discrepant results of these techniques, it is interesting to

carry out code comparison studies on well-defined problems that

test their ability to follow the basic gas physics they are designed

to simulate. Recent code comparisons have been focusing on differ-

ences in a cosmological context (e.g. Frenk & et al 1999; O’Shea

et al. 2005; Regan, Haehnelt & Viel 2007). They all find differences

between grid and SPH codes but due to the complexity of these types

of simulations it is not obvious how the differences arise. Similarly,

while SPH studies of galaxy–ICM interactions by Abadi, Moore

& Bower (1999) found that only half the interstellar medium was

removed from the galaxy. Using a grid-based calculation with the

same initial conditions (ICs), Quilis, Moore & Bower (2000) found

that all the gas could be removed and attributed the difference to
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the high resolution shock capturing ability of their Eulerian code.

However, we are not aware of a direct comparison between simula-

tion methods in this context. Differences were found in the literature

between different studies of the same problem.

Our test problem is to follow cold dense gas cloud moving through

a low-density hot medium. This is specifically designed to capture

the same physical processes that occur during the formation and

evolution of astrophysical structures. We will also study the shearing

motion of two fluids of different densities to elucidate the problems

that we find with this test. Similar configurations, including shock

wave interaction with clouds, have been studied by e.g. Murray et al.

(1993), Klein, McKee & Colella (1994), Mac Low & Zahnle (1994),

Mac Low et al. (1994), Vietri, Ferrara & Miniati (1997) and Mori

& Burkert (2000).

The paper is organized as follows. In Section 2 we briefly de-

scribe the main features of the test problem followed by analytical

expectations in Section 3. In Section 4 we describe our numeri-

cal implementation of the set-up as well as all codes used in our

comparison. In Section 5 we present the results of our simulations

followed by an explanation of the found discrepancies in Section 6.

In Section 7 we summarize our results and briefly discuss their im-

plications.

2 T H E B L O B T E S T

A schematic view of the blob test problem can be seen in Fig. 1.

A spherical cloud of gas is placed in a wind tunnel with periodic

boundary conditions. The ambient medium is 10 times hotter and 10

times less dense than the cloud so that it is in pressure equilibrium

with the latter. We will refer to this initial density contrast between

the cloud and the medium as χ ini. All of the gas is atomic hydrogen

with molecular weight μ = 1.0 and an adiabatic index γ = 5/3.

This set-up is useful to investigate how different simulation codes

handle typical astrophysical processes important for multiphase sys-

tems, such as ram-pressure stripping and fragmentation through KH

instabilities (KHIs) and RT instabilities (RTIs).

Rcl

ρcl

Tcl

Subsonic ow

ρext

vext

Text

Supersonic ow

Bow shock

Uniform supersonic ow

Figure 1. Illustration of the blob test. The external medium, which initially

is in pressure equilibrium with the cloud, travels with a supersonic velocity

creating a bow shock in front of the cloud. The post-shock flow is subsonic

until the smooth flow accelerates and again obtains supersonic speed on the

lateral sides of the cloud.

3 A NA LY T I C A L E X P E C TAT I O N S

Although the non-linear stages of the KHIs and RTIs cannot be

fully described analytically, we can still use analytic arguments to

estimate the characteristic disruption time-scale for the cloud.

In order to specify our problem we characterize the external

medium with a sound speed cs and assign it an initial velocity

vext = Mcs with Mach number M = 2.7. Furthermore, we place

the cloud initially at rest in the computational domain. Since the

wind is supersonic, a bow shock will form in front of the cloud with

the post-shock properties given by the Rankine–Hugoniot shock

jump conditions. Because the cloud is accelerated by the wind, we

will from now on perform all of our calculations in the rest frame of

the bow shock, referring to pre-shock quantities with the subscript 1

and post-shock with 2. The shock conditions for the density, velocity

and Mach number are (e.g. Shu 1992)

ρ2

ρ1

= v1

v2

= (γ + 1)M2
1

(γ + 1) + (γ − 1)
(
M2

1 − 1
) , (1)

M2
2 = 2 + (γ − 1)M2

1

2γM2
1 − (γ − 1)

. (2)

Formally we would take the obliqueness of the bow shock into

account but for simplicity we will only consider the flow that enters

at the symmetry axis of the cloud.

The cloud acceleration can be approximated by considering the

maximum area that can gain momentum from the ambient flow.

This implies that all gas in a cylinder in front of the cloud transfers

momentum leading to an acceleration

acl ∼ v̇1 ∼ ρextπR2
clv

2
1

Mcl

. (3)

Integrating this equation leads us to the evolution of the pre-shock

velocity

v1(t) = l

(t + l/vext)
, (4)

where l is a characteristic length given by l = Mcl/2πR2
clρext. By

using equation (4) to calculate the pre-shock Mach number together

with equation (2) we can obtain a qualitative understanding of the

post-shock velocity. This velocity is crucial for the stability of the

cloud surface and, as we will show in Section 3.1, for the destruction

of the cloud itself. The evolution of the post-shock Mach number

M2 is given by

M2
2 =

{
2+(γ−1)(v1/cs)2

2γ (v1/cs)2−(γ−1)
for t < tsonic,

(v1/cs)
2 for t > tsonic.

(5)

Here tsonic is the time at which M1 = M2 = 1 and the shock

disappears. After this point, gas freely streams towards the cloud and

the Mach number decreases only due to the continued acceleration.

Notice that for t < tsonic,M2 < 1, even for M1 = v1/cs → ∞.

This means that behind the shock, the flow will always be subsonic

and we expect instabilities to grow there. For t → ∞,M2 → 0 and

the cloud will eventually be comoving with the background flow.

The evolution of the post-shock Mach number is shown in Fig. 2 in

terms of the so-called ‘crushing time’ defined as, in our notation,

τcr = 2Rclχ
1/2

v1

, (6)

where χ is the density contrast between the cloud and the external

medium. This is a natural time-scale supersonic cloud evolution. We

will naively use χ = χ ini = 10 and v1 = vext, representing our IC.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 963–978



Simulating fluids using SPH and grid techniques 965

0 1 2 3 4 5 6 7 8
0

0.25

0.5

0.75

1

Figure 2. We plot the Mach number of the flow directly downstream of the

shock on the symmetry axis of the cloud. The flow speed increases due to

the weakened shock strength up to tsonic where the relative motion of the

cloud and wind turns subsonic.

During the interval of τ cr a bow shock is formed and the shocked

gas will form a smooth flow around the cloud, reaching supersonic

speed at the points indicated in Fig. 1. Beyond this region we expect

to see a turbulent boundary layer forming which transports material

off the surface. The cloud will compress along the line of motion

due to an internal shock wave generated by the external gas. From

Bernoulli’s theorem we know that the pressure is low on the lateral

sides which causes an overspilling of the cloud due to the high

inner pressure of the compressed cloud (Doroshkevich & Zeldovich

1981). This causes mass loss irrespective of any instability.

3.1 The Kelvin–Helmholtz instability

KHIs occur when velocity shear is present at the interface between

two fluids. The importance of the KHIs, in the context of gas cloud

stability, has been studied by many authors e.g. Nulsen (1982),

Murray et al. (1993), Vietri et al. (1997) and Mori & Burkert (2000).

Neglecting gravity, the dispersion relation of the KHIs, in the

notation of our set-up, for an incompressible fluid is (Chandrasekhar

1961)

w = k
(ρ2ρcl)

1/2v2

(ρ2 + ρcl)
≈ kv2

χ 1/2
, (7)

where k is the wavenumber of the instability and the last approxima-

tion holds for χ � 1. The characteristic growth time for the KHIs

is then

τKH ≡ 2π

w
= 2π(ρ2 + ρcl)

k(ρ2ρcl)1/2v2

≈ 2πχ1/2

kv2

. (8)

By naively using the post-shock quantities of equation (1) and our

choice of cloud parameters, we can calculate an approximate time

dependence of the KHIs, which is shown in Fig. 3 (blue, solid lines),

for perturbations of size Rcl (thick), Rcl/2 (middle) and Rcl/3 (thin).

Small-scale instabilities grow faster due to the τKH ∼ k−1 relation.

The first modes to grow are the shortest. Their growth will act to

widen the interface between the shearing layers, hence dampen-

ing the growth of modes smaller than the thickness of the interface

(Chandrasekhar 1961). The fastest growing modes are now those

that are equal to the thickness of the interface. As this process con-

tinues, the mode responsible for the cloud destruction is that which
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Figure 3. The time dependence of the growth rates of KHIs (solid, blue

lines) and RTIs (dashed, red lines). The lines represent different sizes of

perturbation wavelengths: Rcl (thick), Rcl/2 (middle) and Rcl/3 (thin).

is comparable to the size of the cloud itself: kcl ∼ 2π/Rcl (Nulsen

1982; Murray et al. 1993).

The instability growth time is always larger than the cloud crush-

ing time. The horizontal line at τ = 1.6τ cr in Fig. 3 indicates roughly

the time at which the kcl KH mode should have grown fully. We will

from now on refer to this time as τKH.

Note that cloud compressibility can be taken into account when

calculating the KH growth time (see Vikhlinin, Markevitch &

Murray 2001), but was omitted for simplicity. Also note that in

certain more physically motivated situations with external gravita-

tional fields, self-gravity, physical viscosity, magnetic fields, radi-

ation etc., the KHI is modified and is damped in most but not all

cases (e.g. Murray et al. 1993; Vietri et al. 1997; Miniati, Jones &

Ryu 1999; Gregori et al. 2000).

3.2 The Rayleigh–Taylor instability

RTIs occur when a denser fluid is accelerated by a less dense fluid.

The cloud is accelerated with respect to the background and we

expect RTIs to develop. The dispersion relation for the RTIs is

(Chandrasekhar 1961)

|w2| = k ′a

(
ρcl − ρext

ρcl + ρext

)
≈ k ′a, (9)

where the last approximation is valid for χ � 1. The KHI, which

results from shearing flows, has a two-dimensional (2D) geometry,

and can be described by as single wavevector k. By contrast, the

RTI necessarily has a three-dimensional (3D) geometry and must

be described by a vector wavelength, k ′ = (k1, k2), of magnitude

k ′ =
√

k2
1 + k2

2 . The acceleration on the surface can be assumed to

be a = ε acl, where acl is given by equation (3) and ε is an efficiency

factor. Note that it is very difficult to analytically determine the

efficiency of the momentum transfer from the external medium on

to the cloud. By using ε = 1 we will get a lower limit on τRT.

Fig. 3 shows, for our choice of parameters, the characteristic

growth times for RTIs (red, dashed lines) of size Rcl (thick), Rcl/2

(middle) and Rcl/3 (thin), demonstrating that τKH < τRT for large

instabilities. The largest mode grows very slowly and is probably

not important in this type of problem. However, we expect that a fast
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growing small-scale RTI should develop on the cloud front, espe-

cially on the axis of symmetry as the flow rams into the stagnation

point. Complicated mixtures of KHIs and RTIs during later evolu-

tion are also expected until the cloud becomes fully comoving with

the flow.

4 N U M E R I C A L S I M U L AT I O N S

Our numerical simulations solve the Euler equations which neglect

physical viscosity and radiative processes; we assume a perfect gas

equation of state P = RρT/M, where R is the gas constant and M is

the molar mass. Away from shocks, the evolution is strictly adiabatic.

This means the gas can only undergo reversible heating and cooling

by adiabatic compression or expansion, or irreversible heating in

shocks. In order to isolate the differences in hydrodynamic solvers,

we neglect the self-gravity of the gas.

4.1 Initial conditions

The ICs for the blob test are set up in the following way: we use

a periodic simulation box of size, in units of the cloud radius Rcl

{Lx , Ly , Lz} = {10, 10, 40} and we centre the cloud at {x, y, z} =
{5, 5, 5}. The ICs are generated by randomly placing equal mass

particles to obtain the correct densities and cloud radius. Using an

SPH code, the system is evolved and allowed to relax to obtain pres-

sure equilibrium. By repeatedly adding small random velocities to

the particles and letting the system relax we obtain a glass-like IC.

Random velocities from spurious pressure forces will in this way

be minimized compared to a completely random IC. Once the glass

is created, the streaming velocity vext is given to the particles con-

stituting the hot ambient medium. Because of the glass IC we note

that the random velocities coming from spurious pressure forces

are � few per cent of vext. One could smoothly increase the veloc-

ities to be more faithful to astrophysical situations, but this more

violent start together with particle noise serves as the initial seed

for surface instabilities of the cloud. Formally this can be seen as a

triggering of small-scale RTI and Richtmyer–Meshkov instability.

The Richtmyer–Meshkov instability occurs when a contact discon-

tinuity gets shocked or rapidly accelerated. This generates vorticity

and structures similar to those of RT (e.g. Inogamov 1999).

This particle set-up is used as IC for the SPH simulations. The ICs

for the grid simulations are obtained by smoothing the gas quantities

(density, temperature and velocities) on to each cell centre using the

same spline kernel as in the SPH codes (see Section 4.2) using 32

nearest neighbours. In this way we have a consistent set-up for both

of the methods and the noise introduced by using discrete particles

in the SPH simulations is also present in the grid IC. As we will

argue below, the key parameters to study are those connected with

the resolution and strength of artificial viscosity (AV) therefore our

parameter space studies will focus on the effect of these.

4.2 The codes

The simulation was carried out with about a dozen different inde-

pendent simulation codes. Since all the grid codes gave consistent

results, and similar for the SPH codes, we shall just present the de-

tailed analysis of a selection of these codes which are summarized

in Table 1. Here we give a brief description of these codes and the

methods used for solving the hydrodynamical equations.

Table 1. Simulation details. ENZO and ART use the static grids indi-

cated in the table while the CHARM and FLASH simulations have been

run using AMR up to the indicated resolution. All static grid as well

as the FLASH simulations were initialized using the stated resolution,

CHARM started from 32, 32, 128.

nParticles/grid size AV Name

ART, static

64, 64, 256 No AV ART 64

128, 128, 512 No AV ART 128

256, 256, 1024 No AV ART 256

CHARM, AMR

512, 512, 2048 No AV CHARM 512

ENZO-PPM, static

64, 64, 256 No AV ENZO 64

128, 128, 512 No AV ENZO 128

256, 256, 1024 No AV ENZO 256

ENZO-ZEUS, static

256, 256, 1024 QAV = 2.0 ENZO ZEUS1

256, 256, 1024 QAV = 0.5 ENZO ZEUS2

256, 256, 1024 QAV = 0.1 ENZO ZEUS3

FLASH, AMR

64, 64, 256 No AV FLASH 64

128, 128, 512 No AV FLASH 128

256, 256, 1024 No AV FLASH 256

GADGET-2

107 α = 0.8 GAD 10M

GASOLINE

106 α = 1.0, β = 2.0 GAS 1M

107 α = 1.0, β = 2.0 GAS 10M

107 α = 0, β = 2.0 GAS 10MAV1

107 α = 0, β = 0.5 GAS 10MAV2

107 α = 0, β = 0.1 GAS 10MAV3

107 Balsara, α = 1.0, β = 2.0 GAS BALS

4.2.1 ART (AMR)

ART (Adaptive Refinement Tree) is a N-body+gas dynamics AMR

(Adaptive Mesh Refinement) code (Kravtsov 1999; Kravtsov,

Klypin & Hoffman 2002). The ART code uses second-order shock-

capturing Godunov-type solver (Colella & Glaz 1985) to compute

numerical fluxes of gas variables through each cell interface, with

‘left’ and ‘right’ states estimated using piecewise linear reconstruc-

tion (van Leer 1979). This is a monotone method that is known

to provide good results for a variety of flow regimes and resolves

shocks within ≈1−2 cells. A small amount of dissipation in the

form of artificial diffusion is added to numerical fluxes (Colella &

Woodward 1984), as is customary in the shock-capturing codes. The

details of the flux evaluation and summation on mesh interfaces can

be found in Khokhlov (1998). In the simulations presented in this

paper, a new distributed MPI version of the ART code developed by

Douglas Rudd and Andrey Kravtsov was used (Rudd & Kravtsov,

in preparation).

4.2.2 CHARM (AMR)

CHARM is an N-body+gas dynamics, AMR code, based on the

CHOMBO-AMR library, employing a higher order Godunov’s

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 963–978
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method for the solution of the hydrodynamic equations (Miniati

& Colella 2006). Here a piecewise linear reconstruction scheme

with Van Leer’s limiter and a non-linear Riemann solver were used,

resulting in a second-order accurate method in both space and time.

CHARM was used to test the influence of ICs on the cloud evolution.

4.2.3 ENZO-PPM (AMR)

ENZO
1 is an Eulerian AMR hybrid code (N-body+gas dynamics) that

was originally written by Greg Bryan and Michael Norman at the

National Center for Supercomputing Applications at the Univer-

sity of Illinois (Bryan & Norman 1997). ENZO uses the piecewise

parabolic method (Colella & Woodward 1984, PPM) for solving fluid

equations and has been adapted for cosmology (Bryan et al. 1995).

PPM is a higher order accurate version of Godunov’s method with

an accurate piecewise parabolic interpolation and a non-linear Rie-

mann solver for shock conditions. The method is third order accurate

in space and second order in time for fixed time-stepping. For vari-

able time-stepping it is formally second order in space. This together

with the Riemann solver results in a very accurate shock treatment

compared to the SPH codes where AV is used. In all of our tests

we used the dual energy formalism in ENZO. Formally, the use of

this is only necessary in hyper-Machian flows (Etherm/Etot ∼ 10−3)

to keep the PPM solver stable, and hence makes little difference for

our case.

4.2.4 ENZO-ZEUS (AMR)

ENZO includes an implementation of the finite-difference hydrody-

namic algorithm employed in the compressible magnetohydrody-

namics code ZEUS (Stone & Norman 1992a,b). Fluid transport is

solved on a Cartesian grid using the upwind, monotonic advec-

tion scheme of van Leer (1977) within a multistep (operator split)

solution procedure which is fully explicit in time. This method is

formally second order accurate in space but first order accurate in

time.

The ZEUS method uses a von Neumann–Richtmyer AV to smooth

shock discontinuities that may appear in fluid flows and can cause a

breakdown of finite-difference equations. The AV term is added in

the source terms as

ρ
∂v

∂t
= −∇ p − ρ∇φ − ∇ · Q, (10)

∂e

∂t
= −p∇ · v− Q : ∇v, (11)

where v is the baryon velocity, ρ is the mass density, p is pressure, e
is internal energy density of gas and Q is the AV stress tensor, such

that

Qii =
{

QAVρ(�vi )
2 for �vi < 0.

0 otherwise
(12)

and

Qi j = 0 for i �= j . (13)

� xi and �vi refer to the width of the grid cell along the ith axis

and the corresponding difference in gas velocities across the grid

cell, respectively. QAV is a constant that roughly tells us over how

many grid zones we smooth shocks. While the correct Rankine–

Hugoniot jump conditions are achieved, shocks are thus not treated

1
ENZO is available at http://lca.ucsd.edu/portal/software/enzo

as true discontinuities. This may cause unphysical pre-heating of

gas upstream of the shock wave, as discussed in e.g. Anninos &

Norman (1994) and O’Shea et al. (2005).

4.2.5 FLASH (AMR)

FLASH
2 is an AMR hybrid code (N-body+gas dynamics) developed

by the ASC Center at the University of Chicago (Fryxell et al. 2000).

The PPM hydrodynamical solver is formally accurate to second order

in both space and time but performs the most critical steps to third-

or fourth-order accuracy. For the simulations performed in this paper

we have used the publicly available FLASH version 2.3 using AMR

with maximum refinement up to the resolutions indicated in Table 1.

4.2.6 GASOLINE (SPH)

GASOLINE is a parallel Tree + SPH code, described in Wadsley,

Stadel & Quinn (2004). The code is an extension to the N-body

gravity code PKDGRAV developed by Stadel (2001). GASOLINE uses

AV to resolve shocks and has an implementation of the shear re-

duced version (Balsara 1995) of the standard (Monaghan 1992) AV.

GASOLINE solves the energy equation using the asymmetric form

and conserves entropy closely. It uses a standard spline smoothing

kernel (Monaghan 1992) with compact support for the softening of

the gravitational and SPH quantities. The kernel is symmetrized by

using kernel averaging (Hernquist & Katz 1989) and we smooth

over the 32 nearest neighbours when estimating fluid quantities.

The AV is implemented by solving a momentum equation of the

form

dvi

dt
= −

n∑
j=1

m j

(
Pi

ρ2
i

+ Pj

ρ2
j

+ �i j

)
∇i Wi j , (14)

where Pj is pressure, vi is velocity, Wi j is the smoothing kernel and

the AV term �i j is given by

�i j =
{−α(1/2)(ci +c j )μi j +βμ2

i j

(1/2)(ρi +ρ j)
for vi j · r i j < 0,

0 otherwise,
(15)

where

μi j = h(vi j · r i j )

r 2
i j + 0.01(hi + h j )2

, (16)

where ri j = ri − r j , vi j = vi − vj and cj is the sound speed. α and β

are the coefficients used for setting the viscosity strength, and are es-

sential for capturing shocks and preventing particle interpenetration.

Note that the viscosity term vanishes for non-approaching particles

and the β parameter is the SPH implementation of the Neumann–

Richtmeyer AV. The commonly used values in the literature is α = 1

and β = 2 which originally was proposed by Lattanzio et al. (1986)

using Sod shock tube tests. Later we will carry out experiments with

different values of α and β.

4.2.7 GADGET-2 (SPH)

The TreeSPH code GADGET-23 (Springel, Yoshida & White 2001;

Springel 2005) is the updated version of the GADGET-1. The code

is similar in character to GASOLINE but uses an entropy conserving

formulation of SPH. This means that the thermodynamic state of

2
FLASH is available at http://flash.uchicago.edu/website/home/

3
GADGET-2 is available at http://www.mpa-garching.mpg.de/gadget/
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each fluid element in GADGET-2 is defined through the specific en-

tropy and not the specific thermal energy. GADGET-2 uses a somewhat

different formulation of AV than GASOLINE. The viscosity term in

equation (14) is here formulated as

�i j = −α

2

v
sig
i j wi j

ρi j
, (17)

where v
sig
i j = ci + cj − 3 wi j is the so-called signal velocity. Here

wi j = vi j · ri j/|ri j | is the relative velocity projected on to the separa-

tion vector provided particles approach each other. Like GASOLINE,

Figure 4. Gas density slices through the centre of the cloud at t = 0.25, 1.0, 1.75 and 2.5 τKH. From top to bottom we show GASOLINE (GAS 10M), GADGET-2

(GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART-HYDRO (ART 256). The grid simulations clearly show dynamical instabilities and complete fragmen-

tation after 2.5 τKH, unlike the SPH simulations in which most of the gas remains in a single cold dense blob.

GADGET uses a spline smoothing kernel (Monaghan 1992) and we

employ smoothing over the 32 nearest neighbours. In our test we

used the publicly available GADGET-2 version 2.01.

5 R E S U LT S O F T H E S I M U L AT I O N S

Fig. 4 shows central density slices of GASOLINE (GAS 10M),

GADGET-2 (GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART

(ART 256). These are the high-resolution simulations with the de-

fault standard settings.
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Figure 5. A thin central slice of the SPH particles of GAS 10M at t = 0.75 τKH (left-hand panel) and t = 1.5τKH (right-hand panel). The density ranges from

high (blue) to low (white) and the magnitude of the velocity vectors are normalized to the reference frame of the centre of the cloud. We clearly see the effect

of the cloud stretching due to the lateral Bernoulli zones and the formation of downstream vorticity.

The simulations of the two SPH codes, GAS 10M and GAD 10M,

show a very similar evolution. As expected, a detached bow shock

forms directly in front of the cloud. An internal shock wave forms

within the cloud compressing it. The post-shock flow encompasses

the cloud, creating Bernoulli zones on the top and bottom with

lower pressure. This causes the cloud to become elongated as well

as compressed along the z-axis and we see gas being ablated, i.e.

stripped through the induced pressure differences, from the top and

bottom edges. Gas stripping slowly progresses and the cloud’s shape

does not change significantly for a long time. Fig. 5 shows the

particles in a thin slice centred on the cloud. The velocity vectors of

each particle are plotted in a reference frame centred on the cloud.

The colours indicate the gas density. Behind the edges of the cloud

we see a vortex created due to the shearing motion of the ambient

medium which creates a low-pressure region behind the cloud.

Initially, the cloud evolution is similar in the grid simulations. It

is compressed and elongated and gas is removed from the trailing

edges where the vortex has created a vacuum behind the cloud. Some

of the ambient medium is entrained in the turbulent wake behind

the cloud and falls on to the backside of the cloud. However, the

late cloud evolution is very different in these simulations. Early on

we observe surface perturbations on the front of the cloud, probably

originating from the way the ICs are set-up (see argument in Sec-

tion 4.1). A complicated mixture of KHIs and RTIs are developing

on the cloud front which, due to subsequent compression and lat-

eral expansion, becomes even more KH and RT unstable. By t ∼
τKH, large-scale KHIs have developed and the cloud starts to frag-

ment. Further instabilities and turbulence mixes the smaller clumps

of gas into the ambient medium. All grid simulations show basi-

cally the same cloud destruction time. We also note that Eulerian

(shock capturing) methods effectively localize shocks to a few grid

Figure 6. The evolution of the cloud mass fraction. In the SPH simulation

(solid, red), the cloud slowly loses mass to the ambient medium and has

not been completely mixed even after 5τKH. The grid simulation (dashed,

blue) follows the SPH up to the time at which the KHI causes it to rapidly

fragment and mix.

cells compared to the smoothed out shocks in the SPH simulations

resulting from AV shock capturing schemes. In Fig. 6 we show the

remaining cloud mass fractions as a function of time for the ENZO

and GASOLINE simulations. These are representative of grid and SPH

methods. We define the cloud as being any gas that satisfies T <

0.9 Text and ρ > 0.64ρcl. It is of course possible to construct more
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elaborate criteria but these select the gas that visually is a part of the

cloud. The figure shows that both techniques give a similar mass loss

up to ∼ τKH. Before this time the gas loss is mainly due to ablation

into the low-pressure zone created behind the cloud. As soon as we

pass τKH for large-scale KHIs the SPH and grid methods diverge. In

the grid simulation, the cloud quickly disrupts and diffuses into the

ambient medium, while the SPH simulation only shows continuing

stripping. After t = 2.5τKH, no gas in the grid simulation can satisfy

our criteria while the SPH simulation still shows a mass fraction

≈40 per cent. This shows us that the vortex shedding through the

Bernoulli zones is the most important mechanism for mass loss at

t < τKH in both methods. After this time dynamical instabilities

dominate the grid mass loss.

5.1 Resolution dependence

It is difficult to do a direct translation between grid and SPH res-

olution. The maximum allowed resolution is a fixed grid of size

256 × 256 × 1024 in the grid runs and 107 particles in the SPH

runs. This means that there is almost a factor of 7 more cells

compared to particles. On the other hand, cells are uniformly dis-

tributed in space and only ≈70 276 cover the cloud in the initial set-

up of an almost perfectly spherical cloud. This should be compared

to the ≈105 particles constituting the cloud in the high-resolution

SPH run. A comparison like this is still not straightforward due to

the fact that SPH uses particles as non-independent resolution ele-

ments. This means that each particle is not a carrier of information

without neighbours to smooth over, and the effective number of res-

olution elements is more or less set by the kernel shape and number

of neighbours to smooth over.

Resolution affects the convergence of hydrodynamical simula-

tions. A cut-off is always introduced on the scale of the spatial

resolution below which instabilities cannot be resolved. This often

serves as a source of numerical viscosity. For most of the codes

used in the comparison, we have varied the resolution in order to

obtain an understanding of how this changes the cloud morphol-

ogy, mass loss and fragmentation time (see Table 1). Fig. 7 shows

the outcome of, from top to bottom, ENZO˙64, ENZO 128, ENZO 256,

GAS 1M and GAS 10M. In the grid simulations we conclude that,

while the compression and elongation of the cloud are relatively

similar, the detailed way the cloud fragments is resolution depen-

dent as the ICs are (Jones, Ryu & Tregillis 1996). In ENZO 64, a

mode of the KHI symmetric with respect to the symmetry axis of

the cloud is dominant. This mode becomes less dominant as res-

olution is increased (ENZO 128) and has not yet developed by t =
1.5τKH in ENZO 256. Going to higher resolution we see more and

more small-scale instabilities developing which enhance mixing of

the cloud material with the background flow. Numerical diffusion

is stronger in low-resolution simulations which is why parts of the

cloud survive longer in the higher resolution runs. The different

SPH simulations are qualitatively very similar. Instabilities cannot

be resolved in GAS 1M nor in GAS 10M. However, we note a weak

large-scale RTI on the cloud front at t = 2.25τKH in GAS 10M, which

is absent in GAS 1M.

The general description above is again quantified by studying the

cloud mass fraction at each time-step, see Fig. 8. In this plot we

have also added an extra low-resolution SPH simulation using only

105 particles. The grid simulations show a clear trend of dissolving

the cloud quickly after ∼τKH regardless of resolution while the SPH

simulations only show a steady mass loss due to the material ablated

into the trailing vacuum. Decreasing the SPH resolution causes the

mass fraction to rise above the initial value during the initial phase

and mass is lost more rapidly for t > τKH. The latter effect is most

probably due to the increased mass of each particle, causing each

particle interaction to transfer momentum in a more violent, ‘bullet-

like’ fashion.

5.2 SPH versus grid resolution criteria

In the study of Mac Low & Zahnle (1994), simulations of the impact

of comet Shoemaker–Levy with Jupiter were carried out using the

ZEUZ-2D grid code (Stone & Norman 1992a). They found that a

minimum of 25 grid cells per cloud radius was required to follow

the evolution correctly. This resolution is reached in all of the high-

resolution grid simulation that we have performed, but it is very

important to note that the destruction of the cloud is captured even

in the lowest resolution runs, where we only have seven cells per

radius. In the case of SPH it is, as mentioned in Section 5.1, more

difficult to apply this criterion. The most conservative translation

of the criterion is to use 25 non-overlapping smoothing kernels per

radius. This is indeed a lower limit to the resolution as the cubic

spline smoothing kernel used in our SPH tests cannot exactly be

interpreted as a grid cell. The kernel is given a radius allowing

it to encompass 32 particles, and the strength of the kernel falls

off rapidly. At half the kernel radius (at h), only 1/4 of the kernel’s

central value remains (Monaghan 1992), indicating that we probably

have more resolution elements than in the non-overlapping kernel

case. To safely test the resolution criterion, we anyway adopt the

conservative 25 independent kernel interpretation in this section.

In order to investigate this we perform two additional simulations

using ENZO and GASOLINE. Any uniform spherical distribution of Np

particles using a kernel smoothing over the n nearest neighbours

has nk = (1/2)(Np/n)1/3 independent smoothing kernels covering

one radius. By having nk = 25 and n = 32 we see that we require

Np = 4 × 106 in the cloud only. This is to be compared with the

requirement using grid codes which is ≈65 450 cells, a substantial

difference in computation and storage. We use a smaller box in

order to manage the large simulation required for SPH. In units

of the cloud radius Rcl, the sides are {Lx , Ly , Lz} = {4, 4, 12}
where we centre the cloud at {x, y, z} = {2, 2, 3}. The smaller

box will give us a set-up that is not ‘as clean’ as the previous ones

as the backflow and lateral bow shock interacts with the cloud in

the later evolution due to the periodic boundary condition that are

necessary to impose (inflowing boundary conditions are not possible

in the current version of GASOLINE). We will however fully trace the

evolution past the important τKH, which is estimated in the same

way as in Section 3. To facilitate computations we used a density

contrast χ = 20 for this test. This reduces the total number of SPH

particles to ≈1.36 × 107. To optimize the conditions for the SPH

simulations we have adopted a lower viscosity setting than normally

used; α = 0.1 and β = 1.5. This is done in order not to suppress

possible growth of instabilities while still capturing shocks (see

Section 6.1 for a discussion). The grid simulation is performed as

before but now using a static grid of size 100 × 100 × 300. In

order to see the direct effect of the high-resolution run we have also

performed a simulation using the same number density of particles in

the cloud as in GAS 10M but with the new density contrast, viscosity

setting and box size. The visual outcome of the simulations can

be seen in Fig. 9. The conclusion of the previous sections remains

valid; the initial phase of the evolution is very similar for the grid

and SPH simulations. However, later evolution of the cloud in the

grid simulations shows surface instabilities developing leading to

fragmentation and mixing of material after t = τKH. The cloud in
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Figure 7. Resolution study for ENZO and GASOLINE. The panels show density slices of, from top to bottom, ENZO 64, ENZO 128, ENZO 256, GAS 1M and GAS 10M

for t = 0.25, 0.75, 1.5 and 2.25τKH. We see that resolution changes the phase of the instabilities in the grid simulations while the destruction time is the same.

Higher resolution also shows less diffusion and better resolves small-scale fragments. The GASOLINE runs are not able to resolve small-scale instabilities at all.

the SPH simulation does not fragment and suffers only from lateral

elongation and ablation.

The differences are small between the high resolution and stan-

dard SPH simulation with only minor morphological differences

probably owing to different capturing of the more complicated shock

structure in this new set-up. A test of the standard resolution simu-

lation using larger viscosity setting was also performed (not shown

here) which produces identical results, assuring us that the specific

viscosity setting is not unphysically low.

We conclude that the observed differences between grid and SPH

methods are not related to resolution and that convergence must be

reached by other means.

5.3 Initial seeds

As partly shown in the previous test, the development of the in-

stabilities, particularly during the non-linear stages, is sensitive to

the exact definition of the ICs. This is because they set the seed
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Figure 8. The evolution of the cloud mass fraction for different resolutions.

As the resolution of the grid simulations is increased from 64 to 128 to 256

cells across the wind tunnel, the amount of mass increases a little but con-

verges. Increasing the resolution of the SPH simulations does not decrease

the amount of mass lost, rather the opposite, perhaps due to the momentum

transfer due to massive particles acting like ‘bullets’.

perturbations out of which the instabilities grow. However, while

the mixing of the cloud material with the background medium is

affected by small-scale motions that arise from the small unstable

scales, the cloud disruption is mostly the result of the development

of the large-scale perturbations. As an example of this in Fig. 10 we

show the evolution of the cloud–wind interaction but with ICs set

Figure 9. Each frame shows a density slice through the cloud centre at times t = 0.5, 1.0 and 1.5τKH with densities varying from low (blue) to high (red). The

grid (ENZO) simulation (left) shows instabilities developing on the surface causing the cloud to fragment, while these features are absent in the SPH (GASOLINE)

simulation (middle and right).

Figure 10. Evolution of the cloud with ‘analytic’ ICs using the CHARM code. Each frame shows a density slice through the cloud centre at times t = 0.24, 0.9,

1.7 and 2.5τKH with densities varying from low (red) to high (blue).

directly from the analytic definition. Thus in this case the ICs are

free of noise and are purely symmetric. A base grid of (32 × 32 ×
128) was used with two additional levels of refinement with refine-

ment ratio of 4 placed dynamically in regions where the relative

change in density, �ρ/ρ exceeded 20 per cent. This corresponds

to an effective resolution of 512 × 512 × 2048 in the finest grids,

which reduces the level of perturbation with respect to the previous

cases.

As shown in panel B of Fig. 10 the most destructive mode has

a different phase than in the cases illustrated above for the corre-

sponding grid-based codes. However, as in the previous cases, by

t = 2.5τKH (panel D) the cloud has been completely reduced to

debris by the instabilities. This shows that despite differences in

the appearance of the cloud gas distribution its fundamental fate of

disruption and subsequent mixing on a time-scale of a few τKH is

independent of the specific definition of the ICs.

6 W H Y S O D I F F E R E N T ?

What is the reason for the observed discrepancies between simula-

tions carried out using SPH and grid-based techniques? Differences

between SPH and grid-based results have been discussed before

in the literature (Frenk & et al 1999; Pearce et al. 1999; Thacker

et al. 2000; Ritchie & Thomas 2001; Tittley, Pearce & Couchman

2001; Springel & Hernquist 2002; Marri & White 2003; O’Shea

et al. 2005) in different contexts to this study. While AV is the most

obvious focus for criticism of SPH it is not the main reason for the

differences observed in this test. We will show this in Section 6.1

before focusing on the almost complete suppression of KHIs (and

RTIs) in SPH simulations of this test and present an explanation of

why this occurs.
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6.1 Artificial viscosity

The AV β parameter in equation (15) is necessary for shock captur-

ing and is required for SPH to work properly in unsmooth supersonic

flows. In smooth flows where interparticle velocities are vanishing,

no AV is required and is turned off (see equation 15). The α param-

eter has a less obvious meaning and the classical α = 1.0 setting is

most probably unphysical. It can be argued (e.g. Watkins et al. 1996)

that α can roughly be interpreted as a Navier–Stokes shear plus bulk

viscosity, even though the AV is only sensitive to flow properties

such as interparticle travelling. Bulk viscosity is normally not im-

portant in fluid dynamics, except in the theory of attenuation of

sound waves (e.g. Faber 1995). In numerical simulation its inclu-

sion is for the most part to dampen the so-called post-shock ringing.

Many grid-based techniques employ AV in order to stabilize the

solutions from high-frequency oscillations occurring at sharp tran-

sitions in flux quantities. All of the grid methods in this paper, except

for ENZO ZEUS, use of Godunov’s method. This means, among other

things, that fluxes are calculated using Riemann solvers, hence not

needing any inclusion of explicit AV terms except for very high

Mach number shocks (Colella & Woodward 1984). Note however

that there is always numerical viscosity due to resolution and trun-

cation error in all simulation methods. In practice, this means that

dynamics on the resolution scale is damped. To quantify the effect of

this in the form of an effective viscosity term is not straightforward

and requires well-defined problems with analytically known solu-

tions to test against. The inclusion of AV leads us to one of the first

possibilities for the observed discrepancy: we are not solving the

same hydrodynamical equations in the different codes. By adding

AV we are solving some kind of Navier–Stokes equation when we

actually want to compare the solutions to the grid codes that, in this

sense, are closer to the Euler equations.

Viscosity has two major effects on the processes we want to cap-

ture in this test.

(i) Dampening of small-scale velocity perturbations and random

velocities.

(ii) Diffusion of post-shock vorticity and smearing of turbulence.

The effect of (i) will enter as a stabilizing factor for the growth of

instabilities. Physical kinematic viscosity, ν, sets a cut-off for the

size of the smallest eddies in turbulence (Shu 1992), below which

turbulent motion is diffused. The effect of (ii) follows from the

first one and is obvious from inspection of the vorticity transport

equation (e.g. Shu 1992)

∂ω

∂t
+ ∇ × (ω × v) = ∇ P × ∇

(
1

ρ

)
+ ν∇2ω, (18)

where ω ≡ ∇ × v is the vorticity. The two terms on the right-hand

side can create or diffuse vorticity. The first term is the baroclinic

term which is non-vanishing if we have non-aligned pressure and

density gradients. This is the case in oblique shocks like in the bow

shock of our cloud simulation. The second term is responsible for

diffusing vorticity in space, i.e. taking local vorticity and spreading

it into the general flow. This means that as soon as we have viscos-

ity, we will dampen vorticity. Especially important is the vorticity

generated in the post-shock flow, which should act to destabilize the

cloud together with the surface instabilities.

A study on how AV dampens small-scale vorticity was made by

Dolag et al. (2005). By using a low viscosity formulation of SPH

they find higher levels of turbulent gas motions in the ICM and noted

that shocked clouds tend to be unstable at earlier times. However, by

looking at their fig. 3 we note that the overall difference in the cloud

evolution is small. As we will see in the tests carried out below,

lowering the AV does not necessarily lead to improved results.

In order to understand the effect of AV in our cloud–wind test

we have performed three simulations with modified setting of the

viscosity coefficients. These are GAS 10MAV1, GAS 10MAV2 and

GAS 10AV3, see Table 1 for viscosity values. A simulation using

the Balsara switch but with the standard (α = 1.0, β = 2.0) was

also performed. Fig. 11 shows the outcome of the simulations at t
= 0.25, 0.75, 1.5 and 2.25τKH. We can directly see the impact these

terms have on the stability of the simulation. The standard α =
1.0, β = 2.0 is the most stable one, most probably due to the un-

physical use of the α bulk viscosity. The use of α = 0 and β = 2.0

or the Balsara switch renders very similar visual results. This is be-

cause the Balsara switch turns of viscosity where |∇ · v|/(|∇ · v| +
|∇ × v|) is significant, which is the case for shearing flows like on

the surface of the cloud. Note that this is a very noisy quantity when

measured using only 32 neighbours. By further lowering the shock

capturing β viscosity we make the cloud even more unstable but it

is not clear how physical this solution is. The shock front gets more

blurred and we see strong post-shock ringing effects. The reason for

the increased instability in the α = 0, β = 0.5 and α = 0, β = 0.1

case is most probably due to high speed particles travelling through

the poorly captured shock region and transferring momentum inside

the cloud, perturbing it in an unphysical way.

We have performed simulations similar in spirit to the SPH ones

using ENZO-ZEUS. There is formally no need for linear viscosity

using this method except for hypersonic flows, but it is interesting

to study the effect of lowering QAV in the same way as β. Fig. 12

shows density slices from these simulations at t = 1.5 and 2.25τKH.

We see no impact on the cloud fragmentation except for minor

morphological differences expected in turbulent regimes: QAV only

serves to broaden the shock. Viscosity in grid-based techniques are

not as fundamental as in SPH techniques, where it must be set large

enough to properly reproduce the behaviour of a fluid and not a

collection of particles.

We chose not to experiment with linear viscosity in ENZO-ZEUS as

it is truly a viscous term with the same functional form as what is as-

sociated with the SPH α viscosity but is also sensitive to expansion.

A comparison can therefore not be made on equal terms.

To conclude, we see from these simulations how lowering the AV

outside shock regions will make the cloud in the SPH simulations

less stable while losing the fluid behaviour for very low values. We

still cannot obtain agreement with the grid-based codes which leads

us to suspect that there are more fundamental reasons behind the

discrepancies.

6.2 Resolving instabilities

In order to create an even simpler test problem to compare insta-

bilities between codes, we carried out a classical KH test using

GASOLINE and ENZO. We looked at the shearing motion of two gases

of different densities and with small perturbations imprinted at the

boundary. This captures the hydrodynamics at the surface of the

cloud in the blob test.

The set-up is a periodic box with dimensions {Lx , Ly , Lz} =
{1, 1, 1/32}, divided into two regions: one cold, high density and

one warm, low density. The density and temperature ratio is χ =
ρb/ρ t = T t/Tb = c2

t /c2
b, putting the whole system in pressure equi-

librium. The two layers are given constant and opposing shearing

velocities, with the top layer moving leftward at a Mach number

Mt = vt/ct ≈ 0.11 and the bottom layer moving rightward at a

Mach number Mb = vb/cb ≈ 0.34 in the case of χ = 10. The shear
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Figure 11. Viscosity study for GASOLINE. The panels show density slices of, from top to bottom, GAS 10M, GAS BALS, GAS 10MAV1, GAS 10MAV2 and GAS 10MAV3

for t = 0.25, 0.75, 1.5 and 2.25τKH. We can see how reducing shear viscosity and removing the bulk viscosity renders very similar results; the cloud destabilizes

to a higher degree. By reducing the shock capturing viscosity the cloud destabilizes even further, most probably to an unphysical solution in the lower setting.

The artificial post-shock ringing also gets more pronounced, as expected for lower viscosity settings.

velocity becomes vshear = 0.68 cb and the subsonic regime will as-

sure growth of instabilities (Vietri et al. 1997). This set-up should

mimic the growth of instabilities on the cloud surface.

To trigger instabilities we have imposed sinusoidal perturbation

on the vertical velocity of the form

vy(x) = δvy sin(λ2πx), (19)

where δvy is the amplitude of the perturbation in terms of the sound

speed cb and λ is the wavelength of the mode which we have put to

1/6 in all of out tests. The perturbation is limited to a central strip

around the interface of thickness 5 per cent of the box size.

The ICs are again generated using particles for SPH. These are

then mapped to a grid as explained in Section 4.1 to be used in

the grid code, allowing a similar starting point for both codes. An
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Figure 12. Viscosity study for ENZO-ZEUS. The panels show density slices of, left to right, ENZO ZEUS1, ENZO ZEUS2 and ENZO ZEUS3 at t = 1.5 and 2.25τKH. The

outcome of the simulations shows little difference; only minor morphological changes are found. AV in ENZO-ZEUS only affects regions of strong compression

and is therefore not crucially acting to damp hydrodynamical instabilities associated with the cloud.

important issue for this type of test is how the initial particles are

distributed since this will introduce a certain amount of noise via

discreteness. The most common techniques for this are the follow-

ing.

(i) Lattice. Particles are ordered in a perfect grid. For a shear-

ing layer test, this type of IC is optimal for grid codes as it traces

the computational grid perfectly and suppresses all local density

fluctuations.

(ii) Poisson. Particles are randomly distributed to generate the IC

of our problem. This type of set-up generates local density varia-

tions, causing spurious pressure forces.

(iii) Glass. A Poisson particle distribution, with our IC set-up,

is heated and relaxed until random velocities arising from pressure

fluctuations are much smaller (� few per cent) than the later imposed

shear velocity (see Section 4.1).

Any IC with local density variations will trigger small-scale KHIs.

We carried out this test using all three methods in order to illustrate

their impact. The lattice is obviously perfect for grid codes, making

a perfectly homogeneous gas. This quality does not automatically

produce clean SPH ICs due to the averaging over nearby particles.

The Poisson ICs are very noisy in both the grid and SPH case, even

though grid codes tend to smooth the noise over the cell sizes. The

glass IC is intuitively the closest IC for both methods producing a

self-consistent and homogeneous initial state for SPH simulations

while leaving only small fluctuations for both grid and SPH methods.

This set of simulations and their characteristics are summarized in

Table 2, and Fig. 13 shows the results, from top to bottom, GRID1,

GRID3 and SPH3. We choose to show only one of the SPH results

Table 2. Performed KH runs.

Resolution χ δv/vshear IC Name

ENZO

{256, 256, 8} 8.0 1/80 Lattice GRID1

{256, 256, 8} 10.0 1/40 Poisson GRID2

{256, 256, 8} 10.0 1/40 Glass GRID3

GASOLINE

900 k part 8.0 1/80 Lattice SPH1

1.1 M part 10.0 1/40 Poisson SPH2

1.1 M part 10.0 1/40 Glass SPH3

since all of these runs give the same result. GRID1 and GRID3

illustrate the difference between a highly idealized smooth set-up

(GRID1) and one with small-scale noise (GRID3).

GRID1 nicely produces the KHIs and the growth time is in excel-

lent agreement with that expected from equation (8). This growth is

not as clean in GRID3, which is to be expected due to local noise in

density which alters the visual outcome. However, the KHI is still

well resolved and the growth time is comparable to the analytical

expectation.

The outcome of the SPH simulation is again very different from

the grids. Perturbations are damped out very quickly both in velocity

and density regardless of choice of ICs, resolution, perturbation

strength and viscosity. We conclude that SPH in the form used in

astrophysical simulations to-date is unable to capture dynamical

instabilities such as KH when density gradients are present. As we

will show in the next section, the reason for this stems from the way

hydrodynamical forces are calculated in SPH in regions with strong

gradients.

6.3 Mind the gap

Fig. 14 shows a close-up of the SPH particles at the interface of the

two fluids in SPH3 at t = τKH. There is a gap between them that

has the size of an SPH smoothing kernel radius (∼2hi j ). This gap

repeats periodically in each fluid, being smaller in the higher density

fluid since the smoothing length (mean distance to the nearest 32

particles) is smaller there. This feature is found in all of our SPH

KH simulations. It occurs very quickly and becomes more prominent

with time. This phenomenon has been discussed before in the litera-

ture (e.g. Ritchie & Thomas 2001; Tittley et al. 2001; Okamoto et al.

2003), especially in the context of numerical overcooling (Pearce

et al. 1999; Thacker et al. 2000; Springel & Hernquist 2002; Marri

& White 2003) but no relation to resolving instabilities has been

mentioned.

The gap can also be clearly seen in the cloud test simulation

(Fig. 5). Even though the gas is streaming with high velocity on to the

leading surface of the cloud, spurious pressure forces prevent it from

making any physical contact. The reason that the cloud loses mass in

the SPH simulation is due to the vacuum behind the cloud into which

the cloud expands from its edges. Here the gradients become smooth

and the gas can be removed by the pressure difference between the

cloud and the ambient medium that streams past.
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Figure 13. Density slices of, from top to bottom, GRID1, GRID3 and SPH3. The panels show the KH simulation at t = τKH/3, 2τKH/3 and τKH. The grid

simulations show clear growth of the KHI while this is completely absent in SPH.

Figure 14. A close up view of the SPH particles at the boundaries between the shearing layers (left) and closer zoom in (right) for SPH3 at τKH. We can clearly

see empty layers formed through erroneous pressure forces due to improper density calculations at density gradients. Even though the two fluids are moving

relative to each other, the gap is so large that proper fluid interaction is severely decreased or even absent.

The effect can be explained in the following way: equation (14) is

the force on each SPH particle coming from the summation over the

32 nearest neighbours. The pressure is given by P ∼ ρT in the as-

sumed case of an ideal gas. This force calculation formally assumes

that temperature, and more importantly, density gradients are small

within the smoothing kernel, where temperature is a quantity ac-

cumulated over time while density usually is re-estimated at each

time-step. When a particle from a hot low-density region approaches

a cold high-density region it will suddenly find a lot of neighbours

at the edge of the smoothing sphere within the dense medium and

its density will be overestimated. This leads to, through momentum

conservation, a repulsive, fictitious, force on the particle, causing it

to bounce back into the low-density region. This behaviour leads to

the formation of a gap between the two phases of the size ∼2hi j ,

where hi j is the effective smoothing kernel length, either obtained by

using smoothing length or smoothing kernel averaging (Hernquist

& Katz 1989), depending on the SPH implementation. Hot particles

close to this gap will now have a strongly asymmetric distribution of

particles around them resulting in an average pressure force point-

ing back into the vacuum layer. Particles then travel back into the

empty region and the whole process is repeated. This particle mi-

gration and its associated pressure forces will act as an effective

restoring force for the surface, a kind of tension. This together with

the gap essentially removes multiphase behaviour from SPH. From

the above arguments it is straightforward to see that in all standard

formulations of SPH, any relaxed multiphase particle distribution

must have an associated gap.

As mentioned above, this erroneous treatment of density contrasts

has also been found to produce overcooling in galaxy formation

simulations. Tittley et al. (2001) showed that in subsonic regimes this

behaviour leads to fictitious accretion of particles on the lateral sides

of gas clouds such as the simulations showed in this paper. Solutions

to this problem has been attempted by several authors (e.g. Ritchie

& Thomas 2001; Marri & White 2003) by reformulating SPH to

more accurately treat the particle interactions at steep boundaries.

While this seems to remove the gap to some extent, it is unclear how

this will affect the simulations discussed here. Possible solutions to

the problem such as improving the method of calculating gradients

and minimizing their errors in SPH will be presented in a follow up

paper by Read et al. (in preparation).

That erroneous density gradients are the root of the instability

suppression becomes even more apparent by studying the KHI us-

ing a density contrast χ = 1, in which the gap cannot form. We

performed a simulation using GASOLINE in the same way as SPH3

described in Section 6.2 but now using 106 particles χ = 1. With

this vanishing density gradient, SPH is able to capture the KHI, see

Fig. 15. The left-hand panel shows the KHI at t = τKH for the stan-

dard α = 1.0, β = 2.0 setting and the right-hand panel shows the

same time-step but using α = 0.01 and β = 1.0. The less evolved

standard viscosity simulation points out the effects of viscosity
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Figure 15. A zoom in of the SPH particles at the boundaries between the shearing layers for the isodensity SPH run with standard viscosity (left) and low

viscosity (right) at τKH. The black and white regions are particles that belonged to the initially separated shearing layers. We clearly see growth of the KHI in

the standard implementation of SPH, and even stronger for the low viscosity version. The simulation was performed with GASOLINE using 106 particles in the

same way as SPH3 described in Section 6.2.

discussed in Section 6.1. Similar results have been recently found

by Junk et al. (in preparation).

7 S U M M A RY

In this paper we have carried out hydrodynamical simulations of a

cold gas cloud interacting with an ambient hot moving gas using

state of the art simulations codes. Striking differences were found

between the two main techniques for simulating fluids. While grid

codes are able to resolve and treat dynamical instabilities and mix-

ing, these processes are poorly or not at all resolved by the current

SPH techniques. We show that the reason for this is that SPH, at

least in the standard usage and formulation, inaccurately handles

situations where density gradients are present. In these situations,

SPH particles of low density close to high-density regions suffer

erroneous pressure forces due to the asymmetric density within the

smoothing kernel. This causes a gap between regions of high-density

contrast, essentially decoupling the different phases of the fluid.

This behaviour has implications for many astrophysical situa-

tions. The stripping of gas from galaxies moving through a gaseous

medium has already been discussed in the literature. The origin of

disc galaxies is an important unsolved problem. Perhaps the inability

to disrupt accreting gas clouds is one reason why numerical calcu-

lations have failed to produce pure disc systems. Simulating star

formation regions and feedback processes also relies on the correct

ability to model turbulence and interacting multiphase fluids.

It should be noted that the behaviour of the grid and SPH meth-

ods agrees on time-scales shorter than those of typical dynamical

instabilities such as the KHIs and RTIs. In our specific test of a cold

cloud engulfed in a hot wind, there is good agreement in the early

gas stripping phase occurring due to pressure differences arising in

the Bernoulli zones. As soon as the large-scale instabilities have

grown, the results of the different methods diverge. There are sev-

eral possible solutions to this behaviour in SPH calculations which

we will explore in a separate work.
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